Sagacity: The Use of Context-Clues to Derive the Meaning of an Unknown Word
Anthony Ekeh

CSE 740: Seminar on Contextual Vocabulary Acquisition

May 1, 2003
Abstract

The CVA project is concerned with developing a computational theory of Contextual Vocabulary Acquisition using a symbiotic approach in which the computational theory is improved by observation of students’ use of CVA and the students, in turn, benefit from a curriculum based on the computational theory. To this end, this project, over the course of a semester, was intended to create a SNePS program which would use context to derive the meaning of an unknown word. The issues arising from the particular context chosen may serve a purpose in improving the computational theory of CVA.
Project Scope and Goal

The intended goal of this project was to use SNePS to derive the meaning of a designated unknown word solely from context. The word was sagacity and it appeared in the following context:

“The leaders of the tribe, all men of wisdom, judgment and sagacity, were now

discussing the problem.” (Dulin 1970: 441)
Contexts

This was an excellent context with which to show the process of context-based word-meaning derivation. There are two types of contexts within which unknown words are found (Beck et al., 1983). The first context type is the pedagogical context. The pedagogical context is a directive context in that it “leads” readers towards the meaning of unknown words by way of context clues. The second context type is the natural context. This sort of context is found in most of the reading material used for vocabulary development. It is less directive and provides few or no context clues. The context above, within which sagacity appears, is a pedagogical context. The scheme used as a context clue in this case is known as apposition (Dulin, 1970). Apposition is a juxtaposition of nouns, especially with the same referent, in a sentence. Such a scheme is likely to give a hint to a reader that if a word is unknown and it is in apposition with other words, then it is similar to the others.
Approach

In designing the program, the decision was made to approach the context from the point of view of a regular reader who came across the unknown word in question. A reader of the sentence, encountering the word in running text (perhaps as part of a wider context/story), would pick out a few concepts that stood out. The following keywords were chosen as representative of what a reader would glean from the sentence:
Leader
Tribe
Wisdom
Judgment
Problem
From the keywords above, a basic mental picture would exist relating to what the entire sentence was meant to illustrate, as well as what the relationship might be between the unknown word and the rest of the sentence. Assuming that all properties of each of these keywords was knowledge intrinsic to the reader, the approach was to research each of the properties of these words and build a background knowledge-base which would be representative of the reader’s mental state once a decision was made to derive the unknown word from context.
Some of these properties yielded to the introduction of other keywords that were not explicit in the sentence but which would be necessary for a more comprehensive depiction of what the mental state of the reader would be. Including those words was subtly analogous to script-usage, in that the words were invoked by knowledge of the properties of some of the keywords. The following properties were determined to be representative of the keywords.
Tribe:
A tribe is a group

A tribe has leaders

Leader:

Leaders represent people.
Leaders make decisions.
Decisions are either good or bad.

Wisdom:
Wisdom is an abstract object.
Wisdom is used for decision-making.
Leaders with wisdom make good decisions

Judgment:
Judgment is an abstract object.

Judgment is used for decision-making.
Leaders with judgment make good decisions.
Problem:
A problem requires a solution.
A decision is made when there is a problem.

A problem might have a solution or it might not have a solution.
A good decision leads to a problem solution.
The properties that were of the most interest were those of the two words, wisdom and judgment, which stood in apposition with the unknown word, sagacity. Considering the nature of apposition, these two words would be the contextual-clues that could be most helpful in shedding light on the properties of sagacity. This level of assessment consisted of considering the properties of the two words, seeing how they could help in deriving the meaning of sagacity.
The first observation was concerning the nature of the words. Both wisdom and judgment are abstract nouns. Of being “men of wisdom” and “men of judgment,” a decision had to be taken regarding how to represent that state of affairs. Would wisdom and judgment be properties of these men, or would they be objects that these men possessed? Computationally, properties are most often adjectives, so the decision was taken to represent wisdom and judgment as objects that could be possessed. As such, they had to be represented as abstract objects. Because abstract nouns are intangible objects, their place in an ontology is a matter that merits a little bit of consideration. Even if they are objects that can be possessed, they ought to be distinguished from tangible objects such as the noun-definition algorithm is more tailored to work with. For example, the noun-definition algorithm may look for the possible actions of a noun, and so a dog might “bark.” Such an approach would not capture the essence of abstract nouns. And because these words are of a specific nature, their peculiar properties might have a bearing on a reader’s intuition about the unknown word. In this case, there was a compelling case to be made for a reader determining that if three words stood in apposition, and two of the three were abstract objects, the third was also an abstract object. This was dubbed the “station-wagon” rule exemplified by the following statement:
“Fred possessed savvy, insight, and a station-wagon.”
Although it is imaginable that Fred possessed savvy, insight, and a station-wagon—savvy and insight being relevant to his possession of the station-wagon—it may be argued that the sentence is awkward, combining two abstract objects with a non-abstract object in apposition. A more likely statement could be “Fred possessed savvy, insight, and rationality.” The notion of owning a tangible object such as a station-wagon would probably be expressed in an independent sentence or in one with other such objects. As such, a reader is likely to consider sagacity to be an abstract object, on par with wisdom and judgment. This determination would shield the reader from irrelevant excursions that could possibly arise. That is, recognizing sagacity as an abstract object limits possible conceptions of what the word might mean—conceptions which may have led to overly broad or inaccurate hypotheses of the meaning of the word. The “station-wagon” rule is shown in Figure 1.
[image: image1.png]f“f.

‘abstack_ob

(/ s
\\

Figure 1.
The SNePS code is as follows:

(describe (assert forall ($a $b $c $d $e $f $g)

 &ant(

(build member *a class (build lex "leaders"))

(build subclass *b superclass (build lex abstract_object"))

(build subclass *c superclass (build lex abstract_object"))

(build member *e class *b)

(build member *f class *c)

(build member *g class *d)

(build object *e possessor *a)

(build object *f possessor *a)

(build object *g possessor *a)

)

 cq(build subclass *d superclass (build lex "abstract_object"))

)

)

From the above rule, the noun-definition algorithm would decide that the concept-

node that represented the word sagacity was a subclass of the superclass abstract_object.
Because wisdom and judgment were adjudged to have identical properties, i.e. that they were decision-making utilities such that if leaders were in possession of them they would make good decisions, two separate but identical rules were coded to handle these properties. The first rule stated that if an object was of the class “leaders” and the object possessed wisdom in the presence of a problem, then, when there was a problem, the object made decisions and these decisions had the property of being good. Determining how to represent the rule-like form “makes good decisions” was of itself interesting. For one thing, a distinction had to be made between decisions made as a result of wisdom and decisions made as a result of judgment. If the distinction was not made between the making of good decisions based on wisdom and the making of good decisions based on judgment, it would deny wisdom and judgment their independence. The argument was that even if the two abstract nouns had identical properties, they were separate and distinguishable objects with independent effects on those in possession of them.
As for when the decisions were made, the program was designed in a way such that it was when a problem existed that the leaders made good decisions. This could perhaps be refined, but the point was to make it assumed knowledge that once a problem had come into existence, if the leaders possessed wisdom and/or judgment, then, since as a rule they make good decisions because of possessing wisdom and/or judgment, they made good decisions regarding that particular problem.
To represent in SNePS the fact that the effects of having wisdom and judgment were distinct, a Skolem function was used to represent a decision. This function had, as its arguments, leaders and wisdom (for the rule with wisdom), and leaders and judgment (for the judgment rule). The semantic networks and SNePS representations for both rules are shown in Figure 3 and Figure 4.

[image: image2]
Figure 3
leaders with wisdom make good decisions (when there is a problem)

(describe (assert forall ($h $i $j)

 &ant

 (

 (build member *h class (build lex "leaders"))

 (build member *i class (build lex "wisdom"))

 (build member *j class (build lex "problem"))

 (build object *i rel (build lex "wisdom") possessor *h)

)

cq(build member (build skf decision skarg1 *h skarg2 *i) class (build lex "decision"))

cq(build agent *h act (build action (build lex "make") object (build skf decision skarg1 *h skarg2 *i)))

cq(build object (build skf decision skarg1 *h skarg2 *i) property (build lex "good"))

)

)

[image: image3]
Figure 4
leaders with judgment make good decisions when there is a problem

(describe (assert forall (*h $k *j)

 &ant

 (

 (build member *h class (build lex "leaders"))

 (build member *k class (build lex "judgment"))

 (build member *j class (build lex "problem"))

 (build object *k rel (build lex "judgment") possessor *h)

)

cq(build object (build skf decision skarg1 *h skarg2 *k) class (build lex "decision"))

cq(build agent *h act (build action (build lex "make") object (build skf decision skarg1 *h skarg2 *k)))

cq(build object (build skf decision skarg1 *h skarg2 *k) property (build lex "good"))

)

)

The final rule in the background knowledge was similar in spirit to the “station-wagon” rule. Here again, three objects existed in apposition. The first two caused identical effects, from which it was to be surmised that the third one caused the same effects. In this case, the rule stated that if three objects were abstract objects, and if they were possessed by leaders, and if possessing two of them caused the leaders to make good decisions, then possessing the third object also caused the leaders to make good decisions. The SNePS representation alone is shown below for simplicity.
(describe (assert forall ($l $m $n $o $p $q $r $s)

 &ant

 (

 (build member *l class (build lex "leaders"))

 (build subclass *q superclass (build lex "abstract_object"))

 (build subclass *r superclass (build lex "abstract_object"))

 (build subclass *s superclass (build lex "abstract_object"))

 (build member *m class *q)

 (build member *n class *r)

 (build member *o class *s)

 (build object *m possessor *l)

 (build object *n possessor *l)

 (build object *o possessor *l)

 (build member *p class (build lex "problem"))

 (build agent *l act (build action (build lex "discuss") object *p))

 (build agent *l act (build action (build lex "make") object (build skf decision skarg1 *m skarg2 (build lex "decision"))))

 (build agent *l act (build action (build lex "make") object (build skf decision skarg1 *n skarg2 (build lex "decision"))))

 (build object (build skf decision skarg1 *m skarg2 (build lex "decision")) property (build lex "good"))

 (build object (build skf decision skarg1 *n skarg2 (build lex "decision")) property (build lex "good"))

)

 cq(build agent *l act (build action (build lex "make") object (build skf decision skarg1 *o skarg2 (build lex "decision"))))

 cq(build object (build skf decision skarg1 *o skarg2 (build lex "decision")) property (build lex "good"))

 cq(build subclass *q superclass (build lex "decision_utility"))

 cq(build subclass *r superclass (build lex "decision_utility"))

 cq(build subclass *s superclass (build lex "decision_utility"))

)

)

Note that in fashioning the above rule and the aforementioned “station-wagon” rule, when looking at three objects in apposition and attempting to decide what clues they provide as regards the meaning of the unknown word, only the properties common to the two clue-words are relevant. This is to say that while wisdom and judgment are indeed identical functionally, there are properties of each which may not necessarily be found in the other. Also, at this point in the program, the differentiation between good decisions made as a result of wisdom and those made as a result of judgment becomes relevant as it relates to individual properties of the two words. In a more general sense, if words exist in apposition, and all but one of the words is known, in using the other words as context-clues the reader would or should factor out what properties are common to all the known words. These are likely to be the properties of the unknown word.
Having given due acknowledgement to the two words most directly involved in influencing the derivation of the meaning of sagacity, mention must be made of the other keywords in the context which play a crucial role in the process. The most important of the remaining keywords is problem. Problem is related to wisdom and judgment in the background knowledge through the supposition that it is when a problem exists that leaders with wisdom and/or judgment make good decisions. It is, as it where, the motivating factor for decision-making. Based on the context in question, a reader is apt to consider the word sagacity as being relevant to problem-solving. The knowledge that wisdom and judgment are utilized in this regard would only confirm the notion.
For the purposes of the noun-definition algorithm it was not necessary to delve extensively into the properties of problem, or of any other keyword for that matter. Nonetheless, since sagacity could be encountered in various types of contexts, complete background knowledge about the keywords that are involved in its resolution can be helpful.
Definition of Sagacity

With the background knowledge in place, the rest of the program consisted of the context represented in SNePS in a way that would be as accurate as possible an account of the English sentence. The leaders were coded as belonging to a specific tribe. They were given possession of the abstract objects wisdom and judgment, and the object sagacity whose super-ordinate class membership was unknown. Finally, the leaders were agents in the discussion of a problem that existed. The rules in the background knowledge ensured that having wisdom and judgment caused leaders to make good decisions as soon as a problem existed (this was the way decided to express the generic rule “makes good decisions when there is a problem”), and that the sagacity object was given properties similar to the wisdom and judgment objects. The noun-definition algorithm was run at the end of the program and it came up with the definition of sagacity paraphrased below:
“Sagacity is an abstract object and a decision-making utility which can be possessed by leaders. It is similar to wisdom and judgment.”

In light of the relatively muscular instructional value of wisdom and judgment in deriving the meaning of sagacity, such a definition would be unsurprising for a reader encountering the word for the first time within the particular context used. If, however, the word were to be further encountered in differing contexts, a more refined and accurate definition may emerge. The ties to decision-making, after all, are really a function of the problem which was being discussed. Neither wisdom nor judgment need be associated with decision-making. Neither too, then, must sagacity.
Short Term Next Steps

In the short term, it would have been helpful to code a more robust and complete background knowledge-base so that as more contexts with the word are encountered, the program might take advantage of a wider body of knowledge in coming up with a definition. As the program is, the background knowledge consists entirely of the rules discussed and does not include the background knowledge that arises from the keywords mentioned earlier. The rules used for ascribing the attributes of two words in apposition with a third to the third word also need to be generalized and less constrained to the particulars of the context used. Finally, the rules for causing leaders to make good decisions when a problem exists should be tied to the problem Skolem function that has leaders as its argument.
Long Term Next Steps

Contexts should be selected, not at random, but in such a way that would continue to explore how both natural and pedagogical contexts would affect the definition of the word. Working with various contexts, some exploration should be done to see if there are any special properties of abstract nouns in general that the noun-definition algorithm might benefit from.
References
Beck, Isabel L.; McKeown, Margaret G.; & McCaslin, Ellen S. (1983), "Vocabulary

Development: All Contexts Are Not Created Equal"
, Elementary School Journal 83(3):

177-181.

Dulin, Kenneth L. (1970), "Using Context Clues in Word Recognition and

Comprehension", The Reading Teacher 23(5):440-445, 469

Appendix
Annotated demonstration (some of the inferences have been edited out):

* (demo "sagacity.demo" :av)

File /home/nsigrad/ekeh/sagacity.demo is now the source of input.

 The demo will pause between commands, at that time press

 RETURN to continue, or ? to see a list of available commands

 CPU time : 0.01

* ^(

--- pause ---

--> load "/projects/stn2/CVA/defun_noun.cl")

--- pause ---

; Loading /projects/stn2/CVA/defun_noun.cl

t

 CPU time : 0.42

*

;set trace level

^(

--- pause ---

--> setTraceLevel 4)

--- pause ---

CPU time : 0.02

*

; Reset the network

(resetnet t)

--- pause ---

Net reset

 CPU time : 0.02

*

(intext "/projects/stn2/CVA/demos/rels")

--- pause ---

File /projects/stn2/CVA/demos/rels is now the source of input.

 CPU time : 0.01

*

(a1 a2 a3 a4 after agent against antonym associated before cause class

 direction equiv etime event from in indobj instr into lex location

 manner member mode object on onto part place possessor proper-name

 property rel skf sp-rel stime subclass superclass subset superset

 synonym time to whole kn_cat)

 CPU time : 0.07

*

End of file /projects/stn2/CVA/demos/rels

 CPU time : 0.08

*

;relations (some will be duplicated)

(define member class superclass subclass agent act action property object object1 object2 rel possessor lex skf skarg skarg1 skarg2 skarg3 cause effect)

--- pause ---

member is already defined.

class is already defined.

superclass is already defined.

subclass is already defined.

agent is already defined.

act is already defined.

action is already defined.

property is already defined.

object is already defined.

object1 is already defined.

object2 is already defined.

rel is already defined.

possessor is already defined.

lex is already defined.

skf is already defined.

cause is already defined.

effect is already defined.

(member class superclass

 subclass agent

 act action

 property object

 object1 object2

 rel possessor

 lex skf

 skarg skarg1

 skarg2 skarg3

 cause effect)

 CPU time : 0.01

*

;This rule states that if leaders possess three objects

;and two of the objects are abstract objects, then the third

;one is also an abstract object ("men of wisdom, judgment and sagacity")

(describe (assert forall ($a $b $c $d $e $f $g)

 &ant(

 (build member *a class (build lex "leaders"))

 (build subclass *b superclass (build lex "abstract_object"))

 (build subclass *c superclass (build lex "abstract_object"))

 (build member *e class *b)

 (build member *f class *c)

 (build member *g class *d)

 (build object *e possessor *a)

 (build object *f possessor *a)

 (build object *g possessor *a)

)

 cq(build subclass *d superclass (build lex "abstract_object"))

)

)

--- pause ---

(m3! (forall v7 v6 v5 v4 v3 v2 v1)

 (&ant (p9 (object v7) (possessor v1)) (p8 (object v6) (possessor v1))

 (p7 (object v5) (possessor v1)) (p6 (class v4) (member v7))

 (p5 (class v3) (member v6)) (p4 (class v2) (member v5))

 (p3 (subclass v3) (superclass (m2 (lex abstract_object))))

 (p2 (subclass v2) (superclass (m2)))

 (p1 (class (m1 (lex leaders))) (member v1)))

 (cq (p10 (subclass v4) (superclass (m2)))))

(m3!)

 CPU time : 0.02

*

;leaders with wisdom make good decisions when there is a problem

(describe (assert forall ($h $i $j)

 &ant

 (

 (build member *h class (build lex "leaders"))

 (build member *i class (build lex "wisdom"))

 (build member *j class (build lex "problem"))

 (build object *i rel (build lex "wisdom") possessor *h)

)

 cq(build member (build skf decision skarg1 *h skarg2 *i) class (build lex "decision"))

 cq(build agent *h act (build action (build lex "make") object (build skf decision skarg1 *h skarg2 *i)))

 cq(build object (build skf decision skarg1 *h skarg2 *i) property (build lex "good"))

)

)

--- pause ---

(m9! (forall v10 v9 v8)

 (&ant (p14 (object v9) (possessor v8) (rel (m4 (lex wisdom))))

 (p13 (class (m5 (lex problem))) (member v10))

 (p12 (class (m4)) (member v9))

 (p11 (class (m1 (lex leaders))) (member v8)))

 (cq

 (p19 (object (p15 (skarg1 v8) (skarg2 v9) (skf decision)))

 (property (m8 (lex good))))

 (p18 (act (p17 (action (m7 (lex make))) (object (p15)))) (agent v8))

 (p16 (class (m6 (lex decision))) (member (p15)))))

(m9!)

 CPU time : 0.02

*

;leaders with judgment make good decisions when there is a problem

(describe (assert forall (*h $k *j)

 &ant

 (

 (build member *h class (build lex "leaders"))

 (build member *k class (build lex "judgment"))

 (build member *j class (build lex "problem"))

 (build object *k rel (build lex "judgment") possessor *h)

)

 cq(build object (build skf decision skarg1 *h skarg2 *k) class (build lex "decision"))

 cq(build agent *h act (build action (build lex "make") object (build skf decision skarg1 *h skarg2 *k)))

 cq(build object (build skf decision skarg1 *h skarg2 *k) property (build lex "good"))

)

)

--- pause ---

(m11! (forall v11 v10 v8)

 (&ant (p21 (object v11) (possessor v8) (rel (m10 (lex judgment))))

 (p20 (class (m10)) (member v11))

 (p13 (class (m5 (lex problem))) (member v10))

 (p11 (class (m1 (lex leaders))) (member v8)))

 (cq

 (p26 (object (p22 (skarg1 v8) (skarg2 v11) (skf decision)))

 (property (m8 (lex good))))

 (p25 (act (p24 (action (m7 (lex make))) (object (p22)))) (agent v8))

 (p23 (class (m6 (lex decision))) (object (p22)))))

(m11!)

 CPU time : 0.02

*

;This rule uses information about two objects in apposition

;with a third as in the context "men of wisdom, judgment and

;sagacity." If leaders possess three abstract objects, and if

; possessing the first object leads to making a

;good decision based on that object, and possessing the second

;object leads to making a good decision based on that object,

;then possessing the third leads to making a good decision based

;on that object.

(describe (assert forall ($l $m $n $o $p $q $r $s)

 &ant

 (

 (build member *l class (build lex "leaders"))

 (build subclass *q superclass (build lex "abstract_object"))

 (build subclass *r superclass (build lex "abstract_object"))

 (build subclass *s superclass (build lex "abstract_object"))

 (build member *m class *q)

 (build member *n class *r)

 (build member *o class *s)

 (build object *m possessor *l)

 (build object *n possessor *l)

 (build object *o possessor *l)

 (build member *p class (build lex "problem"))

 (build agent *l act (build action (build lex "discuss") object *p))

 (build agent *l act (build action (build lex "make") object (build skf decision skarg1 *l skarg2 *m)))

 (build agent *l act (build action (build lex "make") object (build skf decision skarg1 *l skarg2 *n)))

 (build object (build skf decision skarg1 *l skarg2 *m) property (build lex "good"))

 (build object (build skf decision skarg1 *l skarg2 *n) property (build lex "good"))

)

 cq(build agent *l act (build action (build lex "make") object (build skf decision skarg1 *l skarg2 *o)))

 cq(build object (build skf decision skarg1 *l skarg2 *o) property (build lex "good"))

 cq(build subclass *q superclass (build lex "decision_utility"))

 cq(build subclass *r superclass (build lex "decision_utility"))

 cq(build subclass *s superclass (build lex "decision_utility"))

)

)

--- pause ---

(m14! (forall v19 v18 v17 v16 v15 v14 v13 v12)

 (&ant

 (p47 (object (p43 (skarg1 v12) (skarg2 v14) (skf decision)))

 (property (m8 (lex good))))

 (p46 (object (p40 (skarg1 v12) (skarg2 v13) (skf decision)))

 (property (m8)))

 (p45 (act (p44 (action (m7 (lex make))) (object (p43)))) (agent v12))

 (p42 (act (p41 (action (m7)) (object (p40)))) (agent v12))

 (p39 (act (p38 (action (m12 (lex discuss))) (object v16)))

 (agent v12))

 (p37 (class (m5 (lex problem))) (member v16))

 (p36 (object v15) (possessor v12)) (p35 (object v14) (possessor v12))

 (p34 (object v13) (possessor v12)) (p33 (class v19) (member v15))

 (p32 (class v18) (member v14)) (p31 (class v17) (member v13))

 (p30 (subclass v19) (superclass (m2 (lex abstract_object))))

 (p29 (subclass v18) (superclass (m2)))

 (p28 (subclass v17) (superclass (m2)))

 (p27 (class (m1 (lex leaders))) (member v12)))

 (cq (p54 (subclass v19) (superclass (m13 (lex decision_utility))))

 (p53 (subclass v18) (superclass (m13)))

 (p52 (subclass v17) (superclass (m13)))

 (p51 (object (p48 (skarg1 v12) (skarg2 v15) (skf decision)))

 (property (m8)))

 (p50 (act (p49 (action (m7)) (object (p48)))) (agent v12))))

(m14!)

 CPU time : 0.04

*

;Main Program

;skolem function node leaders is a member of the class "leaders"

(describe (add member (build skf leaders skarg (build lex
leaders"))=leaderskf class (build lex "leaders")))

--- pause ---

I wonder if

((p20 (class (m10 (lex (judgment)))) (member (v11 <-- m15))))

holds within the BS defined by context default-defaultct

I know

((m16! (class (m1 (lex (leaders))))

 (member (m15 (skarg (m1 (lex (leaders)))) (skf (leaders))))))

(m16! (class (m1 (lex leaders)))

 (member (m15 (skarg (m1)) (skf leaders))))

(m16!)

 CPU time : 1.28

*

;The leaders are men

(describe (add object *leaderskf property (build lex "male")))

--- pause ---

(m21! (object (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (property (m20 (lex male))))

(m21!)

 CPU time : 0.03

*

;concept node wisdom is a subclass of abstract_object

(describe (add subclass (build lex "wisdom") superclass (build lex "abstract_object")))

--- pause ---

(m22! (subclass (m4 (lex wisdom)))

 (superclass (m2 (lex abstract_object))))

(m22!)

 CPU time : 0.03

*

;concept node judgment is a subclass of abstract_object

(describe (add subclass (build lex "judgment") superclass (build lex "abstract_object")))

--- pause ---

(m23! (subclass (m10 (lex judgment)))

 (superclass (m2 (lex abstract_object))))

(m23!)

 CPU time : 0.03

*

;skolem function node wisdom is a member of the class "wisdom"

(describe (add member (build skf wisdom skarg *leaderskf) = wisdomskf class (build lex "wisdom")))

--- pause ---

(m25! (class (m4 (lex wisdom)))

 (member

 (m24 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf wisdom))))

(m25!)

 CPU time : 0.05

*

;skolem function node judgment is a member of the class "judgment"

(describe (add member (build skf judgment skarg *leaderskf) = judgmentskf class (build lex "judgment")))

--- pause ---

(m27! (class (m10 (lex judgment)))

 (member

 (m26 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf judgment))))

(m27!)

 CPU time : 0.08

*

;skolem function node sagacity is a member of the class "sagacity"

(describe (add member (build skf sagacity skarg *leaderskf) = sagacityskf class (build lex "sagacity")))

--- pause ---

(m30! (class (m29 (lex sagacity)))

 (member

 (m28 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf sagacity))))

(m30!)

 CPU time : 0.04

*

;The leaders of the tribe

(describe (add object *leaderskf rel (build lex "leaders") possessor (build skf tribe skarg (build lex "tribe"))=tribeskf))

--- pause ---

(m34! (object (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (possessor (m32 (skarg (m31 (lex tribe))) (skf tribe))))

(m33! (object (m15)) (possessor (m32)) (rel (m1)))

(m34! m33!)

 CPU time : 0.03

*

;Men of wisdom, judgment and sagacity

;men of wisdom

(describe (add object *wisdomskf rel (build lex "wisdom") possessor *leaderskf))

--- pause ---

(m36!

 (object

 (m24 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf wisdom)))

 (possessor (m15)))

(m35! (object (m24)) (possessor (m15)) (rel (m4 (lex wisdom))))

(m36! m35!)

 CPU time : 0.07

*

;men of judgment

(describe (add object *judgmentskf rel (build lex "judgment") possessor *leaderskf))

--- pause ---

(m38!

 (object

 (m26 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf judgment)))

 (possessor (m15)))

(m37! (object (m26)) (possessor (m15)) (rel (m10 (lex judgment))))

(m38! m37!)

 CPU time : 0.04

*

;men of sagacity (apposition rule for abstract objects should fire)
(describe (add object *sagacityskf rel (build lex "sagacity") possessor *leaderskf))

--- pause ---

Since

((m3!

 (forall (v7 <-- m24) (v6 <-- m26) (v5 <-- m28) (v4 <-- m4)

 (v3 <-- m10) (v2 <-- m29) (v1 <-- m15))

 (&ant (p9 (object (v7 <-- m24)) (possessor (v1 <-- m15)))

 (p8 (object (v6 <-- m26)) (possessor (v1 <-- m15)))

 (p7 (object (v5 <-- m28)) (possessor (v1 <-- m15)))

 (p6 (class (v4 <-- m4)) (member (v7 <-- m24)))

 (p5 (class (v3 <-- m10)) (member (v6 <-- m26)))

 (p4 (class (v2 <-- m29)) (member (v5 <-- m28)))

 (p3 (subclass (v3 <-- m10))

 (superclass (m2 (lex (abstract_object)))))

 (p2 (subclass (v2 <-- m29))

 (superclass (m2 (lex (abstract_object)))))

 (p1 (class (m1 (lex (leaders)))) (member (v1 <-- m15))))

 (cq

 (p10 (subclass (v4 <-- m4))

 (superclass (m2 (lex (abstract_object))))))))

and

((p9 (object (v7 <-- m24)) (possessor (v1 <-- m15))))

and

((p8 (object (v6 <-- m26)) (possessor (v1 <-- m15))))

and

((p7 (object (v5 <-- m28)) (possessor (v1 <-- m15))))

and

((p6 (class (v4 <-- m4)) (member (v7 <-- m24))))

and

((p5 (class (v3 <-- m10)) (member (v6 <-- m26))))

and

((p4 (class (v2 <-- m29)) (member (v5 <-- m28))))

and

((p3 (subclass (v3 <-- m10)) (superclass (m2 (lex (abstract_object))))))

and

((p2 (subclass (v2 <-- m29)) (superclass (m2 (lex (abstract_object))))))

and

((p1 (class (m1 (lex (leaders)))) (member (v1 <-- m15))))

I infer

((p10 (subclass (v4 <-- m4)) (superclass (m2 (lex (abstract_object))))))

(m41! (subclass (m29 (lex sagacity)))

 (superclass (m2 (lex abstract_object))))

(m40!

 (object

 (m28 (skarg (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skf sagacity)))

 (possessor (m15)))

(m39! (object (m28)) (possessor (m15)) (rel (m29)))

(m23! (subclass (m10 (lex judgment))) (superclass (m2)))

(m22! (subclass (m4 (lex wisdom))) (superclass (m2)))

(m41! m40! m39! m23! m22!)

 CPU time : 0.20

*

;were now discussing the problem (a problem exists)
(describe (add member (build skf problem skarg *leaderskf) = problemskf class (build lex "problem")))

--- pause ---

(m53! (class (m6 (lex decision)))

 (member

 (m49 (skarg1 (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skarg2 (m24 (skarg (m15)) (skf wisdom))) (skf decision))))

(m52! (act (m51 (action (m7 (lex make))) (object (m49)))) (agent (m15)))

(m50! (object (m49)) (property (m8 (lex good))))

(m48! (class (m6))

 (object

 (m44 (skarg1 (m15)) (skarg2 (m26 (skarg (m15)) (skf judgment)))

 (skf decision))))

(m47! (act (m46 (action (m7)) (object (m44)))) (agent (m15)))

(m45! (object (m44)) (property (m8)))

(m43! (class (m5 (lex problem)))

 (member (m42 (skarg (m15)) (skf problem))))

(m53! m52! m50! m48! m47! m45! m43!)

 CPU time : 0.18

*

(describe (add agent *leaderskf act (build action (build lex "discuss") object *problemskf)))

--- pause ---

Since

((m14!

 (forall (v19 <-- m10) (v18 <-- m4) (v17 <-- m29) (v16 <-- m42)

 (v15 <-- m26) (v14 <-- m24) (v13 <-- m28) (v12 <-- m15))

 (&ant

 (p47

 (object

 (p43 (skarg1 (v12 <-- m15)) (skarg2 (v14 <-- m24))

 (skf (decision))))

 (property (m8 (lex (good)))))

 (p46

 (object

 (p40 (skarg1 (v12 <-- m15)) (skarg2 (v13 <-- m28))

 (skf (decision))))

 (property (m8 (lex (good)))))

 (p45

 (act (p44 (action (m7 (lex (make))))

 (object

 (p43 (skarg1 (v12 <-- m15)) (skarg2 (v14 <-- m24))

 (skf (decision))))))

 (agent (v12 <-- m15)))

 (p42

 (act (p41 (action (m7 (lex (make))))

 (object

 (p40 (skarg1 (v12 <-- m15)) (skarg2 (v13 <-- m28))

 (skf (decision))))))

 (agent (v12 <-- m15)))

 (p39

 (act (p38 (action (m12 (lex (discuss)))) (object (v16 <-- m42))))

 (agent (v12 <-- m15)))

 (p37 (class (m5 (lex (problem)))) (member (v16 <-- m42)))

 (p36 (object (v15 <-- m26)) (possessor (v12 <-- m15)))

 (p35 (object (v14 <-- m24)) (possessor (v12 <-- m15)))

 (p34 (object (v13 <-- m28)) (possessor (v12 <-- m15)))

 (p33 (class (v19 <-- m10)) (member (v15 <-- m26)))

 (p32 (class (v18 <-- m4)) (member (v14 <-- m24)))

 (p31 (class (v17 <-- m29)) (member (v13 <-- m28)))

 (p30 (subclass (v19 <-- m10))

 (superclass (m2 (lex (abstract_object)))))

 (p29 (subclass (v18 <-- m4))

 (superclass (m2 (lex (abstract_object)))))

 (p28 (subclass (v17 <-- m29))

 (superclass (m2 (lex (abstract_object)))))

 (p27 (class (m1 (lex (leaders)))) (member (v12 <-- m15))))

 (cq

 (p54 (subclass (v19 <-- m10))

 (superclass (m13 (lex (decision_utility)))))

 (p53 (subclass (v18 <-- m4))

 (superclass (m13 (lex (decision_utility)))))

 (p52 (subclass (v17 <-- m29))

 (superclass (m13 (lex (decision_utility)))))

 (p51

 (object

 (p48 (skarg1 (v12 <-- m15)) (skarg2 (v15 <-- m26))

 (skf (decision))))

 (property (m8 (lex (good)))))

 (p50

 (act (p49 (action (m7 (lex (make))))

 (object

 (p48 (skarg1 (v12 <-- m15)) (skarg2 (v15 <-- m26))

 (skf (decision))))))

 (agent (v12 <-- m15))))))

and

((p47

 (object

 (p43 (skarg1 (v12 <-- m15)) (skarg2 (v14 <-- m24))

 (skf (decision))))

 (property (m8 (lex (good))))))

and

((p46

 (object

 (p40 (skarg1 (v12 <-- m15)) (skarg2 (v13 <-- m28))

 (skf (decision))))

 (property (m8 (lex (good))))))

and

((p45

 (act (p44 (action (m7 (lex (make))))

 (object

 (p43 (skarg1 (v12 <-- m15)) (skarg2 (v14 <-- m24))

 (skf (decision))))))

 (agent (v12 <-- m15))))

and

((p42

 (act (p41 (action (m7 (lex (make))))

 (object

 (p40 (skarg1 (v12 <-- m15)) (skarg2 (v13 <-- m28))

 (skf (decision))))))

 (agent (v12 <-- m15))))

and

((p39 (act (p38 (action (m12 (lex (discuss)))) (object (v16 <-- m42))))

 (agent (v12 <-- m15))))

and

((p37 (class (m5 (lex (problem)))) (member (v16 <-- m42))))

and

((p36 (object (v15 <-- m26)) (possessor (v12 <-- m15))))

and

((p35 (object (v14 <-- m24)) (possessor (v12 <-- m15))))

and

((p34 (object (v13 <-- m28)) (possessor (v12 <-- m15))))

and

((p33 (class (v19 <-- m10)) (member (v15 <-- m26))))

and

((p32 (class (v18 <-- m4)) (member (v14 <-- m24))))

and

((p31 (class (v17 <-- m29)) (member (v13 <-- m28))))

and

((p30 (subclass (v19 <-- m10))

 (superclass (m2 (lex (abstract_object))))))

and

((p29 (subclass (v18 <-- m4))

 (superclass (m2 (lex (abstract_object))))))

and

((p28 (subclass (v17 <-- m29))

 (superclass (m2 (lex (abstract_object))))))

and

((p27 (class (m1 (lex (leaders)))) (member (v12 <-- m15))))

I infer

((p51

 (object

 (p48 (skarg1 (v12 <-- m15)) (skarg2 (v15 <-- m26))

 (skf (decision))))

 (property (m8 (lex (good))))))

(m62!

 (act (m61 (action (m7 (lex make)))

 (object

 (m59 (skarg1 (m15 (skarg (m1 (lex leaders))) (skf leaders)))

 (skarg2 (m28 (skarg (m15)) (skf sagacity))) (skf decision)))))

 (agent (m15)))

(m60! (object (m59)) (property (m8 (lex good))))

(m58! (subclass (m10 (lex judgment)))

 (superclass (m13 (lex decision_utility))))

(m57! (subclass (m4 (lex wisdom))) (superclass (m13)))

(m56! (subclass (m29 (lex sagacity))) (superclass (m13)))

(m55!

 (act (m54 (action (m12 (lex discuss)))

 (object (m42 (skarg (m15)) (skf problem)))))

 (agent (m15)))

(m52!

 (act (m51 (action (m7))

 (object

 (m49 (skarg1 (m15)) (skarg2 (m24 (skarg (m15)) (skf wisdom)))

 (skf decision)))))

 (agent (m15)))

(m50! (object (m49)) (property (m8)))

(m47!

 (act (m46 (action (m7))

 (object

 (m44 (skarg1 (m15)) (skarg2 (m26 (skarg (m15)) (skf judgment)))

 (skf decision)))))

 (agent (m15)))

(m45! (object (m44)) (property (m8)))

(m62! m60! m58! m57! m56! m55! m52! m50! m47! m45!)

 CPU time : 1.69

*

^(

--- pause ---

--> defineNoun "sagacity")

--- pause ---

 Definition of sagacity:

 Class Inclusions: decision_utility, abstract_object,

 Possessive: leaders,

 Possibly Similar Items: wisdom, judgment,

 0[1]: returned nil

nil

 CPU time : 1.11

*

End of /home/nsigrad/ekeh/sagacity.demo demonstration.

 CPU time : 5.72

!

v1

v2

v3

p1

p2

p3

m

m

m

p4

!

m

m

decisionskolem

leaders

wisdom

problem

decison

make

forall

forall

forall

ant

ant

ant

cq

agent

act

action

lex

object

skf

skarg1

decison

m

!

m

!

good

decisionskolem

ant

m

make

m

!

p4

problem

judgment

leaders

m

v1

m

p3

m

class

member

member

class

lex

lex

lex

class

member

!

skarg2

m

p2

p1

v3

v2

!

forall

forall

agent

act

ant

ant

forall

class

lex

class

member

skf

lex

action

object

skarg1

member

class

member

property

object

lex

lex

lex

cq

cq

m

!

good

lex

property

object

cq

skarg2

lex

class

member

lex

class

member

PAGE
17

