University at Buffalo

The State University of New York

Buffalo, NY 14260

Using SNePS Based CVA Techniques to Determine the Meaning of the Nouns Acapnotic and Phalacrosis from Context

CSE 740: CVA Seminar

Dmitriy Dligach

ddligach@cse.buffalo.edu
Abstract

CVA is an interdisciplinary project whose main objective is developing a computational theory of vocabulary acquisition. CVA currently developed a series of algorithms, which in conjunction with SNePS knowledge representation system can be used to determine the meaning of an unknown word from context. Currently, the CVA process consists of three steps:

1. collection of verbal protocols to analyze what kind of background knowledge a human reader utilizes to determine the meaning of the unknown word

2. representation of the passage containing the unknown word as well as the information collected in step (1) in SNePS

3. execution of the CVA algorithms which collect information about the unknown word’s meaning from the SNePS network

This paper describes application of these CVA techniques to learning the meaning of two nouns (acapnotic and phalacrosis) from a passage in which they occur. It is shown that the CVA algorithms were able to correctly define acapnotic as “non-smoker” and phalacrosis as “baldness”. Possible directions for future research are also outlined.

SNePS Overview

SNePS is a propositional semantic network. Like any network, SNePS consists of a system of nodes interconnected by arcs. From the outset, SNePS was conceived as a semantic network suitable for representing natural language discourses and the current version of the SNePS user language (SNePSUL) offers a high level of expressibility comparable to that of natural languages. What distinguishes SNePS from other semantic networks is that each proposition is represented by a node (not by an ark) and that nodes represent intensional concepts. Thus, every SNePS node represents a single concept and every arc represents a relation between the concepts that this arc connects. The content of the SNePS network is often viewed as a mind of an artificial agent, who is affectionately referred to by the member of the SNePS research group as Cassie.

The first step in defining a SNePS network consists in defining a set of arcs, which will be used in the network. There are very few predefined arcs and the user has a freedom of using arbitrary names for the arcs. However the members of the SNePS research group have developed guidelines, which make recommendations about the arcs one should use when building a SNePS network (Napieralski 2003).

Once the arcs are defined, the user can encode propositions into the network. This is done by explicitly specifying the relations between the new propositions and those that are currently existing in the network. For example, the SNePSUL expression

(assert member Socrates class Humans)

connects the concept of Socrates and the concept of Humans by specifying that Socrates is a member of the class of Humans. Entering this expression into SNePS results in creating an asserted node – a concept believed by Cassie. The network can be visualized as follows:

[image: image1.png]member

In addition to representing concepts, SNePS is capable of reasoning about them. This functionality is achieved by allowing the network to accept inference rule formulas in the form of a combination of propositions (containing variables) and logical connectives. The user can specify a set of inference rules, which Cassie will attempt to match against the propositions that are currently present in her mind. If a match is found, Cassie follows the inference rule to deduce new propositions, which she preserves in the network for the future use.

CVA Project Overview

CVA is an interdisciplinary project whose main objective is developing a computational theory of vocabulary acquisition. The CVA project currently develops in two major directions: AI and Education. The AI component focuses on creating an artificial agent capable of determining the meaning of an unknown word from its context (Rapaport, Ehrlich 2000). The goal of the educational component is transforming CVA algorithms into an educational curriculum (Rapaport, Kibby 2002)

The CVA project is a part of a broader effort to create a computational model of a narrative text reader. The rationale behind the CVA project is that the lexicon available to an artificial (as well as a human) reader is never complete. Therefore, it is important that this reader be capable of learning the meaning of an unknown word from the surrounding context. The main theses of the CVA project are

(1) that such learning can be achieved

(2) that the definition of the newly acquired word, upon being exposed to new contexts, will gradually accumulate all the aspects of meaning of the unknown word.

The CVA project is backed up by the research in psychology and cognitive science on how the human readers acquire and expand their vocabulary. For instance, the studies by Sternberg indicate that the vocabulary that is taught explicitly can not account for the number of words that an average adult reader possess in his/her vocabulary. It follows that most of the vocabulary is learned from context. (Sternberg 1987). The studies by Johnson-Laird suggest that humans do not store the meaning of words in the form of dictionary-like definitions. Instead the meaning is preserved as a network of related lexical entries and the relevant aspects of meaning are collected from this network when necessary (Johnson-Laird 1987). Many other studies in AI and vocabulary acquisition inform and support the CVA project (Rapaport, Ehrlich 2000).

The CVA approach to learning from context is SNePS based. It follows this process: First, a passage containing an unknown word is read to Cassie: it is translated into the language of SNePS logic and encoded into SNePS. Next, the background knowledge that a human reader uses to learn the meaning of the unknown word is identified. This is usually done by means of collecting verbal protocols from human readers who are unfamiliar with the meaning of the word in question. This background knowledge is then transformed into a SNePS representation and programmed into SNePS. At this point, Cassie’s mind contains, in the form of a semantic network, all the information that is necessary to determine the meaning of the unknown word. Finally, a (part of speech specific) CVA algorithm is executed. The algorithm traverses the semantic network and collects all the relevant information. This information is organized into such categories as class memberships, actions, properties, synonyms etc. and output to the user. The algorithm is treated as a black box – the details of its implementation are hidden from the user to ensure unbiased reading of the passage.

The Passage

The following passage is borrowed from the article by Sternberg “Most vocabulary is learned from context” (Sternberg 1987). It contains two “unknown” nouns: acapnotic and phalacrosis. This passage will serve as the context from which the meaning of these two nouns will be determined.

Although for the others the party was a splendid success, the couple there on the blind date was not enjoying the festivities in the least. An acapnotic, he disliked her smoking; and when he removed his hat, she, who preferred "ageless" men, eyed his increasing phalacrosis and grimaced.
Verbal Protocols and Dictionary Definitions

We asked several people who were unfamiliar with the meaning of the words acapnotic and phalacrosis to attempt to determine the meaning of these words from context. They were also asked to verbalize their reasoning process, which lead them to their definition of these words. The collected data is presented in the following two sections. The dictionary definitions of acapnotic and phalacrosis are also discussed.

Acapnotic

It was determined that an average human reader goes through the following thinking process to infer the meaning of the noun acapnotic from the context:

1. If somebody doesn’t like when somebody else is smoking, he is probably a non-smoker

2. If somebody doesn’t like when somebody else is smoking, he is probably intolerant of smoking

3. If somebody doesn’t like when somebody else is smoking, he is intolerant of (cigarette) smoke.

4. The reason somebody is intolerant of smoke could be health-related i.e. that person is allergic to smoke

5. Therefore, the meaning of the noun acapnotic might be this: a person who is allergic to smoke or intolerant of smoking for some other (perhaps health-related) reason.

Merriam-Webster dictionary defines acapnotic as “relating to or demonstrating acapnia”. “Acapnia” is defined as “a condition marked by an unusually low concentration of carbon dioxide in the blood and tissues; can result from deep or rapid breathing”. Since it is unclear how “acapnia” might be related to disliking smoking, this definition of acapnotic is hardly applicable to the given context. At the same time, a number of other sources define acapnotic as “non-smoker”
. This definition is consistent with the given context and therefore is adopted as the working definition of acapnotic.

Phalacrosis

It was determined that an average human reader goes through the following thinking process to infer the meaning of the noun phalacrosis from the context:

1. When a person X takes off his hat and a person Y eyes something, the person Y is seeing X’s scalp

2. If the person Y (who is known to prefer “ageless” men) grimaces upon seeing X’s scalp, the person Y is probably eyeing baldness or lack of hair

3. If the person Y is eyeing something at the same moment when Y is eyeing something we don’t know the name of, then these two things are related (equivalent)

4. Therefore, the meaning of the noun phalacrosis might be this: baldness, lack of hair

Dictionary.com defines phalacrosis as “the condition of having no hair (especially on the top of the head); synonyms: baldness, hairlessness.” This meaning is consistent with the given context and will be adopted as the working definition of phalacrosis.

SNePS Representations

Based on the results of the verbal protocols, we concluded that the first sentence of the passage is immaterial to determining the meaning of acapnotic and phalacrosis. The second sentence provides sufficient context for the task. Furthermore, the second sentence was split into two parts – the first clause (i.e. “An acapnotic he disliked her smoking”) and the second clause (i.e. “when he removed his hat, she, who preferred “ageless” men, eyed his increasing phalacrosis and grimaced”). Each clause was represented independently and will be discussed separately.

Case Frames

In our representation, we used the standard CVA case frames listed at the CVA case-frame website (Napieralski 2003)

First Clause

In this section we will discuss our SNePS representation of the first clause of the second sentence, i.e.

An acapnotic, he disliked her smoking;

We will also discuss our representation of the background knowledge that is needed to determine the meaning of acapnotic.

Cassie Reads the Sentence

There are two main characters mentioned in the passage who are referred to by means of pronouns he and she. To simplify the presentation, we assigned them fictional names – Henry and Shelly respectively. This fact was reflected in SNePS by means of the object/proper-name case frame:

(add object #he proper-name (build lex "Henri"))

(add object #she proper-name (build lex "Shelly"))

It can be concluded from the sentence that Henry is an acapnotic. Although we do not yet know the meaning of acapnotic, it is conceivable that the relationship between Henry and acapnotics is the isa relationship, i.e. Henry is a member of a group of people known as acapnotics. This concept can be represented in SNePS by means of the member/class case frame:

(add member *he class (build lex "acapnotic")) = pre

The verb phrase of the sentence (i.e. he disliked her smoking) can be interpreted as following: Henry disliked the fact that Shelly smoked. A phrase of this form is best represented in SNePS by means of a nested agent/act/action/object case frame:

(add agent *he

 act (build action (build lex "dislike")

 object (build agent *she

 act (build action

 (build lex "smoke"))))) = pro

During the discussion of our presentation, Dr. Rapaport and fellow students noticed that the underlying semantic structure of the sentence is a causal one: Henry was an acapnotic (cause) and as a result of it, Henry disliked Shelly’s smoking (effect). Because the standard SNePS case frames that are recognized by the noun algorithm are not adequate for the task of representing a cause/effect relationship, it was decided to introduce two new case frames – prefix/proposition and cause/effect. The problem of representing the causal structure of the sentence was solved as like this:

· Represent the grammatical structure of the sentence using prefix/proposition case frame. (i.e. prefix = “an acapnotic” and proposition = “he disliked her smoking”)

· Introduce an inference rule (discussed in the background knowledge section), which will recognize the prefix/proposition grammatical structure as a cause/effect semantic relationship

The prefix/proposition structure of the sentence was represented in SNePS as follows:

(add prefix *pre proposition *pro)

The image below visualizes the resulting SNePS network:

[image: image2.png]proposition

proper-name

object _proper-name

b2 m}>

dislike

action lex
lex

Background Knowledge

Based on the results of the think-aloud protocols the set of inference rules below was added to the knowledge base. These rules reflect the relevant background knowledge a human reader would use to determine the meaning of the word acapnotic. The rules are presented as pairs of the SNePSUL expression representing the rule preceded by the rules’ English semantics:

BG1 if X dislikes Y’s smoking then X is a non-smoker

(add forall ($x $y)

 ant (build agent *x

 act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "non-smoker")))

[image: image3.png]action

m2

lex

BG2 if X dislikes Y’s smoking then X is intolerant of smoking

(add forall (*x *y)

 ant (build agent *x

 act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "smoking-intolerant")))

[image: image4.png]action

m2

lex

BG3 if X dislikes Y’s smoking then X is intolerant of smoke

(add forall (*x *y)

 ant (build agent *x

 act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "smoke-intolerant")))

[image: image5.png]smoke-intolerant

action

m2

lex

BG4 if X is smoke-intolerant then X is allergic to smoke

(add forall (*x)

 ant (build member *x class (build lex "smoke-intolerant"))

 cq (build member *x class (build lex "allergic\ to\ smoke")))

[image: image6.png]smoke-intolcrant allergic to smoke

BG5 If there’s a sentence of the structure prefix/proposition then the prefix is the cause and the proposition is the effect

(add forall ($pref $prop)

 ant (build prefix *pref proposition *prop)

 cq (build cause *pref effect *prop))

[image: image7.png]forall forall

Second Clause

In this section we will discuss the SNePS representation of the second clause of the second sentence, i.e.

When he removed his hat, she, who preferred “ageless” men, eyed his increasing phalacrosis and grimaced.

We will also discuss our representation of the background knowledge that is needed to determine the meaning of phalacrosis.
Cassie Reads the Sentence

In a manner similar to the previous sentence, we introduce the two main characters:

(add object #he proper-name (build lex "Henri"))

(add object #she proper-name (build lex "Shelly"))

There are several objects introduced in this sentence: “hat”, “head” and “phalacrosis”. We represented these objects in SNePS as base nodes which have membership in the classes of respectively “hat”, “head” and “phalacrosis”:

(add member #hat class (build lex "hat"))

(add object #head class (build lex "head"))

(add member #phalacrosis class (build lex "phalacrosis"))

The actions described in this sentence are represented by means of the agent/act/action/object case frame. Some sample representation of actions are shown below (see appendix for the complete demo file):

She prefers ageless men:

(add agent *she act (build action (build lex "prefer")

 object (build lex "ageless men")))

She eyed his phalacrosis:

(add agent *she act (build action (build lex "eye")

 object *phalacrosis))

She grimaced:

(add agent *she act (build action (build lex "grimace")))

This sentence has several instances of possessive constructs: “his hat”, “his phalacrosis”. To represent these, we use the object/rel/possessor case frame:

(add object *hat

 rel (build lex "hat")

 possessor *he)

(add object *phalacrosis

 rel (build lex "phalacrosis")

 possessor *he)

The resulting SNePS network is shown below (the image is best viewed electronically be executing (show *nodes) SNePSUL command)

[image: image8.png]proper-name

member

action action object object possessor | object \ action lex proper-name object possessor object action

ml

lex

ageless men

Background Knowledge

Based on the think-aloud protocols, we determined that human readers resorted to at least the following background rules in order to infer the meaning of the word phalacrosis:

· BG1 If a person A1 removes his hat and another person A2 eyes something, then A2 sees the scalp of A1.

· BG2 If the person A2 (who prefers “ageless” men) sees the scalp of A1 and grimaces, then A2 is seeing baldness

· BG3 If the person A2 eyes some object and is eyeing another object (at the same time), then these objects are same thing.

The SNePSUL representation of these rules is shown below:

BG1

(add forall ($a1 $a2 $h $s)

 &ant (

 (build agent *a1

 act (build action (build lex "remove")

 object *h))

 (build object *h

 rel (build lex "hat")

 possessor *a1)

 (build agent *a2

 act (build action (build lex "eye")

 object *s))

)

 cq (build min 2

 max 2

 arg ((build agent *a2

 act (build action (build lex "see")

 object *s))

 (build object *s

 rel (build lex "scalp")

 possessor *a1))))

BG2

(add forall ($a1 $a2 $s)

 &ant (

 (build agent *a2

 act (build action (build lex "see")

 object *s))

 (build object *s

 rel (build lex "scalp")

 possessor *a1)

 (build agent *a2

 act (build action (build lex "grimace")))

 (build agent *a2

 act (build action (build lex "prefer")

 object (build lex "ageless men")))

)

 cq (build agent *a2

 act (build action (build lex "eye")

 object (build lex "baldness"))))

BG3

(add forall ($a2 $x $y)

 &ant (

 (build agent *a2

 act (build action (build lex "eye")

 object *x))

 (build agent *a2

 act (build action (build lex "eye")

 object *y))

)

 cq (build member *x class *y))

A visual representation of the resulting SNePS network is shown below (the image is best viewed electronically by executing (show *nodes) SNePSUL command):

[image: image9.png]<

&ant
oD @o
object

forall

action

m6!

can (i)

agent

object

CONCONCD

lex lex lex

ageless men

object | action action

lex

forall

possessor possessor

lex lex lex

As we can see the last rule only approximately represents the background knowledge rule BG3. Ideally, the consequent of this rule should be represented using the equiv/equiv case frame to indicate that the objects X and Y are the same. The reason we resorted to using the member/class case frame is that currently the noun algorithm does not recognize the equiv/equiv case frame. The justification for using member/class case frame is that the phrase “X and Y are the same” can be roughly approximated as “X is a kind of Y”. AKO relationship corresponds to the SNePS member/class case frame. This representation is certainly far from perfect (see the Future Research Directions section for improvement suggestions). Also, this rule does not take into account the notion of time, which also creates room for future improvements.

Results

After the background knowledge and the passage containing the word acapnotic were represented in SNePS, we loaded and executed the noun-definition algorithm, which returned the following results (please see the appendix for the full output):

Possible Class Inclusions:

non-smoker, smoking-intolerant, smoke-intolerant, allergic to smoke
This definition is consistent with our working definition of acapnotic and the definition that the human readers were able to come up with based on the information contained in the passage.

Upon completing the representation of the background knowledge and the passage containing the word phalacrosis, we executed the noun-definition algorithm again. The algorithm returned these results (please see the appendix for the full output):

Possible Class Inclusions: baldness

This definition is consistent with the dictionary definition for phalacrosis and the definition that the human readers suggested based on the contextual clues available in the passage.

Future Research Directions

In this section we will briefly outline some of the immediate and long term future research plans.

Immediate Steps

1. Add equiv/equiv to the list of the standard CVA case frames

2. Modify the noun algorithm so that it is capable of recognizing the equiv/equiv case frame

3. Substitute the member/class case frame in the background rule BG3 for phalacrosis with the equiv/equiv case frame

4. Test the updated representation to ensure that the algorithm still correctly defines phalacrosis as baldness

Long-Term Plans

1. Investigate the possibility of determining the meaning of the noun acapnotic from its internal context (morphology). The etymology of acapnotic derives from Latin acapnos: “without smoke” and from Greek akapnos: a- “not” kapnos “smoke”. Therefore, it may be possible to define acapnotic based on the morphological information alone.

2. Work on a parser, which would identify a cause/effect relationship that is present in the phrase “an acapnotic, he disliked her smoking” or in general in a sentence of the form [indefinite noun phrase], [verb phrase] (More on this problem is in the section describing the SNePS representation of this sentence).

Appendix

Loading system SNePS...10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SNePS-2.6 [PL:0a 2002/09/30 22:37:46] loaded.

Type `(sneps)' or `(snepslog)' to get started.

 Welcome to SNePS-2.6 [PL:0a 2002/09/30 22:37:46]

Copyright (C) 1984--2002 by Research Foundation of

State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!

Type `(copyright)' for detailed copyright information.

Type `(demo)' for a list of example applications.

 4/30/2004 18:24:07

* (demo "acap.demo")

File /home/csgrad/ddligach/740/Proj/acap.demo is now the source of input.

 CPU time : 0.00

* ; ===

; FILENAME:
acap.demo

; DATE:

02/15/2004

; PROGRAMMER:
Dmitriy Dligach

; To use this file: run SNePS; at the SNePS prompt (*), type:

; (demo "WORD.demo" :av)

; ===

; Turn off inference tracing.

^(

--> setq snip:*infertrace* nil)

nil

 CPU time : 0.01

*

; Load the appropriate definition algorithm:

^(

--> load "/projects/rapaport/CVA/STN2/defun_noun.cl")

; Loading /projects/rapaport/CVA/STN2/defun_noun.cl

t

 CPU time : 0.21

*

; Clear the SNePS network:

(resetnet t)

Net reset

 CPU time : 0.01

*

; load all pre-defined relations:

(intext "/projects/rapaport/CVA/STN2/demos/rels")

File /projects/rapaport/CVA/STN2/demos/rels is now the source of input.

 CPU time : 0.00

*

(a1 a2 a3 a4 after agent against antonym associated before cause class

 direction equiv etime event from in indobj instr into lex location

 manner member mode object on onto part place possessor proper-name

 property rel skf sp-rel stime subclass superclass subset superset

 synonym time to whole kn_cat)

 CPU time : 0.02

*

End of file /projects/rapaport/CVA/STN2/demos/rels

 CPU time : 0.03

* (define prefix proposition cause effect)

cause is already defined.

effect is already defined.

(prefix proposition cause effect)

 CPU time : 0.00

*

; load all pre-defined path definitions:

(intext "/projects/rapaport/CVA/mkb3.CVA/paths/paths")

File /projects/rapaport/CVA/mkb3.CVA/paths/paths is now the source of input.

 CPU time : 0.00

*

before implied by the path (compose before

 (kstar (compose after- ! before)))

before- implied by the path (compose (kstar (compose before- ! after))

 before-)

 CPU time : 0.00

*

after implied by the path (compose after

 (kstar (compose before- ! after)))

after- implied by the path (compose (kstar (compose after- ! before))

 after-)

 CPU time : 0.00

*

sub1 implied by the path (compose object1- superclass- ! subclass

 superclass- ! subclass)

sub1- implied by the path (compose subclass- ! superclass subclass- !

 superclass object1)

 CPU time : 0.00

*

super1 implied by the path (compose superclass subclass- ! superclass

 object1- ! object2)

super1- implied by the path (compose object2- ! object1 superclass- !

 subclass superclass-)

 CPU time : 0.00

*

superclass implied by the path (or superclass super1)

superclass- implied by the path (or superclass- super1-)

 CPU time : 0.00

*

End of file /projects/rapaport/CVA/mkb3.CVA/paths/paths

 CPU time : 0.01

*

; BACKGROUND KNOWLEDGE:

; =====================

; if x dislikes y's smoking then x does not smoke himself

(add forall ($x $y)

 ant (build agent *x

act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "non-smoker")))

(m5!)

 CPU time : 0.00

*

; if x dislikes y's smoking then x intolerant of smoking

(add forall (*x *y)

 ant (build agent *x

 act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "smoking-intolerant")))

(m7!)

 CPU time : 0.03

*

; if x dislikes y's smoking then x intolerant of smoke

(add forall (*x *y)

 ant (build agent *x

 act (build action (build lex "dislike")

 object (build agent *y

 act (build action

 (build lex "smoke")))))

 cq (build member *x

 class (build lex "smoke-intolerant")))

(m9!)

 CPU time : 0.01

*

; if x is smoke-intolerant then x is allergic to smoke

(add forall (*x)

 ant (build member *x class (build lex "smoke-intolerant"))

 cq (build member *x class (build lex "allergic\ to\ smoke")))

(m11!)

 CPU time : 0.00

*

; if there's a sentence of the structure: prefix, propositon

; then prefix is the cause and proposition is the effect

(add forall ($pref $prop)

 ant (build prefix *pref proposition *prop)

 cq (build cause *pref effect *prop))

(m12!)

 CPU time : 0.00

*

; CASSIE READS THE PASSAGE:

; =========================

;

; An acapnotic, he disliked her smoking;

; #he is known as "Henri"

(add object #he proper-name (build lex "Henri"))

(m14!)

 CPU time : 0.01

*

; #she is known as "Shelly"

(add object #she proper-name (build lex "Shelly"))

(m16!)

 CPU time : 0.00

*

; he is an acapnotic

(add member *he class (build lex "acapnotic"))

(m18!)

 CPU time : 0.00

* = pre

(m18)

 CPU time : 0.01

*

; he disliked her smoking

(add agent *he

 act (build action (build lex "dislike")

 object (build agent *she

 act (build action

 (build lex "smoke")))))

(m25! m24! m23! m22! m21!)

 CPU time : 0.01

* = pro

(m25 m24 m23 m22 m21)

 CPU time : 0.00

*

; causal reading of the sentence

; i.e. because henri was an acapnotic he disliked smoking

; that "he is an acapnotic" is the prefix

; that "he disliked her smoking" is the proposition

(add prefix *pre proposition *pro)

(m36! m35! m34! m33! m32! m31! m30! m29! m28! m27! m26!)

 CPU time : 0.02

*

; Ask Cassie what "WORD" means:

^(

--> defineNoun "acapnotic")

 Definition of acapnotic:

 Possible Class Inclusions: non-smoker, smoking-intolerant, smoke-intolerant, allergic to smoke,

 Possible Actions: dislike m19,

 Named Individuals: Henri,

nil

 CPU time : 0.09

*

End of /home/csgrad/ddligach/740/Proj/acap.demo demonstration.

 CPU time : 0.47

* (demo "phc

resetnet t)

Net reset

 CPU time : 0.04

* (demo "phcr.demo")

File /home/csgrad/ddligach/740/Proj/phcr.demo is now the source of input.

 CPU time : 0.00

* ; ===

; FILENAME:
phcr.demo

; DATE:

03/15/2004

; PROGRAMMER:
Dmitriy Dligach

; ===

; Turn off inference tracing.

^(

--> setq snip:*infertrace* nil)

nil

 CPU time : 0.00

* ; Load the appropriate definition algorithm:

^(

--> load "/projects/rapaport/CVA/STN2/defun_noun.cl")

; Loading /projects/rapaport/CVA/STN2/defun_noun.cl

t

 CPU time : 0.18

* ; Clear the SNePS network:

(resetnet t)

Net reset

 CPU time : 0.01

* ; load all pre-defined relations:

(intext "/projects/rapaport/CVA/STN2/demos/rels")

File /projects/rapaport/CVA/STN2/demos/rels is now the source of input.

 CPU time : 0.00

*

(a1 a2 a3 a4 after agent against antonym associated before cause class

 direction equiv etime event from in indobj instr into lex location

 manner member mode object on onto part place possessor proper-name

 property rel skf sp-rel stime subclass superclass subset superset

 synonym time to whole kn_cat)

 CPU time : 0.02

*

End of file /projects/rapaport/CVA/STN2/demos/rels

 CPU time : 0.02

* ; load all pre-defined path definitions:

(intext "/projects/rapaport/CVA/mkb3.CVA/paths/paths")

File /projects/rapaport/CVA/mkb3.CVA/paths/paths is now the source of input.

 CPU time : 0.01

*

before implied by the path (compose before

 (kstar (compose after- ! before)))

before- implied by the path (compose (kstar (compose before- ! after))

 before-)

 CPU time : 0.00

*

after implied by the path (compose after

 (kstar (compose before- ! after)))

after- implied by the path (compose (kstar (compose after- ! before))

 after-)

 CPU time : 0.00

*

sub1 implied by the path (compose object1- superclass- ! subclass

 superclass- ! subclass)

sub1- implied by the path (compose subclass- ! superclass subclass- !

 superclass object1)

 CPU time : 0.00

*

super1 implied by the path (compose superclass subclass- ! superclass

 object1- ! object2)

super1- implied by the path (compose object2- ! object1 superclass- !

 subclass superclass-)

 CPU time : 0.00

*

superclass implied by the path (or superclass super1)

superclass- implied by the path (or superclass- super1-)

 CPU time : 0.02

*

End of file /projects/rapaport/CVA/mkb3.CVA/paths/paths

 CPU time : 0.03

*

; BACKGROUND KNOWLEDGE:

; =====================

; if A1 removes his hat and A2 eyes something

; then A2 is seeing A1's scalp

(add forall ($a1 $a2 $h $s)

 &ant (

 (build agent *a1

 act (build action (build lex "remove")

 object *h))

 (build object *h

 rel (build lex "hat")

 possessor *a1)

 (build agent *a2

 act (build action (build lex "eye")

 object *s))

)

 cq (build min 2

 max 2

 arg ((build agent *a2

 act (build action (build lex "see")

 object *s))

 (build object *s

 rel (build lex "scalp")

 possessor *a1))))

(m6!)

 CPU time : 0.01

*

; if A2 (who prefers "ageless" men) is seeing A1's scalp

; and A2 grimaces, then A2 is looking at baldness

(add forall (*a1 *a2 *s)

 &ant (

 (build agent *a2

 act (build action (build lex "see")

 object *s))

 (build object *s

 rel (build lex "scalp")

 possessor *a1)

 (build agent *a2

 act (build action (build lex "grimace")))

 (build agent *a2

 act (build action (build lex "prefer")

 object (build lex "ageless men")))

)

 cq (build agent *a2

 act (build action (build lex "eye")

 object (build lex "baldness"))))

(m14!)

 CPU time : 0.01

*

; if A2 is looking at two things at the same time,

; these things are equivalent

(add forall (*a2 $x $y)

 &ant (

 (build agent *a2

 act (build action (build lex "eye")

 object *x))

 (build agent *a2

 act (build action (build lex "eye")

 object *y))

)

 cq (build member *x class *y))

(m15!)

 CPU time : 0.01

*

; CASSIE READS THE PASSAGE:

; =========================

; when he removed his hat, she, who preferred "ageless" men,

; eyed his increasing phalacrosis and grimaced.

; phalacrosis

; n: the condition of having no hair (especially on the top of the head)

; [syn: baldness, hairlessness]

; #he is known as "Henri"

(add object #he proper-name (build lex "Henri"))

(m17!)

 CPU time : 0.00

*

; #she is known as "Shelly"

(add object #she proper-name (build lex "Shelly"))

(m19!)

 CPU time : 0.01

*

; object *hat is a member of class hat

(add member #hat class (build lex "hat"))

(m20!)

 CPU time : 0.00

*

; object *head is a member of class head

(add object #head class (build lex "head"))

(m22!)

 CPU time : 0.00

*

; object *phalacrosis is a member of class phalacrosis

(add member #phalacrosis class (build lex "phalacrosis"))

(m24!)

 CPU time : 0.00

*

; Henry removed his hat

(add agent *he

 act (build action (build lex "remove")

 object *hat))

(m26!)

 CPU time : 0.00

*

; the hat belonged to Henry

(add object *hat

 rel (build lex "hat")

 possessor *he)

(m27!)

 CPU time : 0.01

*

; the hat was on his head

(add object *hat location *head)

(m28!)

 CPU time : 0.00

*

; the head belonged to Henry

(add object *head

 rel (build lex head)

 possessor *he)

(m29!)

 CPU time : 0.00

*

; she preferred "ageless" men

(add agent *she act (build action (build lex "prefer")

 object (build lex "ageless men")))

(m30!)

 CPU time : 0.00

*

; she eyed his phalacrosis

(add agent *she act (build action (build lex "eye")

 object *phalacrosis))

(m36! m35! m33! m32!)

 CPU time : 0.01

*

; phalacrosis is Henry's

(add object *phalacrosis

 rel (build lex "phalacrosis")

 possessor *he)

(m37!)

 CPU time : 0.00

*

; she grimaced

(add agent *she act (build action (build lex "grimace")))

(m45! m44! m43! m42! m40! m39! m38!)

 CPU time : 0.03

*

; Ask Cassie what "WORD" means:

^(

--> defineNoun "phalacrosis")

 Definition of phalacrosis:

 Possible Class Inclusions: baldness,

 Actions performed on a phalacrosis: b2 eye, b2 see,

nil

 CPU time : 0.09

*

End of /home/csgrad/ddligach/740/Proj/phcr.demo demonstration.

script done on Fri 30 Apr 2004 06:25:41 PM EDT

References

1. Napieralski, Scott (2003), “Noun Algorithm Case Frames”, [http://www.cse.buffalo.edu/~rapaport/CVA/CaseFrames/case-frames/]

2. Rapaport, William J., & Ehrlich, Karen (2000), "A Computational Theory of Vocabulary Acquisition", in Lucja M. Iwanska & Stuart C. Shapiro (eds.), Natural Language Processing and Knowledge Representation: Language for Knowledge and Knowledge for Language (Menlo Park, CA/Cambridge, MA: AAAI Press/MIT Press): 347-375.

3. Rapaport, William J., & Kibby, Michael W. (2002), "ROLE: Contextual Vocabulary Acquisition: From Algorithm to Curriculum".

4. Sternberg, Robert J. (1987), "Most Vocabulary is Learned from Context," in Margaret G. McKeown & Mary E. Curtis (eds.), The Nature of Vocabulary Acquisition (Hillsdale, NJ: Lawrence Erlbaum Associates): 89-105.

5. Johnson-Laird, Philip N. (1987), "The Mental Representation of the Meanings of Words", Cognition 25(1-2): 189-211

6. Merriam-Webster Online Dictionary, [http://www.m-w.com]

7. Dictionary.com Online Dictionary, [http://www.dictionary.com]

� http://www.panikon.com/phurba/articles/propose.html

http://phrontistery.50megs.com/a.html

http://home.mn.rr.com/wwftd/abc.htm

http://www.boatharbourbeach.com/wordspge.htm

http://www.fujiwaraoffice.co.jp/michael/text021216.html

http://yallara.cs.rmit.edu.au/~meede/craig/wordlist.html

