Natural language Processing without human assistance –“Brachet” demo

Vikranth B. Rao

12/14/02

CSE-499 Independent Study

Abstract

The development of an Augmented Transition Network for Natural Language processing is discussed. This work has been carried out as part of an inter-disciplinary effort to model a natural language understanding system that can derive the meanings for unknown words directly from the context. The ATN takes natural language sentences as input and outputs SNePS networks of semantic nodes. These nodes can then be applied automatically to the appropriate algorithm to abstract the meaning of the unknown word. The working, theory behind and representations used by the ATN are discussed in some detail with reference to the specific lexical structures parsed.
1. Introduction

Contextual Vocabulary acquisition or CVA is defined as “the active, deliberate acquisition of word meanings from text by reasoning from contextual cues, background knowledge, and hypotheses developed from prior encounters with the word, but without external sources of help such as dictionaries or people.” (CVA web page). Humans are very adept at picking up the meanings of unknown words from the contextual cues surrounding the words. A majority of the words in an average person’s lexicon are words which have their origin through CVA. “It is generally agreed among CVA researchers that “incidental” vocabulary acquisition does occur”. (Rapaport 2002: 1) However, the exact process followed by people in doing this is quite vague. Most current research cannot avoid using the word “guess” in the description of this process. (Rapaport, 2002:1) This current project is aimed at better understanding the processes followed by good readers in hypothesizing the meanings of unknown words, and to try to replicate them in the form of AI.

Computational CVA has as its goal, the modeling of a computational theory of how natural language understanding systems can automatically acquire new vocabulary by determining from context, the meaning of words that are unknown, misunderstood or used in a new sense (Ehrlich 1995). ‘Context’ is any background information, surrounding grammatical information or any other knowledge not gained from any external source such as a human or a dictionary (Rapaport 1998). Once such a theory is developed, it can then be applied to the educational curricula to improve the reading ability of students. The two primary goals of the CVA project can be summarized as efforts:

· To develop NLP systems that operate independently of human assistance and

· To improve both the teaching of reading and students' reading ability (especially in STEM).” (CVA web page).

1.2. Role of my task in the Project

On of the fundamental goals of the entire computational CVA project is to develop NLP systems independent of human assistance. For the completion of the CVA project, the computer would have to be able to accept English sentences containing the unknown word, out of which it would automatically abstract the meaning of the unknown words from context. My task was directed towards accomplishing the first of the two fundamental project goals. The process followed for AI CVA before my entry into the project was to first convert each target passage with the unknown word into a network of semantic nodes represented in SNEPS (Semantic NEtwork Processing System). This network of nodes was then fed to the various algorithms which would find out the meaning of the unknown word from the context.

My involvement was in this AI component of the project. Specifically, my role in the project comprised of developing an Augmented Transition Network for Natural Language Analysis and Processing. The ATN would be developed by building upon an existing "bare-bones" ATN developed by Dr. Stuart Shapiro. This ATN would allow for the direct input of natural language English sentences, which would then be converted into a network of semantic nodes while applying the relevant algorithms. The output representations would be generated in a form that would be understood by the algorithms. Thus, input would be natural language sentences and the output would be a description and meaning of the unknown word, hence fulfilling the first goal of the project, namely that of NLP without any human assistance. However, as I have only had a semester to work, my goal has been limited to developing the ATN for the demo of one unknown word – brachet.

2. Previous Work

A basic functional Augmented Transition Network had already been implemented on SNePS by Dr. Stuart Shapiro before I started work on this project (Shapiro, 1982) . It was included as part of the SNePS 2.5 manual. My work built on the existing frame of this ATN. This ATN implemented both the parsing and generation of natural language sentences, though my current task did not include developing a generative grammar. However, the functionality of this ATN was restricted at best, for the purpose of my task. The brachet demo in addition to regular sentences contained sentences with many varied linguistic structures such as adjectives, auxiliary verbs, prepositions, pronouns, possessive phrases, pronoun possessive phrases, collective arguments, causative verbs, embedded and double embedded sentences and implicit questions. Of these, the existing ATN could only handle regular sentences of the form S => NP.VP. and embedded regular sentences. All other structures were not handled and thus would require new states and arcs. The “bare-bones” ATN that I started working on is included at the end of this report as Appendix C.

The case frame used by the initial grammar to represent regular sentences and embedded regular sentences was the Agent/act/object case frame. This also had to be changed for the current task as this case frame was no longer being used to represent regular sentences.

Apart from a working ATN, the passage to be parsed had previously been manually represented as a SNEPS semantic network. This representation had been run through the noun algorithm successfully, and a meaning for the word “brachet” abstracted. Thus, one constraint of my task was to produce exactly the same representations as used by the previous representation. Further, in terms of case frames to be used, the noun algorithm recognized only certain case frames. Thus all the case frames and even the final network would have to be very similar to the previous representation so that a meaning could be generated from context by the noun algorithm.

3. Linguistic Issues

The original passage containing the word brachet comes from Malory’s LeMorte Darthur [Malory 1972]. The passage consisted of ancient English which is not relevant today. This passage was then modified to convert all the sentences to present-day language. This set of “modernized” sentences comprised the target sentences that I needed to parse. The passage consisted of a total of 36 sentences with the unknown word occurring in 17 sentences:

1. A white brachet is next to the hart.
2. A black hound ran behind the hart.
3. The hart runs next to the Round Table.

4. A knight arises.

5. The knight picks up the brachet.

6. The knight carries the brachet.

7. Sir Tor goes to a pavilion.

8. The lady is sleeping in the pavilion

9. Sir Tor finds the lady in the pavilion.

10. Sir Tor finds the brachet in the pavilion.
11. The brachet bays at Sir Tor.
12. Sir Tor spies the brachet

13. Sir Tor takes the brachet

14. Sir Tor gives the brachet to the dwarf.

15. A hart runs into King Arthur’s hall.

16. The brachet bites the hart’s buttock.

17. The knight mounts a horse.

18. The knight rides the horse.

19. Sir Tor mounts a horse.

20. A lady says that the knight is taking the brachet.

21. The lady says that the brachet belongs to her.
22. The lady says that she wants the brachet.
23. Merlin says that Sir Gawain must bring the hart to the hall.

24. Merlin says that Sir Tor must bring the brachet to the hall.

25. Merlin says that Sir Tor must either bring the knight to Arthur’s hall or else slay him.
26. An elder says that a white hart comes to a place.

27. The elder says that a group of hounds chased the hart.

28. The elder says that a white brachet is next to the hart.

29. Sir Tor rides his horse in the direction of the knight who took the brachet.
30. A dwarf says that he knows that Sir Tor seeks the knight.

31. The dwarf says that he will bring Sir Tor to the knight.
32. A noise causes the lady to come from the pavilion.

33. The noise causes a group of damosels to come from the pavilion.

34. The lady asks Sir Tor if he is taking the brachet from her
35. Sir Tor says to the lady that he is taking the brachet from her.
36. Sir Tor says that he sought the brachet from King Arthur’s hall to here.
Fig. 1 The list of demo sentences

These sentences as mentioned above contain the following lexical structures:

1. Regular sentences

2. Embedded regular sentences

3. Adjectives

4. Prepositions

5. Auxiliary verbs

6. Pronouns

7. Possessive phrases

8. Possessive pronoun phrases

9. Collectives

10. Double embedded sentences

11. Special uses of prepositions

Fig. 2 Lexical structures to be parsed

Each of the above structures required different states and arcs in order to be parsed. After the parsing the above structures also required new representations. Consequently, after parsing, the grammar built different semantic networks for each while following different paths through the Augmented Transition Network. The actual representations, output semantic networks and the paths of traversal are explained in detail along with examples later in this paper. However, before I launch into a discussion of the actual working of the ATN, a brief comment on the representations used by the ATN is warranted.

4. Representational Issues

As mentioned above the possible case frames that could be used in this work were restricted to those used in the previous manual representation of the “brachet” passage. The case frames used in both representations were:

Agent/Act-[Action/Object] – for regular S​=> NP VP sentences

Object/Property – For adjectival phrases

Agent/Act-[Action/Object-[Mode/Object]] – For regular sentences with auxiliary verbs

Agent/Act/Into – For sentences with the preposition “into”

Agent/Act/To – For sentences with the preposition “to”

Agent/Act-[Action/Object]/To – For sentences with “to” and an indirect object

Agent/Act/Direction – For sentences with any directional prepositions

Agent/Act/Place – For sentences with the preposition “in”

Agent/Act-[Action/Object]/Place – For sentences with “in” and an indirect object

Object/Location-[sp-rel/object] – For sentences with prepositions that signify a special relation.

Lex – To specify a lexeme.

Member/Class – To specify class inclusion

Object/rel/possessor – For parsing possessive phrases.

Object/Proper-Name – For representation of proper names.

All of the above case frames are standard SNEPS case frames. For a detailed Syntax and Semantics of each, the reader is referred to Broklawski (2002) or the CVA website‘s Case –frame dictionary.

5. Current Work

The completed Augmented Transition network is capable of parsing and representing 30 of the 36 “brachet” passage sentence. It is also capable of parsing a “define” sentence which calls the noun algorithm to output the definition of the word “brachet” abstracted until that point. Of all the lexical structures required to be parsed only causative verbs and implicit questions are beyond of the capability of the ATN at present. The rest of the lexical structures can be parsed and represented by the ATN. The output semantic networks, representations and the exact paths followed by the ATN for each of them are summarized next. The working of the ATN is also explained with relevant examples. The ATN in its current form is included at the end of this report as Appendix B for the reader’s reference. A short description of lisp syntax for the ATN commands is also provided as Appendix E to help facilitate the understanding of the code.

5.1 Regular sentences: Regular sentences are the simplest to parse. The original grammar was able to parse and represent regular sentences. No changes were required to be implemented to the grammar for this type of sentence. In the passage, regular sentences by themselves account for 5 sentences. For this structure the description of the entire ATN traversal is provided along with the transition diagram and the semantic network. The description shall serve as a guide to understand the transition diagrams provided for the rest of the lexical structure parses.

Let us consider the passage sentence, Sir Tor takes a brachet. In the ATN, control starts at the S state and then always jumps to the S1 state. Here a push to the state ps is executed since the first word of the input is not the word “define”. At state ps, since the sentence is not a question, a push to state np is executed to possibly parse the noun phrase in the sentence. Also, the contents of registers mood (declarative) and agent are passed down to the np state. At state np, since the current word in the sentence is Sir Tor, the ATN takes the cat npr arc and builds the Object/Proper-Name case frame. The base node which refers to the entity with the proper-name Sir Tor is stored in the head register.

[image: image1][image: image2.wmf]

M1

!

Base Node

“ ”

Base Node

[image: image3.emf]

“ ”

Base Node

M1!

Base Node

[image: image4.wmf]

M2

“ “

M4!

Base Node

M3

Base Node

M1

“ “

[image: image5.wmf]

NP

NPPos

NomProp

NP/Art

NPA

NP/end

[image: image6.wmf]

NP

NPPos

NomProp

NP/Art

NPA

NP/end

[image: image7.wmf]

M2

Base Node

M3!

Base Node

M1

“

 ”

Base Node

Fig 3. Representation of Sir Tor using Object/proper-name.

The control then moves to the nppos state and from there to the np/end state since the wrd arc in state nppos is not true. At state np/end, a pop is executed with the base node referring to Sir Tor passed back to the higher level at state ps. Here this base node is stored in the register called agent and the mood register is set to ‘declarative’. Control now moves to the VP state with the next word, takes. In state VP, the cat v arc is followed, setting the act register to the current word and moving to the state VP/V with the next word, the. At state vp/v a push to state pp is executed which returns back since none of the conditions in that state are satisfied owing to the fact that the current word is not a preposition. A push to state np is then executed sending the contents of the registers mood (declarative) and agent (Sir Tor referent) down. At state np, the arc cat art is followed, setting the register def to indefinite and moving to state np/art with the word brachet. At state np/art, of the cat n arcs, the one referring to an indefinite and non-embedded noun phrase is followed and the Member/Class case frame is created. The base node which refers to the entity which is a member of class brachet is stored in register head.

[image: image8.wmf]

M1

!

Base Node

Base Node

Base Node

[image: image9.wmf]

“ ”

Base Node

M1!

Base Node

[image: image10.wmf]

M1

“ “

M3

!

Base Node

M2

Base Node

[image: image11.wmf]

“

 ”

Base Node

M1!

Base Node

[image: image12.wmf]

M2!

Base Node

M1

“

 ”

[image: image13.bmp][image: image14.bmp][image: image15.bmp][image: image16.bmp]
[image: image39.wmf]

PP

PP/end

Control now moves to state nppos and then to state np/end since the wrd arc in state nppos is not true. At state np/end, a pop is executed with the base node referring to a member of class brachet passed back to the higher level at state vp/v. Here this base node is stored in the register called object and control moves to s/final. At this state, a push to state pp returns back as there is no preposition after the object noun. The arc wrd “.” is followed, since that is the current word being looked at and the mood is ‘declarative, and control is transferred to the s/end state. At this final state the entire semantic network for the sentence is built with the central case-frame of Agent/Act-[Action/Object].

[image: image17.bmp][image: image18.bmp][image: image19.bmp][image: image20.bmp][image: image21.bmp][image: image22.bmp][image: image23.bmp][image: image24.bmp][image: image25.bmp][image: image26.bmp][image: image27.bmp][image: image28.bmp][image: image29.bmp][image: image30.bmp][image: image31.bmp][image: image32.bmp][image: image33.bmp][image: image34.bmp][image: image35.bmp]
[image: image36.bmp]
[image: image37.bmp]
[image: image38.wmf]

V

P

VP/V

PP

NP

S/final

Fig 5. Representation of Sir Tor takes a brachet.

5.2 Embedded and Double Embedded Regular sentences: Embedded sentences are sentences which occur as part of another sentence. In the brachet passage all embedded and double embedded sentences are regular sentences and they all follow the word that. The existing ATN grammar could parse and represent these kinds of sentences. No special additions were therefore required. Simple Embedded and double embedded sentences account for 1 sentence in the passage. In 10 other cases these sentences occur along with other complex lexical structures, which are yet to be explained, in other parts of the sentences.

For example, the sentence, A lady says that the knight is taking a brachet would be parsed with the previous example The knight is taking a brachet occurring as an embedded object in the main sentence.
5.3 Adjectival phrases: The existing ATN could not handle adjectival phrases. Thus, new states and arcs had to be added to the ATN so that it could both parse and build the required semantic nodes for this lexical structure. In the parsing stage, a cat adj arc was added to the states np and np/art. In the node-building phase, The case frame used to represent this structure is the Object/Property case frame.

Fig 6. Object/Property Case Frame

5.4 Prepositional phrases and special uses of prepositions: The existing ATN could not handle prepositional phrases. Thus, new states and arcs had to be added to the ATN so that it could both parse and build the required semantic nodes for this lexical structure. The parsing and representation of this structure was further complicated by the fact that each proposition in the passage was represented in a special sense in the prior representation. Therefore, the grammar had to be able to represent the prepositions in these special senses. In the parsing stage, a PP state was added to the ATN which parsed the prepositional phrases. In the PP state, different registers were set depending on which preposition was seen. The node-building phase however involved a lot more complexity. Each proposition in the passage has to have a particular representation. For example, the preposition into was to be represented with the Agent/Act/Into case frame.

Fig 7. Agent/Act/Into case frame

The preposition to was to be represented using the Agent/Act/to case frame.

Fig. 8 Agent/Act/to representation

The preposition to in the presence of an indirect object in the sentence was represented as

Fig. 9 Agent/Act-[Action/Object]/to Case Frame

where the base node in the to arc corresponds to the indirect object.

The preposition at was represented using the Agent/Act/Direction case frame.

Fig. 10 Agent/Act/direction case frame

Both the prepositions next to and behind refer to spatial relations between objects. Consequently these prepositions were represented using the case frame Object/Location-[sp-rel/Object] case frame.

Fig. 11 Object/Location-[sp-rel/Object] Case Frame

The final preposition in was represented using the case frame Agent/Act/Place and by the case frame Agent/Act-[Action/Object]/Place in the presence of an indirect object in the sentence. Again the base node in the place arc refers to the indirect Object.

Fig. 12 Agent/Act/Place case frame

5.5 Auxiliary verbs: The existing ATN did not handle sentences with auxiliary verbs. The specific auxiliary verb seen in the passage is must. Thus, new states and arcs had to be added to the ATN so that it could both parse and build the required semantic nodes for this lexical structure. For the parsing stage, a cat av arc was added to state VP. The node-building phase also involved the building of a new structure for representing the auxiliary verb using the case frame Agent/Act-[Action/Object-[Mode/Object]] with the auxiliary verb being applied to the mode arc.

Fig. 14 Agent/Act-[Action/Object-[Mode/Object]] case frame for auxiliary verbs

5.5 Pronouns: The existing ATN did not handle sentences with pronouns. Thus, new states and arcs had to be added to the ATN so that it could both parse and build the required semantic nodes for this lexical structure. In the parsing stage, a cat pron arc was added to states np and np/art. In the node-building stage, no new representations were required to be added. However, there were a couple of complications in this stage. The first of these complications was that of pronoun resolution. However, this wasn’t a problem in this passage as there are no ambiguous pronouns. The other complication was that when the ATN saw a pronoun and then later tried to build a representation with that pronoun as the agent or the object, it would not know what object the pronoun was referring to. In the case of this passage, pronouns only referred to the agents in sentences and therefore the problem was resolved by sending and lifting the contents of the agent register at all relevant levels. Pronouns occurred in a total of 11 sentences in the passage.

5.6 Possessive Phrases: The existing ATN did not handle sentences wit any kind of possessive phrases. Thus, new states and arcs had to be added to the ATN so that it could both parse and build the required semantic nodes for this lexical structure. The block of ATN network which handled noun phrases needed significant changes to be capable of parsing possessive and pronoun possessive phrases. This structure, by far, required the most complexity in parsing. Therefore, a look at the network and the transitions followed for a couple of examples would be useful.

Fig. 15 The Noun-Phrase network of the ATN

Let us consider the possessive phrase King Arthur’s hall from a sentence in the passage. To parse this noun phrase, when the control moves to state np, upon seeing the proper-name King Arthur the Object/Proper-Name case frame is used to represent the entity called King Arthur and stored in the register head. The control then moves to state nppos. Here, the arc wrd “’” is followed since we are looking at ‘ currently. This causes a jump to state npa with the current word still remaining ‘. At state npa, the register pos is set to true to signify that a possessor has been seen, the entity called King Arthur which is stored in head is stored in the possessor register and both these registers are lifted so they can be used at a higher level. Control then moves back to state np with the current word changing to “s”. Here the arc wrd “s” is followed and control loops back to np ignoring s and setting the current word to the next word, hall. Now the arc cat n is followed to np/art.

. At state np/art, of the cat n arcs, the one referring to a non-embedded and possessive noun phrase is followed and the Object/Possessor/Rel case frame is created. The member of the class hall is applied to the rel arc of the case frame.

Fig. 16 Object/Rel/Possessor Case Frame for possessives

By handling all of the above lexical structures through the parsing and node-building stages, the current Augmented Transition Network is able to accurately parse and build semantic network representations for 30 of the original 36 sentences in the passage. All of the specific output representations in the final network have been illustrated by looking at specific problem structures. The actual transitions followed by the ATN in the example case of regular sentences and in the complex case of prepositions are also provided for the better understanding of the highly recursive process of traversal. The individual Noun-Phrase, the Verb-Phrase and the Prepositional Phrase networks are included at the end of this report as Appendix D.

6. Additional Work

In addition to the working ATN, as part of my task, I also developed a lexicon which consisted of all the words found in the brachet demo associated with the relevant features of each. This lexicon was required to support the ATN, because the ATN checked for the categories which were specified in this lexicon. The lexicon grew out of, and was modified out of, a few older lexicons developed for other grammars.
Another supporting task was to build in the ability for the ATN grammar to accept a define command to run the noun algorithm for the word brachet any time during the interaction with the user, and output the definition developed for the word until that point. This was required so that the entire package of the ATN and lexicon could be used to independently figure out the meaning of the unknown word brachet from the context of the passage.

7. Immediate next steps:

At the present time, the ATN is still unable to handle collective arguments, causative verbs and implicit questions in the passage of the brachet demo. The immediate next steps to be implemented would be to parse and build them. Specifically the causative verbs would be parsed to build the cause-effect case frame. The collective arguments would be parsed to build the arg1-arg2…argn case frame and the min-max-number case frames. The primary difficulty in handling these structures would be in the extreme complexity involved in parsing these structures. Significant new work would have to be done and quite a few additions to the ATN would have to be implemented before these structures, especially the collective arguments and causative verbs, can be parsed. The representation would however be pretty straight forward. Since, I already know exactly what must be done only the actual implementation is left to be done.

Another area in which immediate steps can be implemented is in resolving bugs in the ATN. At the current time, the ATN works flawlessly except for a bug that has surfaced recently. Upon entering the sentence A white brachet is next to the hart., the parser is creating many members of the class hart. This error only occurs when the prepositions next to and behind are used in conjunction with the definite noun. This error does not however, have any adverse long term effects because in future uses of the entity hart all the instances are used, and thus semantically there is no error. However, the error does occur and would have to be fixed in the immediate future.

8. Future Work

There is a potential for a tremendous amount of interesting and stimulating future work in developing ATNs for the CVA project. In the long term this ATN can be extended to be able to parse any unknown sentence and find the meaning for any unknown word automatically. This can be accomplished by extending this ATN to other known demos. Upon working on those demos in a similar fashion many more new lexical structures can be parsed and represented by the grammar. Since for each passage, the basic types of sentences will be the same for the most part, over many words, a robust ATN for NLP can be developed. In the long-term, as the ATN keeps growing, the number of general sentences that can be parsed would grow till, the final goal of only using NLP for the AI CVA would be realized. The continued work on ATNs would also help with the goal of developing an educational curriculum where the students could learn better methods of reading by direct interactions with the computer. Thus, the first goal of the project as a whole can be realized.

Appendix A- A demo run of the “brachet” passage.

(describe *nodes)

(m148!

 (act (m147 (action (m92 (lex say)))

 (object

 (m146 (mode will)

 (object

 (m145! (act (m144 (action (m102 (lex bring))) (object b9)))

 (agent b13) (to b8)))))))

 (agent b13))

(m143!

 (act (m142 (action (m92))

 (object

 (m141!

 (act (m140 (action (m130 (lex know)))

 (object

 (m139! (act (m138 (action (m127 (lex seek))) (object b8)))

 (agent b9)))))

 (agent b13)))))

 (agent b13))

(m129! (act (m128 (action (m127)))) (agent b9))

(m126!

 (act (m125 (action (m92))

 (object

 (m124

 (act (m123 (action (m122 (lex be))) (object b5 b4 b3 b2)

 (rel (m7 (lex nextto)))))

 (agent b1)))))

 (agent b25))

(m121!

 (act (m120 (action (m92))

 (object

 (m119! (act (m118 (action (m117 (lex chase))) (object b5 b4 b3

b2)))

 (agent b28)))))

 (agent b25))

(m116! (class (m15 (lex hound))) (member b28))

(m115!

 (act (m114 (action (m92))

 (object (m113! (object b26) (property (m5 (lex white)))))))

 (agent b25))

(m112! (class (m111 (lex place))) (member b27))

(m110! (class (m3 (lex hart))) (member b26))

(m109! (class (m108 (lex elder))) (member b25))

(m107!

 (act (m106 (action (m92))

 (object

 (m105 (mode must)

 (object

 (m104! (act (m103 (action (m102)) (object b5 b4 b3 b2))) (agent

b24)

 (to b16)))))))

 (agent b23))

(m101! (object b24) (propername Sir Gawain))

(m100! (object b23) (propername Merlin))

(m99!

 (act (m98 (action (m92))

 (object

 (m97! (act (m96 (action (m95 (lex want))) (object b1)))

 (agent b11)))))

 (agent b11))

(m94!

 (act (m93 (action (m92))

 (object

 (m91! (act (m60 (action (m59 (lex take))) (object b1))) (agent

b8)))))

 (agent b22))

(m90! (class (m44 (lex lady))) (member b22))

(m89! (act (m88 (action (m81 (lex mount))) (object b21))) (agent b9))

(m87! (class (m79 (lex horse))) (member b21))

(m86! (act (m85 (action (m84 (lex ride))) (object b20))) (agent b8))

(m83! (act (m82 (action (m81)) (object b20))) (agent b8))

(m80! (class (m79)) (member b20))

(m78! (act (m77 (action (m76 (lex bite))) (object b18))) (agent b1))

(m75! (object b18) (possessor b17)

 (rel (m74! (class (m73 (lex buttock))) (member b19))))

(m72! (class (m3)) (member b17))

(m71! (act (m19 (lex run))) (agent b5 b4 b3 b2) (into b15))

(m70! (object b15) (possessor b14)

 (rel (m69! (class (m68 (lex hall))) (member b16))))

(m67! (object b14) (propername King Arthur))

(m66! (act (m65 (action (m64 (lex give))) (object b1))) (agent b9) (to

b13))

(m63! (class (m62 (lex dwarf))) (member b13))

(m61! (act (m60)) (agent b9))

(m58! (act (m57 (action (m56 (lex spy))) (object b1))) (agent b9))

(m55! (act (m54 (lex bay))) (agent b1) (direction b9))

(m53! (act (m52 (action (m49 (lex find))) (object b1))) (agent b9)

 (place b12 b10))

(m51! (act (m50 (action (m49)) (object b11))) (agent b9) (place b12 b10))

(m48! (act (m47 (lex sleep))) (agent b11) (place b12))

(m46! (class (m40 (lex pavilion))) (member b12))

(m45! (class (m44)) (member b11))

(m43! (act (m42 (lex go))) (agent b9) (to b10))

(m41! (class (m40)) (member b10))

(m39! (object b9) (propername Sir Tor))

(m38! (act (m37 (action (m36 (lex carry))) (object b1))) (agent b8))

(m35! (act (m34 (action (m33 (lex picksup))) (object b1))) (agent b8))

(m32! (act (m31 (action (m30 (lex arise))))) (agent b8))

(m29! (class (m28 (lex knight))) (member b8))

(m27! (location (m26 (object b7) (sp-rel (m7)))) (object b5 b4 b3 b2))

(m25! (object b7) (propername Round Table))

(m24! (location (m23 (object b5 b4 b3 b2) (sp-rel (m22 (lex behind)))))

 (object b6))

(m21! (act (m20 (action (m19)))) (agent b6))

(m18! (object b6) (property (m17 (lex black))))

(m16! (class (m15)) (member b6))

(m14! (class (m3)) (member b5))

(m13! (location (m12 (object b4) (sp-rel (m7)))) (object b1))

(m11! (class (m3)) (member b4))

(m10! (class (m3)) (member b3))

(m9! (location (m8 (object b2) (sp-rel (m7)))) (object b1))

(m6! (object b1) (property (m5)))

(m4! (class (m3)) (member b2))

(m2! (class (m1 (lex brachet))) (member b1))

(m148! m147 m146 will m145! m144 m143! m142 m141! m140 m139! m138 m130

know

 m129! m128 m127 seek m126! m125 m124 m123 m122 be m121! m120 m119! m118

m117

 chase m116! b28 m115! m114 m113! m112! m111 place b27 m110! b26 m109!

m108

 elder b25 m107! m106 m105 must m104! m103 m102 bring m101! Sir Gawain b24

 m100! Merlin b23 m99! m98 m97! m96 m95 want m94! m93 m92 say m91! m90!

b22

 m89! m88 m87! b21 m86! m85 m84 ride m83! m82 m81 mount m80! m79 horse b20

 m78! m77 m76 bite m75! m74! m73 buttock b19 b18 m72! b17 m71! m70! m69!

m68

 hall b16 b15 m67! King Arthur b14 m66! m65 m64 give m63! m62 dwarf b13

m61!

 m60 m59 take m58! m57 m56 spy m55! m54 bay m53! m52 m51! m50 m49 find

m48!

 m47 sleep m46! b12 m45! m44 lady b11 m43! m42 go m41! m40 pavilion b10

m39!

 Sir Tor b9 m38! m37 m36 carry m35! m34 m33 picksup m32! m31 m30 arise

m29!

 m28 knight b8 m27! m26 m25! Round Table b7 m24! m23 m22 behind m21! m20

m19

 run m18! m17 black m16! m15 hound b6 m14! b5 m13! m12 m11! b4 m10! b3 m9!

m8

 m7 nextto m6! m5 white m4! m3 hart b2 m2! m1 brachet b1)

Appendix B – The Complete Augmented Transition Network

:ld /projects/stn2/defun_noun.cl ; loading the noun algorithm

;;; First, the SnePS relations used in the GATN are defined.

(^^ define agent act object propername member class lex into property rel

sp-rel action possessor location to direction place mode)

;;; Next, a global variable, a global constant, and two functions are

defined.

(^^ defvar *SaynBeforeVowels* nil

 “If true and the next word starts with a vowel,

 print ‘n ‘ before that next word.”)

(^^ defconstant *vowels* ‘(#\a #\e #\i #\o #\u)

 “A list of the vowels.”)

;;; The following two functions implement a “phonological” component

;;; that can be used to output words and phrases from arcs of the GATN.

;;; In this way, the beginning of the sentence can be uttered before

;;; the rest of the sentence has been composed.

(^^ defun SayOneWord (word)

 “Prints the single WORD, which must be a string or a node.

 If the word is ‘a’, sets *SaynBeforeVowels*.

 If *SaynBeforeVowels* is set, then prints ‘n ‘ before word/s

 if the first letter of word/s is a vowel.”

 (check-type word (or string sneps:node))

 (when (sneps:node-p word) (setf word (format nil “~A” word)))

 (when *SaynBeforeVowels*

 (when (member (char word 0) *vowels* :test #’char=) (format t “n”))

 (setf *SaynBeforeVowels* nil))

 (when (string\= word “a”) (setf *SaynBeforeVowels* t))

 (format t “ ~A” word))

(^^ defun say (word/s)

 “Prints the single word or the list of words.

 If the word is ‘a’, sets *SaynBeforeVowels*.

 If *SaynBeforeVowels* is set, then prints ‘n ‘ before word/s

 if the first letter of word/s is a vowel.”

 (if (listp word/s) (mapc #’SayOneWord word/s)

 (SayOneWord word/s)))

;;; The initial arc is used to make two SNePSUL variables, each of

;;; which holds a SnePS variable node. This results in a major

;;; efficiency gain over creating new SnePS variable nodes each time a

;;; question or an indefinite NP is parsed.

(s (jump s1 t

 (or (* ‘wh) ($ ‘wh))

; a SnePS variable to use for Wh

questions

 (or (* ‘x) ($ ‘x))

 (setf *all-parses* nil) ; this statememnt ensures that the

algorithm
ccurri find all possible parses for a sentence.

))

(s1 (wrd “define” t

(defineNoun ‘brachet) ;;;call the noun algorithm with the word

brachet.

(to s1))

 (push ps t

; Parse a sentence, and send results to

RESPOND

 (jump respond)))

(ps (cat wh t ; A Wh question starts with “who” or

“what”.

 (setr agent (* ‘wh)) ; set AGENT to a variable node.

 (setr mood ‘question) (liftr mood) (to vp))

 (push np t (sendr mood ‘decl) (sendr agent) ; The only acceptable

statements are NP V [NP].

 ; MOOD must be sent down, because an

indefinite

 ; NP introduces a new individual in a

statement,

 ; but must be treated as a variable to be

found

 ; in a question.

 (setr agent *) ; set AGENT to parse of subject.

 (setr mood ‘decl) (liftr mood) ; The state RESPOND must know

whether

 ; it is echoing a statement or

answering

 (to vp)))

; move to state vp to parse a verb

phrase.

;;;This state and state vp/v handle the parsing of verb phrases.

;;;Tense is being ignored here.

(vp (cat v t

 (setr act *) (to vp/v))
; if the word being parsed is of

category verb then set the register act to parse of the word and move to

state vp/v.

 (wrd “is” t

 (to vp/v)) ; if the word is “is” then ignore

the word and move to vp/v.

 (cat av t

;if the word is of category

ccurring verb, set register mod to parse of word and loop back to vp.

 (setr mod *)(liftr mod)(to vp))) ;we need to lift the mod

register so we have access to itg when the sneps nodes are built.

(vp/v (push pp t (sendr agent)

;Before parsing the verb, its is

possible to find a preposition.

 ;This possibility is explored by

pushing to state PP.

 (setr prepo ‘prepo)

 (to vp/v)) ;looping back to VP/V top handle

the possible verb immediately after the preposition.

 (push np t (sendr mood) (sendr agent) ; Control here executes a push

to state np to handle the object of the sentence,

 (setr object *) ;set the returned value to the register

object.

 (liftr counter)

 (liftr count)

 (to s/final)) ;move to state s/final and look at next word in

input sentence.

 (jump s/final t))

; If no object jump and look at

same word.

;;; The state PP has 6 arcs to parse each of the 6 possible prepositions

ccurring in the demo.

;;;Each arc sets a flag register for the corresponding prep. And lifts the

register to a higher level.

(pp (wrd “into” t

 (setr into ‘true) (liftr into)(to pp/end))

 (wrd “to” t

 (setr to ‘true)(liftr to)(to pp/end))

 (wrd “at” t

 (setr dir ‘true)(liftr dir)(to pp/end))

 (wrd “in” t

 (setr pla ‘true)(liftr pla)(to pp/end))

 (wrd “nextto” t

 (setr rel *)(setr nec ‘true)(liftr nec)(liftr rel)(to pp/end))

 (wrd “behind” t

 (setr rel *)(setr nec ‘true)(liftr nec)(liftr rel)(to pp/end)))

(pp/end (pop onwa t)) ;;pops and sets the contents of inwa to current

input.

(s/final (push pp t ; pushes to state pp to parse a possible prepositional

phrase.

 (setr prepo ‘prepo) (setr rel *)

 (to s/finis))

; moves control to state s/finis

to parse a possible indirect object.

 (jump s/end (overlap embedded t))
; an embedded proposition

 (wrd “.” (overlap mood ‘decl) (setr count ‘true)(liftr count)(to

s/end)) ; if at end of sentence move to s/end.

 (wrd “?” (overlap mood ‘question) (to s/end))) ;if at end of

question move to s/end

(s/finis (push np t (sendr mood) (sendr agent) ;cheking for an indirect

object by pushing to state np.

 (setr indobject *)

 (to s/final)))

;;;this state builds all the output representations by popping the

registers and building the

;;;relavant representation.

(s/end (pop #!((assert object ~(getr agent)

 property (build lex ~(getr property))))

 (and (overlap mood ‘decl) (overlap adj ‘adjective))) ;;

Builds the Object/property representation for adjectival phrases.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build action (build lex ~(getr act))

 object ~(getr object))))

 (and (overlap mood ‘decl)(nullr into)(nullr to)(nullr

dir)(nullr pla)(nullr nec)(nullr mod)))

 ;builds the agent/act-[action-object] case frame for regular

sentences.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build action (build lex ~(getr act))

 object (build mode ~(getr mod)

 object ~(getr

object)))))

 (and (overlap mood ‘decl)(nullr into)(nullr to)(nullr

dir)(nullr pla)(nullr nec)(getr mod)))

;builds the agent/act-[action/object-[mode/object]] case frame for

sentences with auxiliary verbs.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build lex ~(getr act))

 into ~(getr object)))

 (and (overlap mood ‘decl)(nullr to)(nullr dir)(nullr

pla)(nullr nec)(getr into)))

 ;builds the agent/act/into representation for sentences with the

preposition “into”.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build lex ~(getr act))

 to ~(getr object)))

 (and (overlap mood ‘decl)(nullr dir)(nullr pla)(nullr

nec)(nullr indobject)(getr to)))

 ;builds the agent/act/to representation for sentences with the

preposition “to”.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build action (build lex ~(getr act))

 object ~(getr object))

 to ~(getr indobject)))

 (and (overlap mood ‘decl)(nullr dir)(nullr pla)(nullr

nec)(getr to)(getr indobject)))

 ;builds the agent/act-[action/object]/to representation for

sentences with the preposition “to” and an indirect object.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build lex ~(getr act))

 direction ~(getr object)))

 (and (overlap mood ‘decl)(nullr pla)(nullr nec)(getr dir)))

 ;builds the agent/act/direction representation for sentences with

the preposition “at”.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build lex ~(getr act))

 place ~(getr object)))

 (and (overlap mood ‘decl)(nullr embedded)(nullr

indobject)(nullr nec)(getr pla)))

 ;builds the agent/act/place representation for sentences with the

preposition “in”.

 (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build action (build lex ~(getr act))

 object ~(getr object))

 place ~(getr indobject)))

 (and (overlap mood ‘decl)(nullr embedded)(getr pla)(nullr

nec)(getr indobject)))

 ;builds the agent/act-[action/object]/in representation for

sentences with the preposition “in” and an indirect object.

 (pop #!((assert object ~(getr agent) ; Assert a top-level

statement.

 Location (build sp-rel (build lex ~(getr rel))

 object ~(getr object))))

 (and (overlap mood ‘decl)(nullr embedded)(nullr pla)(getr

nec)(nullr indobject)))

 ;builds the object/location-[sp-rel/object] representation for

sentences with the preposition “next to” or “behind”.

 (pop #2!((build agent ~(getr agent) ; Build an embedded statement.

 Act (build action (build lex ~(getr act))

 rel (build lex ~(getr rel))

 object ~(getr object))))

 (and (getr embedded) (overlap mood ‘decl)))

 ; builds the representation for embedded sentences.

 (pop #!((deduce agent ~(getr agent) ; Use deduce to answer a

question.

 Act (build lex ~(getr act))

 object ~(getr object)))

 (overlap mood ‘question)))

 ; deduces from the representation for answering questions.

;;; Notice in all above arcs that if for example, there is no object,

;;; (getr object) will evaluate to NIL,

;;; and the node will be built without an OBJECT arc.

(np (wrd “that” t (to nomprop)) ; an embedded proposition

 (cat npr t ; the word being parsed is a

proper-name

 (setr head (or

 ;; First try to find someone with the given name.

 #!((find (compose object- ! propername) ~(getr *))) ;

 ;; Otherwise, create one using the Object/proper-name

representation.

 #!((find object-

 (assert object #head propername ~(getr

*))))))

 (to nppos))

 (wrd “s” t (to np)) ; if possessive ignore the trailing s.

 (cat n t (jump np/art)) ; if current word is a noun then jumping to

state np/art without incrementing word

 (cat pron t (jump np/art)) ;if current word is a pronoun then jumping

to state np/art without incrementing word

 (cat adj t ; if current word is an adjective

 (setr property *)(setr adj ‘adjective)(liftr property)(liftr

adj)(to np))

 (cat art t (setr def (getf definite)) (to np/art)))

(nppos (wrd “’” t (jump npa)) ; which means that the noun is a possessive

noun

 (jump np/end t))

(npa (wrd “’” t ; handle the possessive by setting register possessor

with the contents of the head register which was just set with the base

node from the Object-Proper name representation.

(setr pos ‘t) (setr possor (getr head)) (liftr possor) (liftr pos)

(to np)))

(np/art (cat adj t ;if current word is an adjective

 (setr property *)(setr adj ‘adjective)(liftr property)(liftr

adj)(to np/art))

(cat n (overlap def t) (nullr embedded) ; a definite np

 (setr head ; Find the referent. (Assume there is exactly

one.)

 #!((find member-

 (deduce member *x

 class (build lex ~(getr *))))))

 (to nppos))

(cat n (overlap def t) (getr embedded) ; a definite np embedded

 (setr head ; Find the referent. (Assume there is exactly

one.)

 #2!((find member-

 (deduce member *x

 class (build lex ~(getr *))))))

 (to nppos))

 (cat n (and (disjoint def t) (overlap mood ‘decl)(nullr possor))

;an indefinite np

 (setr head ; Create a new referent.

 #!((find member-

 (assert member #hd

 class (build lex ~(getr *)))))) ; building the

member/class representation.

 (to nppos))

(cat n (and (disjoint def t) (overlap mood ‘decl)(getr

possor)(nullr object)); an indefinite possessive np.

 (setr head

; Create a new referent.

 #!((find object-

 (assert object #hed

 possessor ~(getr possor)

 rel (assert member #hed

 class (build lex ~(getr *)))))))

 (to nppos))

(cat pron (and (disjoint def t) (overlap mood ‘decl)) ; an

indefinite pronoun.

 (setr head (getr agent))

 (to nppos))

 (cat n (and (disjoint def t) (overlap mood ‘question)) ;a np part

of a question.

 (setr head (* ‘x)) ; a variable node.

 (to nppos)))

(nomprop (push ps t ; Return the parse of embedded sentence.

 (sendr embedded t) (sendr agent) (setr head *) (liftr mod)

(to np/end)))

(np/end (pop head t)) ; pop and return the contents of the head register.

;;;Not concerned with Generation for the current project. Unchanged from

original demo.

;;;;;;;;;;;;;;;;;;;;;;

;;; Generation Section

;;;;;;;;;;;;;;;;;;;;;;

(respond (jump g (and (getr *) (overlap mood ‘decl))

 (say “I understand that”)) ; Canned beginning of echo of

statement.

 (jump g (and (getr *) (overlap mood ‘question))) ; Answer of

question.

 (jump g/end (nullr *) (say “I don’t know.”)))

; Question not answered.

(g (rcall gnp (geta agent) (geta agent) ; Generate the agent as an np.

 Reg (jump g/subj)))

(g/subj (jump g/v (geta act)

 (say (verbize ‘past ; For this example, always use past

tense.

 (first (geta lex (geta act)))))))

(g/v (rcall gnp (geta object) (geta object) ; Generate the object.

 Reg (to g/end))

 (to (g/end) (null (geta object)))) ; No object.

(g/end (pop NIL t))

(gnp (to (gnp/end) (geta propername (geta object-))

 (say (geta propername (geta object-)))) ; Generate an npr.

 (to (gnp/end) (geta class (geta member-)) ; An indef np.

 (say (cons “a” #!((find (lex- class- ! member) ~(getr *))))))

 (call g * (geta act) (say “that”) * ; An embedded proposition

 (to gnp/end)))

(gnp/end (pop NIL t)

Appendix C – The Initial ATN

;;; First, the SnePS relations used in the GATN are defined.

(^^ define agent act object propername member class lex)

;;; Next, a global variable, a global constant, and two functions are defined.

(^^ defvar *SaynBeforeVowels* nil

 “If true and the next word starts with a vowel,

 print ‘n ‘ before that next word.”)

(^^ defconstant *vowels* ‘(#\a #\e #\i #\o #\u)

 “A list of the vowels.”)

;;; The following two functions implement a “phonological” component

;;; that can be used to output words and phrases from arcs of the GATN.

;;; In this way, the beginning of the sentence can be uttered before

;;; the rest of the sentence has been composed.

(^^ defun SayOneWord (word)

 “Prints the single WORD, which must be a string or a node.

 If the word is ‘a’, sets *SaynBeforeVowels*.

 If *SaynBeforeVowels* is set, then prints ‘n ‘ before word/s

 if the first letter of word/s is a vowel.”

 (check-type word (or string sneps:node))

 (when (sneps:node-p word) (setf word (format nil “~A” word)))

 (when *SaynBeforeVowels*

 (when (member (char word 0) *vowels* :test #’char=) (format t “n”))

 (setf *SaynBeforeVowels* nil))

 (when (string\= word “a”) (setf *SaynBeforeVowels* t))

 (format t “ ~A” word))

(^^ defun say (word/s)

 “Prints the single word or the list of words.

 If the word is ‘a’, sets *SaynBeforeVowels*.

 If *SaynBeforeVowels* is set, then prints ‘n ‘ before word/s

 if the first letter of word/s is a vowel.”

 (if (listp word/s) (mapc #’SayOneWord word/s)

 (SayOneWord word/s)))

;;; The initial arc is used to make two SNePSUL variables, each of

;;; which holds a SnePS variable node. This results in a major

;;; efficiency gain over creating new SnePS variable nodes each time a

;;; question or an indefinite NP is parsed.

(s (jump s1 t

 (or (* ‘wh) ($ ‘wh)) ; a SnePS variable to use for Wh questions

 (or (* ‘x) ($ ‘x)) ; a variable for indef NP’s in questions

))

(s1 (push ps t ; Parse a sentence, and send results to RESPOND

 (jump respond)))

(ps (cat wh t ; A Wh question starts with “who” or “what”.

 (setr agent (* ‘wh)) ; set AGENT to a variable node.

 (setr mood ‘question) (liftr mood) (to vp))

 (push np t (sendr mood ‘decl) ; The only acceptable statements are NP V [NP].

 ; MOOD must be sent down, because an indefinite

 ; NP introduces a new individual in a statement,

 ; but must be treated as a variable to be found

 ; in a question.

 (setr agent *) ; set AGENT to parse of subject.

 (setr mood ‘decl) (liftr mood) ; The state RESPOND must know whether

 ; it is echoing a statement or answering

 ; a question.

 (to vp)))

(vp (cat v t ; Accept just a simple verb for this example,

 (setr act *) (to vp/v))) ; and ignore tense.

(vp/v (push np t (sendr mood)

 (setr object *) ; Set OBJECT to parse of object.

 (to s/final))

 (jump s/final t)) ; If no object.

(s/final (jump s/end (overlap embedded t)) ; an embedded proposition

 (wrd “.” (overlap mood ‘decl) (to s/end))

 (wrd “?” (overlap mood ‘question) (to s/end)))

(s/end (pop #!((assert agent ~(getr agent) ; Assert a top-level statement.

 Act (build lex ~(getr act))

 object ~(getr object)))

 (and (overlap mood ‘decl) (nullr embedded)))

 (pop #2!((build agent ~(getr agent) ; Build an embedded statement.

 Act (build lex ~(getr act))

 object ~(getr object)))

 (and (getr embedded) (overlap mood ‘decl)))

 (pop #!((deduce agent ~(getr agent) ; Use deduce to answer a question.

 Act (build lex ~(getr act))

 object ~(getr object)))

 (overlap mood ‘question)))

;;; Notice in all three above arcs that if there is no object,

;;; (getr object) will evaluate to NIL,

;;; and the node will be built without an OBJECT arc.

(np (wrd “that” t (to nomprop)) ; an embedded proposition

 (cat npr t

 (setr head (or

 ;; First try to find someone with the given name.

 #!((find (compose object- ! propername) ~(getr *)))

 ;; Otherwise, create one.

 #!((find object-

 (assert object #head propername ~(getr *))))))

 (to np/end))

 (cat art t (setr def (getf definite)) (to np/art)))

(np/art (cat n (overlap def t) ; a definite np

 (setr head ; Find the referent. (Assume there is exactly one.)

 #!((find member-

 (deduce member *x

 class (build lex ~(getr *))))))

 (to np/end))

 (cat n (and (disjoint def t) (overlap mood ‘decl))

 (setr head ; Create a new referent.

 #!((find member-

 (assert member #hd

 class (build lex ~(getr *))))))

 (to np/end))

 (cat n (and (disjoint def t) (overlap mood ‘question))

 (setr head (* ‘x)) ; a variable node.

 (to np/end)))

(nomprop (push ps t ; Return the parse of embedded sentence.

 (sendr embedded t) (setr head *) (to np/end)))

(np/end (pop head t))

;;;;;;;;;;;;;;;;;;;;;;

;;; Generation Section

;;;;;;;;;;;;;;;;;;;;;;

(respond (jump g (and (getr *) (overlap mood ‘decl))

 (say “I understand that”)) ; Canned beginning of echo of statement.

 (jump g (and (getr *) (overlap mood ‘question))) ; Answer of question.

 (jump g/end (nullr *) (say “I don’t know.”))) ; Question not answered.

(g (rcall gnp (geta agent) (geta agent) ; Generate the agent as an np.

 Reg (jump g/subj)))

(g/subj (jump g/v (geta act)

 (say (verbize ‘past ; For this example, always use past tense.

 (first (geta lex (geta act)))))))

(g/v (rcall gnp (geta object) (geta object) ; Generate the object.

 Reg (to g/end))

 (to (g/end) (null (geta object)))) ; No object.

(g/end (pop nil t))

(gnp (to (gnp/end) (geta propername (geta object-))

 (say (geta propername (geta object-)))) ; Generate an npr.

 (to (gnp/end) (geta class (geta member-)) ; An indef np.

 (say (cons “a” #!((find (lex- class- ! member) ~(getr *))))))

 (call g * (geta act) (say “that”) * ; An embedded proposition

 (to gnp/end)))

(gnp/end (pop nil t))

Appendix D – Networks

Noun-Phrase Network

Verb-Phrase Network

Prepositional-Phrase Network

Appendix E – ATN Syntax

SIMPLIFIED SNaLPS ATN SYNTAX AND SEMANTICS

Syntax

Semantics

Actions:

(setr <reg> <form>)

<reg> := <form>

(addr <reg> <form>)

<reg> := <reg>^<form>

Forms:

· evaluates to root of current

word or to current constituent

(getr <reg>)

returns value of <reg>

(getf <feature> [<word>])

IF <word> is present

 THEN returns value of <feature>

 for <word>

 ELSE returns value of <feature>

 for *

(overlap <form1> <form2>)

IF <form1> and <form2> have

non-empty

 intersection

 THEN t ELSE nil

(nullr <form>)

IF <form> evaluates to nil

 THEN t ELSE nil

Preaction:

(sendr <reg> <form>) at current level
<reg>@level-to-be-called := <form>

Arcs:

(cat <category> <test> <action>* <terminal-action>)

IF current word is <category>

 THEN

 BEGIN * := current word;

 IF <test> THEN

 BEGIN do <action>*

 do

<terminal-action>

 END END

(jump <state> <test> <action>*)

* := current word;

IF <test> THEN BEGIN

 do <action>*;

 goto next state

 END

(pop <form> <test> <action>*)

IF <test> THEN

 BEGIN do <action>*;

pop value of <form> to

 calling level END

(push <state> <test> <preaction>* <action>* (to <nextstate>))

IF input buffer is empty THEN fail

 ELSE
BEGIN

· := current word;

 IF <test>

 THEN BEGIN

 do <preaction>s; (all sendr’s; to initialize lower

 level (level being pushed to))

 push to <state> and recursively continue parsing

there;

 (note: can fail at <state>)

 pop from <state>;

· := constitutent popped;

 input buffer := *;

 do <action>s;

 goto <nextstate>

 END

 ELSE fail

END

(wrd <word> <test> <action>* <terminal-action>)

IF <word> in lexicon THEN

 BEGIN * := current word;

 IF <test> THEN

 BEGIN do <action>*;

 do

<terminal-action>

Appendix F: The lexicon for the brachet passage

("a" ((ctgy . art)(definite . nil)))

("an" ((ctgy . art)(definite . nil)))

("the" ((ctgy . art)(definite . t)))

("Computer Science" ((ctgy . npr)))

("John" ((ctgy . npr)))

("Mary" ((ctgy . npr)))

("King Arthur" ((ctgy . npr)))

("Round Table" ((ctgy . npr)))

("Sir Tor" ((ctgy . npr)))

("Sir Gawain" ((ctgy . npr)))

("Merlin" ((ctgy . npr)))

("dwarf" ((ctgy . n)))

("elder" ((ctgy . n)))

("computer" ((ctgy . n)))

("hall" ((ctgy . n)))

("buttock" ((ctgy . n)))

("knight" ((ctgy . n)))

("lady" ((ctgy . n)))

("round" ((ctgy . adj)))

("Round" ((ctgy . multi-start) (multi-rest . ("Table")))

 ((ctgy . adj)(root . "round")))

("sir" ((ctgy . n)))

("Sir" ((ctgy . multi-start) (multi-rest . ("Tor")))

 ((ctgy . multi-start) (multi-rest . ("Gawain")))

 ((ctgy . n)(root . "sir")))

("king" ((ctgy . n)))

("King" ((ctgy . multi-start) (multi-rest . ("Arthur")))

 ((ctgy . n)(root . "king")))

("Computer" ((ctgy . multi-start) (multi-rest . ("Science")))

 ((ctgy . n)(root . "computer")))

("man" ((ctgy . n)(plur . "men")))

("men" ((ctgy . n)(root . "man")(num . plur)))

("woman" ((ctgy . n)(plur . "women")))

("women" ((ctgy . n)(root . "woman")(num . plur)))

("saw" ((ctgy . n))

 ((ctgy . v)(root . "see")(tense . past)))

("dog" ((ctgy . n)))

("dogs" ((ctgy . n)(num . plur)))

("hound" ((ctgy . n)))

("hounds" ((ctgy . n)(num . plur)))

("hart" ((ctgy . n)))

("knight" ((ctgy . n)))

("horse" ((ctgy . n)))

("pavilion" ((ctgy . n)))

("brachet" ((ctgy . n)))

("picksup" ((ctgy . v)))

("believe" ((ctgy . v)(stative . t)))

("bit" ((ctgy . v)(root . "bite")(tense . past)))

("bite" ((ctgy . v)(num . plur)(past . "bit")))

("like" ((ctgy . v)(num . plur)))

("see" ((ctgy . v)(past . "saw")))

("sleep" ((ctgy . v)(past . "slept")))

("slept" ((ctgy . v)(root . "sleep")(tense . past)))

("study" ((ctgy . v)))

("use" ((ctgy . v)))

("arise" ((ctgy . v)(past . "arose")))

("arose" ((ctgy . v)(root . "arise")(tense . past)))

("pick" ((ctgy . v)(past . "picked")))

("pick" ((ctgy . multi-start) (multi-rest . ("up")))

 ((ctgy . v)(root . "pick")))

("picked" ((ctgy . v)(root . "pick")(tense . past)))

("ride" ((ctgy . v)(past . "rode")))

("rode" ((ctgy . v)(root . "ride")(tense . past)))

("mount" ((ctgy . v)(past . "mounted")))

("mounted" ((ctgy . v)(root . "mount")(tense . past)))

("carry" ((ctgy . v)(past . "carried")))

("carried" ((ctgy . v)(root . "carry")(tense . past)))

("run" ((ctgy . v)(past . "ran")))

("ran" ((ctgy . v)(root . "run")(tense . past)))

("take" ((ctgy . v)(past . "took")))

("took" ((ctgy . v)(root . "take")(tense . past)))

("say" ((ctgy . v)(past . "said")))

("said" ((ctgy . v)(root . "say")(tense . past)))

("define" ((ctgy . v)))

("want" ((ctgy . v)))

("must" ((ctgy . av)))

("will" ((ctgy . av)))

("chase" ((ctgy . v)))

("seek" ((ctgy . v)))

("spy" ((ctgy . v)))

("spies" ((ctgy . v)(root . "spy")(tense . present)))

("give" ((ctgy . v)))

("bay" ((ctgy . v)))

("find" ((ctgy . v)))

("bring" ((ctgy . v)))

("who" ((ctgy . wh)))

("what" ((ctgy . wh)))

("into" ((ctgy . prep)))

("to" ((ctgy . prep)))

("of" ((ctgy . prep)))

("behind" ((ctgy . prep)))

("in" ((ctgy . prep)))

("at" ((ctgy . prep)))

("nextto" ((ctgy . prep)))

("that" ((ctgy . conj)))

("his" ((ctgy . pron) (gen . m) (num . sing) (case . pos)))

("yellow" ((ctgy . adj)))

("young" ((ctgy . adj)))

("white" ((ctgy . adj)))

("group" ((ctgy . adj)))

("black" ((ctgy . adj)))

("next" ((ctgy . adj)))

("actinide" ((ctgy . n)(num . sing)))

("Ada" ((ctgy . npr) (gen . f) (num . sing)))

("albino" ((ctgy . n)(num . sing)))

("an" ((ctgy . det)))

("animal" ((ctgy . n) (num .sing)))

("ant" ((ctgy . n)))

("are" ((ctgy . v)(root . "be")(num . plur)))

("available" ((ctgy . adj)(adj-type . numer)))

("Athena" ((ctgy . npr) (gen . f) (num . sing)))

("bat" ((ctgy . n) (num . sing)))

("be" ((ctgy . v)(root . "be")))

("beggar" ((ctgy . n) (num . sing)))

("believe" ((ctgy . v)(root . "believe")(prop-att .

believe)(stative . t)))

("Bill" ((ctgy . npr)(gen . m)(num . sing)))

("bird" ((ctgy . n) (num . sing)))

("Bob" ((ctgy . npr) (gen . m) (num . sing)))

("boy" ((ctgy . n) (gen . m) (num . sing)))

("car" ((ctgy . n) (num . sing)))

("cardinal" ((ctgy . n) (num . sing)))

("Carol" ((ctgy . npr)(gen . f) (num . sing)))

("Cassie" ((ctgy . npr)(gen . f) (num . sing)))

("cat" ((ctgy . n) (num . sing)))

("clever" ((ctgy . adj)))

("cockroach" ((ctgy . n) (num . sing)))

("common" ((ctgy . adj)(adj-type . numer)))

("computer" ((ctgy . n) (num . sing)))

("dislike" ((ctgy . v)(root . "dislike")(stative . t)))

("do" ((ctgy . v)))

("doctor" ((ctgy . n) (num . sing)))

("dodo" ((ctgy . n)(plur . "dodos") (num . sing)))

("does" ((ctgy . v)(root . "do")(num . sing)(tense . pres)))

("dog" ((ctgy . n)(num . sing)))

("did" ((ctgy . v)(root . "do")(tense . past)))

("disguise" ((ctgy . v)))

("elk" ((ctgy . n) (num . sing)))

("Eumaios" ((ctgy . npr)(gen . m) (num . sing)))

("extinct" ((ctgy . adj)(adj-type . numer)))

("fat" ((ctgy . adj)))

("few" ((ctgy . adj)(adj-type . numer)))

("flies" ((ctgy . v)(root . "fly")(num . sing)(stative . t)))

("fly" ((ctgy . v)(root . "fly")(num . plur)(tense .

pres)(stative . t)))

("fourlegged" ((ctgy . adj)))

("fox" ((ctgy . n) (gen . (m nil)) (num . sing)))

("girl" ((ctgy . n) (gen . f) (num . sing)))

("gnu" ((ctgy . n) (num . sing)))

("green" ((ctgy . adj)))

("Guatemalan" ((ctgy . adj)))

(hate ((ctgy . v)(root . hate)(stative . t)))

("he" ((ctgy . pron) (gen . m) (num . sing) (case . nom)))

(Hector ((ctgy . npr)(gen . m) (num . sing)))

("hen" ((ctgy . n) (gen . (nil f))(num . sing)))

("her" ((ctgy . pron) (gen . f) (num . sing) (case . (acc

pos))))

("herself" ((ctgy . pron) (gen . f) (num . sing) (case .

reflex)))

("him" ((ctgy . pron) (gen . m) (num . sing) (case . acc)))

("himself" ((ctgy . pron) (gen . m) (num . sing) (case .

reflex)))

(holist ((ctgy . n) (gen . m) (num . sing)))

(hope ((ctgy . v)(prop-att . hope)(stative . t)))

(invertebrate ((ctgy . n)))

("is" ((ctgy . v)(root . "be")(num . sing)(tense . pres)))

("it" ((ctgy . pron) (num . sing) (case . (nom acc))))

("its" ((ctgy . pron) (num . sing) (case . pos)))

("itself" ((ctgy . pron) (num . sing) (case . reflex)))

(Jan ((ctgy . npr)(gen . f)(num . sing)))

(John ((ctgy . npr)(gen . m)(num . sing)))

("kind" ((ctgy . adj)))

("know" ((ctgy . v)(prop-att . know)(stative . t)))

(Krishnan ((ctgy . npr)(gen . m) (num . sing)))

("like" ((ctgy . v)(root . "like")(stative . t)))

(lookslike ((ctgy . v)(stative . t)))

(love ((ctgy . v)(root . love)(stative . t)))

(Lucy ((ctgy . npr)(gen . f)(num . sing)))

("male" ((ctgy . n) (gen . m) (num . sing)))

(mammal ((ctgy . n) (num . sing)))

(manx ((ctgy . n) (num . sing)))

(many ((ctgy . adj)(adj-type . numer)))

(Mary ((ctgy . npr)(gen . f)(num . sing)))

("mortal" ((ctgy . adj)))

("name" ((ctgy . v)(root . name) (num . sing)))

("narrowminded" ((ctgy . adj)))

("numerous" ((ctgy . adj)(adj-type . numer)))

("Odysseus" ((ctgy . npr) (gen . m) (num . sing)))

("old" ((ctgy . adj)))

(owl ((ctgy . n) (num . sing)))

(own ((ctgy . v)(root . own)(stative . t)))

(panda ((ctgy . n) (num . sing)))

(pear ((ctgy . n) (num . sing)))

(peevish ((ctgy . adj)))

(pet ((ctgy . n)(root . petn) (num . sing))

 ((ctgy . v)(root . petv)))

(petn ((ctgy . n)(root . pet) (num . sing)))

(petv ((ctgy . v)(root . pet)))

(people ((ctgy . n)(root . person)(gen . m)(num . plur)))

(person ((ctgy . n)(plur . people) (num . sing)))

(philosophical ((ctgy . adj)))

;(pick ((ctgy . v)(root . pick)))

("poor" ((ctgy . adj)))

(professor ((ctgy . n) (gen . (m f)) (num . sing)))

(quiet ((ctgy .adj)))

(radioactive ((ctgy . adj)))

(rare ((ctgy . adj)(adj-type . numer)))

(rat ((ctgy . n) (num . sing)))

(rational ((ctgy . multi-start)(multi-rest . (animal)))

 ((ctgy . adj)))

(|rational animal| ((ctgy . n) (num . sing)))

(red ((ctgy . adj)))

(reductionist ((ctgy . n) (gen . m) (num . sing)))

("rich" ((ctgy . adj)))

(Rover ((ctgy . npr) (gen . (nil m)) (num . sing)))

(Sam ((ctgy . npr)(gen . m) (num . sing)))

(Sandy ((ctgy . npr)(gen . f) (num . sing)))

("saw" ((ctgy . n)(root . "sawn") (num . sing))

 ((ctgy . v)(root . see)(tense . past)))

(sawn ((ctgy . n)(root . saw) (num . sing)))

(sedan ((ctgy .n)(num . sing)))

("seen" ((ctgy . v)(root . "see")(tense . pastp)(pprt . t)))

(serious ((ctgy . adj)))

(shamrock ((ctgy . n) (num . sing)))

("she" ((ctgy . pron) (gen . f) (num . sing) (case . nom)))

(short ((ctgy . adj)))

(smart ((ctgy . adj)))

(Socrates ((ctgy . npr)(gen . m) (num . sing)))

(sow ((ctgy . n) (num . sing)))

(Stu ((ctgy . npr)(gen . m) (num . sing)))

(stupid ((ctgy . adj)))

(sweet ((ctgy . adj)))

(tall ((ctgy . adj)))

(the-beggar ((ctgy . npr)(gen m) (num . sing)))

(the-editor-of-Byte ((ctgy . npr)(gen m f) (num . sing)))

(their ((ctgy . pron) (num . plur) (case . pos)))

("them" ((ctgy . pron) (num . plur) (case . acc)))

("themselves" ((ctgy . pron) (num . plur) (case . reflex)))

("they" ((ctgy . pron) (num . plur) (case . nom)))

(truck ((ctgy . n) (num . sing)))

(ugly ((ctgy . adj)))

(vehicle ((ctgy . n) (num . sing)))

(vertebrate ((ctgy . n) (num . sing)))

("was" ((ctgy . v)(root . be)(num . sing)(tense . past)))

(what ((ctgy . pron) (num . (sing plur))))

("white" ((ctgy . adj)))

(who ((ctgy . pron) (gen . (m f)) (num . (sing plur))))

(widespread ((ctgy . adj)(adj-type . numer)))

("wise" ((ctgy . adj)))

(wish ((ctgy . v)(prop-att . wish)(stative . t)))

(wonderful ((ctgy . adj)))

(yak ((ctgy . n) (num . sing)))

References

1. Woods, W.A. Transition Network Grammars for Natural Language Analysis. Communications of the ACM 13,10 (October 1970).

2. Rapaport W.J. and Ehrlich K. A computational theory of vocabulary acquisition. Technical Report : 98-05 (SUNY Buffalo dept. of Computer Science).

3. Rapaport W.J. and Kibby M.W. Contextual Vocabulary Acquisition: A Computational Theory and Educational Curriculum. Proc. 6th World Multi-conference on Systemics, Cybernetics and Informatics (SCI 2002).

4. Shapiro S.C. Generalised Augmented Transition Network Grammars for Generation from Semantic Networks. Amer. Journal of Computational Linguistics 8,1 (January-March 1982).

5. Rapaport W.J. and Kibby M.W. Computational Contextual Vocabulary Acquisition Web Page.

6. Ehrlich K. Automatic Vocabulary Expansion through Narrative Context. SUNY Buffalo Computer Science technical report: 95-09 (1995).

7. Chun S.A. SNePs Implementation of Possessive Phrases. SNeRG Technical Note #19. (May 1987)

8. Shapiro S.C. and Rapaport W.J. SNePS: An Interactive Approach. Feb 2002.

9. Rapaport W.J. and Shapiro S.C. SNePS considered as a Fully Intensional Prepositional Semantic Network. The Knowledge Frontier (Ch.11) 1987

10. Shapiro S.C. and Rapaport W.J. An Introduction to a Computational Reader of Narrative. Deixis in Narrative.

Base Node

M2

“Sir Tor”

M2

Base Node

M1

“Brachet””

Fig 4. Represnetation of brachet using Member/Class

B2

M2

B1

M3!

“take”

M1

M1

M3!

M4!

“Sir Tor”

“Brachet””

M3!

Base Node

Base Node

M2

M1

Base Node

Fig. 13 Agent/Act-[Action/Object]/Place case frame

PAGE
4

