Teaching Cassie the meaning of the word “Execrable” through Contextual Vocabulary Acquisition

Ashish S Kulkarni

CSE 727

May 10 2007

Abstract

A Sneps based agent named CASSIE is given a context with the unknown word ‘execrable’ with background information, so that Cassie can figure out the unknown word. ‘Execrable’ being an adjective, there is no algorithm yet to for clearly give out the meaning of the word, but an effort is made so that Cassie get close to defining the word. The background information is received from human protocols who respond to the context with the unknown word and the same information is used by Cassie with the context represented in Sneps to decipher the meaning of the word.

The Project - Make Cassie find the meaning of the unknown word ‘execrable’ through context

The word ‘execrable’ was used in the following context:

Philip did not speak to the new-comer till the next day. They found themselves alone on the balcony of the drawing-room before dinner. Hayward addressed him.

 “You’re English aren’t you?”

“Yes.”

 “Is the food always as bad as it was last night?”

 “It’s always the same.”

 “Beastly isn’t it?”

 Philip found nothing wrong with the food at all, and in fact had eaten it in large quantities with appetite and enjoyment, but he did not want to show himself a person of so little discrimination as to think a dinner good when another thought it execrable.

This context was read to human protocols. Human Protocol number 1, 2, and 3 said that the meanings of the word execrable are bad, not acceptable, non-edible, something to be thrown away. When asked why they concluded the same, their responses were that there was a clear contradiction seen between the opinions of Philip and Hayward about the food. Moreover, Philip did not want Hayward to think that the he, Philip, thought the food was good when someone else thought it was execrable; this clearly indicated that execrable was something that was other than good. Since Hayward thinks the food is bad, and bad is not good, thus execrable also means not good or bad.

This approach was slightly modified by the response of Human Protocol 4 who said that the meaning of the word execrable is excellent. When asked to explain why, the person explained that execrable is surely something that is other than good, but it is clear that Philip doesn’t want Hayward to know that Philip and someone else the food is good and excellent (execrable) respectively, while Hayward considered the food to be bad. Since, human protocol 4 thought along the same lines as the first three protocols, but took a different but valid approach in the end, everyone’s perspective was taken into consideration and execrable was concluded to mean as ‘not good’ and not ‘bad’ in the context.

For the convenience of sentence representation, the above conversation between Hayward and Philip was shortened to the following,

‘Hayward thought the food was not good. Philip thought the food was good. Philip did not want Hayward to think that he, Philip, thought the food was good when someone else thought it was execrable.’

SNePS representation:

In order to represent the condensed form of the above sentence into SNePS the words had to be put into specific relations so that Cassie understood the meaning of the sentence. The relations used were as follows:

· Object proper-name

· Agent act action object

· Member class

· Object property

In order to establish rules the following relations had to be used:

· Forall ant cq

· Min max arg

Before representing the main context in SNePS, it was important that the background knowledge was given to CASSIE so that when the main sentences were portrayed, CASSIE would know how to go along with the sentence. It was important that a rule was established about the contradiction so that it is understood that when there is difference of opinion and there are two words used to portray the difference of opinion, then one word does not mean the other word. So following was the first rule that was established.

Rule1:

 If some p wants h not to think that p thinks that some f is g when someone thinks that that f is e then, if an f1 is e, then that f1 is not g.

SNePS representation is as follows:

(describe(assert

 forall ($p $h $s $f $e $g)

 ant

 (build

 agent *p

 act

 (build

 action (build lex want)

 object

 (build

 min 0 max 0

 arg

 (build agent *h

 act

 (build

 action (build lex think)

 object

 (build agent *p

 act

 (build

 action (build lex think)

 object

 (build object *f

 property *g)))

 object

 (build agent *s

 act

 (build

 action (build lex think)

 object

 (build object *f

 property *e))))))))

 cq (build forall $f1

 ant (build object *f1 property *e)

 cq (build min 0 max 0 arg (build object *f1 property *g)))))

The second rule was to help CASSIE derive that execrable is bad if CASSIE figures out the execrable is not good.

Rule 2:

If something is not good, then it is bad.

SNePS representation is as follows:

(describe(assert forall $x

 ant (build min 0 max 0

 arg (build object *x property (build lex good)))

 cq (build object *x property (build lex bad))))

After the necessary background knowledge, the sentences in the context are broken down to be represented. The first sentence, ‘Hayward thought the food was not good,’ is broken into three parts.

1) There is some food.

(describe(add member #food class (build lex food)))

2) There is someone named Hayward

(describe(add object #hayward proper-name (build lex Hayward)))

3) Hayward thinks the food is not good

(describe(add agent *hayward

 act (build action (build lex think)

 object (build min 0 max 0

 arg (build object *food

 property (build lex good))))))

The second sentence, ‘Philip thought the food was good’ is broken down into two parts.

1) There is someone named Philip.

(describe(add object #philip proper-name (build lex Philip)))

2) He thinks that the food is good.

(describe(add agent *philip

 act (build action (build lex think)

 object (build object *food property (build lex good)))))

The third sentence though big was represented in one part so that CASSIE could use the background knowledge to analyze the meaning of execrable.

The SNePS is as follows:

(describe(add

 agent *philip

 act

 (build

 action (build lex want)

 object

 (build

 min 0 max 0

arg

 (build agent *hayward

act

 (build

 action (build lex think)

 object

 (build agent *philip

 act

 (build

 action (build lex think)

 object

 (build object *food

 property (build lex good))))

 object

 (build agent #someone

 act

 (build

 action (build lex think)

 object

 (build object *food

 property (build lex execrable))))))))))

The combination of the background knowledge and sentence representation helps CASSIE put the sentence 3 in rule 1 and imply that since Philip doesn’t want Hayward to think that Philip thinks the food is good when someone else thinks the food is execrable, and since food is execrable, food is also not good. So CASSIE puts implies that execrable means not good. Now with some more background information, CASSIE can be made to say that execrable means bad, but due to the responses of the human protocol, not all agreed to see execrable to be bad, but everyone agreed to see the meaning to be ‘not good’ or ‘other than good’. So the result is kept to be the same.

The project was taken up to develop an understanding of how humans use CVA to interpret the meaning of the word. Any person who has command over a language develops a certain technique to understand the unknown words in a reading. Understand those techniques and finding the similarities in them serves two purposes. It increases our knowledge about how human mind thinks and solves the problems when it comes to CVA and when there is enough knowledge about the same, an algorithm can be developed so that computers think the same way like humans do and derive the meaning of unknown words. This feature can be used in places like search engines where the search for the word ‘execrable’ also gives out results that have ‘bad’ in them. In the end, children can be taught techniques of CVA at early age so that they improve their vocabulary skills faster than before.

Future work:

Since there is no algorithm for adjectives, a different approach was utilized to make Cassie conclude the meaning of execrable. Adjectives are harder to interpret than nouns, and verbs because they can mean a lot of things, but many if not all adjectives can be understood from context. For example, almost all the human protocols correctly figured out the meaning of execrable. An adjective can mean a various things in a context, but those meanings can be shortened looking at the context. So if an algorithm that lists all the possible meanings of the word, it can be a good start. Since CASSIE is given background information related to the context, the possible meanings can be heavily narrowed down.

Network Representation

Rule1:

[image: image1.png]forall

forall

property

ant

agent

abject

property

[A o

pit

act

abject | action

lex

agent

forall

forall

Rule2:

[image: image2.png]property \ forall
property
md

lex

Sentence 1:

[image: image3.png]think

property

Sentence 2:

[image: image4.png]

Sentence 3:

[image: image5.png]property

agent

property ac agent | action

The demo file:

;Hayward thought the food was not good.

;Philip thought the food was good.

;Philip did not want Hayward to think that he, Philip, thought the food

;was good when someone else thought it was execrable.

;resetting the network

(resetnet t)

;defining all the arcs

(define object proper-name property agent act action lex member class arg min max synonym)

; if some p wants h not to think that

; p thinks that some f is g when someone thinks that that f is e

; then, if an f1 is e, then that f1 is not g.

(describe(assert

 forall ($p $h $s $f $e $g)

 ant

 (build

 agent *p

 act

 (build

 action (build lex want)

 object

 (build

 min 0 max 0

 arg

 (build agent *h

 act

 (build

 action (build lex think)

 object

 (build agent *p

 act

 (build

 action (build lex think)

 object

 (build object *f

 property *g)))

 object

 (build agent *s

 act

 (build

 action (build lex think)

 object

 (build object *f

 property *e))))))))

 cq (build forall $f1

 ant (build object *f1 property *e)

 cq (build min 0 max 0 arg (build object *f1 property *g)))))

; if something is not good, then it is bad

(describe(assert forall $x

 ant (build min 0 max 0

 arg (build object *x property (build lex good)))

 cq (build object *x property (build lex bad))))

; there is some food

(describe(add member #food class (build lex food)))

;There is someone named Hayward

(describe(add object #hayward proper-name (build lex Hayward)))

;Hayward thinks the food is not good

(describe(add agent *hayward

 act (build action (build lex think)

 object (build min 0 max 0

 arg (build object *food

 property (build lex good))))))

; Philip thought the food was good.

; = something is named "Philip" & he thinks the food is good

(describe(add object #philip proper-name (build lex Philip)))

(describe(add agent *philip

 act (build action (build lex think)

 object (build object *food property (build lex good)))))

;Philip did not want Hayward to think that he, Philip, thought the food

;was good when someone else thought it was execrable.

(describe(add

 agent *philip

 act

 (build

 action (build lex want)

 object

 (build

 min 0 max 0

arg

 (build agent *hayward

act

 (build

 action (build lex think)

 object

 (build agent *philip

 act

 (build

 action (build lex think)

 object

 (build object *food

 property (build lex good))))

 object

 (build agent #someone

 act

 (build

 action (build lex think)

 object

 (build object *food

 property (build lex execrable))))))))))

