Al Magazine Volume 28 Number 1 (2007) (© AAAI)

Metacognition
in SNePS

Stuart C. Shapiro, William]. Rapaport,
Michael Kandefer,
Frances L. Johnson,
and Albert Goldfain

B The SNePS knowledge representation, reasoning,
and acting system has several features that facili-
tate metacognition in SNePS-based agents. The
most prominent is the fact that propositions are
represented in SNePS as terms rather than as sen-
tences, so that propositions can occur as argu-
ments of propositions and other expressions with-
out leaving first-order logic. The SNePS acting
subsystem is integrated with the SNePS reasoning
subsystem in such a way that: there are acts that
affect what an agent believes; there are acts that
specify knowledge-contingent acts and lack-of-
knowledge acts; there are policies that serve as
“daemons,” triggering acts when certain proposi-
tions are believed or wondered about. The GLAIR
agent architecture supports metacognition by spec-
ifying a location for the source of self-awareness
and of a sense of situatedness in the world. Several
SNePS-based agents have taken advantage of these
facilities to engage in self-awareness and metacog-
nition.

tion, and metareasoning have been

defined in various ways, varying from
general to specific: “Broadly defined metacogni-
tion is any knowledge or cognitive process that
refers to, monitors, or controls any aspect of
cognition” (Moses and Baird 1999, italics in the
original). “Cognitive systems are characterized
by their ability to construct and process repre-
sentations of objects and states of affairs. Men-
tal representations and public representations
such as linguistic utterances are themselves
objects in the world, and therefore potential
objects of second-order representations, or
“metarepresentations” (Sperber 1999). “Metar-
easoning is reasoning about reasoning—in its

The terms metacognition, metarepresenta-

broadest sense, any computational process
concerned with the operation of some other
computational process within the same entity”
(Russell 1999). “A metacognitive reasoner is a
system that reasons specifically about itself (its
knowledge, beliefs, and its reasoning process),
not one that simply uses such knowledge” (Cox
2008, italics in original).

The SNePS! knowledge representation, rea-
soning, and acting system and its predecessor
systems were designed from their beginnings
to support metarepresentations (Shapiro 1971,
1979) (see Shapiro and Rapaport [1992]). More
recently, SNePS-based cognitive agents, usually
called “Cassie,” have taken advantage of these
facilities to have models of themselves and to
have explicit acting plans that control their
own beliefs (Shapiro and Rapaport 1987;
Shapiro 1989, 1998; Santore and Shapiro 2003;
Shapiro and Kandefer 2005). This is further
facilitated by the grounded layered architecture
with integrated reasoning (GLAIR) agent archi-
tecture that specifies how an agent acquires
beliefs about its own actions and percepts and
how it has a sense of its own situatedness in the
world.

In this article, we will report on various
aspects of SNePS, GLAIR, and Cassie that facil-
itate metacognition and give examples of
metacognition in SNePS-based systems.

The GLAIR Architecture

GLAIR (Hexmoor et al. 1993, Hexmoor and
Shapiro 1997, Shapiro and Ismail 2003), illus-
trated in figure 1, is a cognitive agent architec-
ture with five layers.

The knowledge layer (KL) is the layer at
which “conscious” reasoning takes place. The
KL is implemented in SNePS and its subsystem

Copyright © 2007, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Articles

SPRING 2007 17

Articles

Mind KL
Independent
Body PMLa of lower-body
implementation
PMLb
ﬁ I/Pﬁkets@
PMLc I
Speech > W
\ P Hearing ¢}
SAL R
P Vision
L
Motion > D

Figure 1. The GLAIR Architecture.

The KL layer is the agent’s mind, the PML and SAL layers are its brain or body. The
KL and PMLa layers are independent of whether the agent’s body is implemented
in software, virtual reality, or hardware. If the PMLc and SAL run on a different
computer from the KL, PMLa, and PMLDb, then the PMLb and PMLc communicate
over IP sockets, one for each modality. The SAL controls the sensors and effectors.

18 AI MAGAZINE

SNeRE (the SNePS rational engine) (Shapiro
and Rapaport 1992; Kumar 1996; Kumar and
Shapiro 1994a, 1994b; Shapiro 2000b; Shapiro
and The SNePS Implementation Group 2004).
SNePS, in turn, is implemented in Common
Lisp. In the KL, terms of the SNePS logical lan-
guage represent the mental entities conceived
of and reasoned about by the agent.

The perceptuo-motor layer, sublayer a
(PMLa), contains the Common Lisp imple-
mentation of the actions that are primitive at
the KL, that is, the routine behaviors that can
be carried out without thinking about each
step. PMLa is implemented in Common Lisp in
a way that is independent of the implementa-
tion of the lower layers.

The perceptuo-motor layer, sublayer b
(PMLDb), implements the functions of PMLa
taking into account the particular implemen-
tation of the agent’s body. PMLD is implement-
ed in Common Lisp using, when necessary, its
facilities for interfacing with programs written
in other languages.

The perceptuo-motor layer, sublayer c¢
(PMLc), contains the implementations of the
PMLDb functions for the particular hardware or
software agent body being used. PMLc has
been implemented variously in C, Java, and

the Ygdrasil (Pape et al. 2003) virtual reality
authoring system.

The sensori-actuator layer (SAL) contains the
sensor and effector controllers of the agent
body.

SNePS

We view the contents of the SNePS knowledge
base (KB), appropriately for its use as the
agent’s KL, to be the contents of the agent’s
mind. SNePS terms denote the mental entities
of the agent, entities the agent has conceived
of (Maida and Shapiro 1982, Shapiro and Rapa-
port 1987). Mental entities must include every-
thing an agent can possibly conceive of,
including particular individuals, classes, rela-
tions, acts, and, most significantly for this arti-
cle, propositions (Shapiro 1993). The root of
the SNePS ontology is thus entity. The next lev-
el, developed by considering what a SNePS-
based agent can do with each entity, is cur-
rently proposition, act, policy, and thing. A
proposition is an entity such that the agent can
believe it or its negation. An act is an entity
that the agent can perform. A policy is an enti-
ty, connecting propositions and acts, which
the agent can adopt. A thing is an entity that is
neither a proposition, act, nor policy.? Note
that propositions, acts, policies, and things are
exhaustive and mutually exclusive subclasses
of entity.

A subset of the propositions represented in
the KB are “asserted” and thus believed by the
agent. The implemented SNePS rules of infer-
ence specify how the assertion status can be
inherited by propositions from other proposi-
tions (Shapiro 1993, Chalupsky and Shapiro
1994). Open terms (terms containing unbound
variables) do not exist in the latest version of
SNePS, SNePS 3 (Shapiro 2000a), which is based
on the logic L, (Shapiro 2004), and is still being
implemented. They also did not exist in the
variant of SNePS discussed by Ali and Shapiro
(1993).

An act may be performed by an agent and is
composed of an action and zero or more argu-
ments. For example, for the Fevahr3 version of
Cassie (Shapiro 1998), the term find(Bill) de-
notes the act of finding Bill (by looking around
in a room for him), composed of the action find
and the object Bill.* That is, an action is a rep-
resented by an act-valued function symbol.

Three policy-forming function symbols are
built into SNePS, each of which take as argu-
ments a proposition p and an act a: ifdo(p, a) is
the policy that if the agent wants to know
whether to believe p, it should perform g;
whendo(p, a) is the policy that when the agent

believes p, it should perform a; wheneverdo(p,
a) is the policy that whenever the agent
believes p, it should perform a.

A blocks-world example of ifdo is “If the
agent wants to know whether block A is red, it
should look at it”: ifdo(ColorOf(A, red),
lookAt(A)) (Kumar and Shapiro 1994a).

In the case of both whendo and wheneverdo,
if the policy has been adopted, the agent per-
forms a when forward inference causes p to be
believed. Also, a is performed if p is already
believed when the policy is adopted with for-
ward inference. The difference is that a when-
do policy is unadopted after firing once, but a
wheneverdo remains adopted until explicitly
unadopted.

Things are all entities other than proposi-
tions, acts, and policies. Things mentioned so
far in this section are the person denoted by
Bill, the block denoted by A, the color denoted
by red, the actions denoted by find and lookAt,
and the relation denoted by ColorOf. Fevahr
Cassie’s things also include the category of
robots, and the sentence “Neither a borrower
nor a lender be,” denoted by a functional term.

Bidirectional Inference

SNePS performs inference in a bidirectional
fashion (Shapiro, Martins, and McKay 1982). A
rule of the form all(x)(P(x) => Q(x)) can be used
for backward chaining if an instance of Q(x) is
a goal or subgoal, or for forward chaining if an
instance of P(x) is asserted into the KB in an
appropriate way. (When a belief is asserted into
the KB, it may be done in a way that triggers
forward chaining or not.) If both all(x)(P(x) =>
Q(x)) and all(x)(P(x) => R(x)) are asserted, and
P(a) is not asserted, and Q(a) is issued as a goal
or subgoal, and then P(a) is asserted with for-
ward chaining, bidirectional inference focuses
the forward chaining so that Q(a) is inferred,
but R(a) is not.

Metaknowledge

Metaknowledge is knowledge about knowl-
edge. More accurately, we are concerned with
metabeliefs—beliefs about beliefs. Since propo-
sitions are represented by terms in the SNePS
logic (Shapiro 1993; Shapiro 2000b), meta-
beliefs—which are propositions about proposi-
tions—are easily represented without leaving
first-order logic. One example of a proposition
represented by a term is from the Wumpus-
World-agent version of Cassie (Shapiro and
Kandefer 2005). There, Have is a function sym-
bol, and Have(gold) is a proposition-valued
functional term denoting the proposition that
“I have the gold.”

A SNePS proposition of the form P=>Q is not

a sentence denoting true when P is false or Q is
true; rather it is a functional term denoting the
proposition that, from the agent’s point of
view, if I believe P, then I am justified in believ-
ing Q (Shapiro 1993, Chalupsky and Shapiro
1994). Notice that it is not “if [believe P, then
I believe Q,” because SNePS agents are not log-
ically omniscient. If an agent believes P and
P=>Q, then it will believe Q only when the
“rule” P=>Q “fires” (to borrow terminology
from production systems). Rather than being a
function from truth values to truth values, =>
is a function from propositions to propositions,
a proposition-valued function. Moreover,
~(P=>Q) simply denotes the proposition that
belief in P is not justification for believing Q. So
from ~(P=>Q) it does not follow that P, much
to the consternation of some traditionalists.
Similarly, P=>(Q=>R) denotes the proposition
that if I believe P, then I am justified in believ-
ing Q=>R. Although P=>(Q=>R) and {P, Q}&=>R
are logically equivalent,® in the sense that they
both say that belief in R is justified when both
P and Q are believed, they are treated differ-
ently by the SNePS inference system. If SNePS
back chains into the latter rule, P and Q will be
established as parallel subgoals, but if SNePS
back chains into the former rule, just P will be
a subgoal. Only if P is then inferred will Q=>R
be believed and Q established as another sub-
goal. In either case, if SNePS forward chains
into either P or Q, it will then back chain on
the other, and R will be asserted if that back
chaining is successful. From this point of view,
P=>Q, ~(P=>Q), P=>(Q=>R), and {P, Q}&=>R are
all examples of metabeliefs just as are the more
obvious cases such as Believes(a, p), where a
denotes some agent, p denotes some proposi-
tion, and Believes(a, p) is a proposition-valued
functional term denoting the proposition that
a believes p (see Wiebe and Rapaport [1986];
Shapiro and Rapaport [1991]; Rapaport,
Shapiro, and Wiebe [1997]). The policies ifdo(p,
a), whendo(p, a), and wheneverdo(p, a),
although not beliefs about beliefs (because
policies are not entities to be believed), are
metapropositions in the sense that they are
SNePS terms whose arguments are propositions
and they are used to monitor beliefs.

Categories of Acts

SNePS acts may be categorized on two inde-
pendent dimensions: an act may be either an
external, a mental, or a control act; and an act
may be either a primitive, a defined, or a com-
posite act.

Articles

SPRING 2007 19

Articles

20 AI MAGAZINE

External, Mental, and Control Acts

SNePS actions and, by extension, acts, may be
subclassified as either external, mental, or con-
trol. External acts either sense or affect the real,
virtual, or simulated outside world. An exam-
ple mentioned above from the Fevahr version
of Cassie is find(Bill). No external acts are pre-
defined in SNePS; they must be supplied by
each agent designer.

Mental acts affect the agent’s beliefs and
adopted policies. There are four: believe(p) is
the act of asserting the proposition p and doing
forward inference on it; disbelieve(p) is the act
of unasserting the proposition p, so that it is
not believed, but its negation is not necessari-
ly believed; adopt(p) is the act of adopting the
policy p; unadopt(p) is the act of unadopting
the policy p.

Before believe changes the belief status of a
proposition p, it performs a limited form of
belief revision (Alchourrén, Gardenfors, and
Makinson 1985). If andor(0, 0){..., p, ...} is
believed,” it is disbelieved. If andor(j, 1){p, g, ...}
is believed, for i=0or i=1, and g is believed, q
is disbelieved. Mental acts are metacognitive in
that they are agent acts that explicitly affect
what the agent believes.

Control acts are the control structures of the
SNePS acting system. The SNePS control
actions are achieve, do-all, do-one, prdo-one,
snif, sniterate, snsequence, withall, and with-
some.

If the proposition p is asserted, performing
the act achieve(p) does nothing. Otherwise,
performing the act achieve(p) consists of infer-
ring plans for bringing about the proposition p
(by inferring instances of the proposition
GoalPlan(p, x)), and then performing do-one on
them.

Performing the act do-all({a,, ..., a,}) consists
of performing all the acts a,, ..., g, in a nonde-
terministic order.

Performing the act do-one({a,, ..., a,}) con-
sists of nondeterministically choosing one of
the acts a,, ..., a,, and performing it.

Performing the act prdo-one({pract(x,, a,), ...,
pract(x,, a,)}) consists of performing one of the
acts a;, with probability x; / % x.

Performing the act snif({if(p,, a,), ..., if(pn,
an)[, else(d)]}) consists of using backward infer-
ence to determine which of the p, hold, and, if
any do, nondeterministically choosing one of
them, say p, and performing a. If none of the
p; can be inlgerred, and if else(d) is included, dis
performed. Otherwise, nothing is done.

Performing the act sniterate({if(p,, a;), ...,
if(pn, an)[, else(d)]}) consists of using backward
inference to determine which of the p, hold,
and, if any do, nondeterministically choosing

one of them, say p, performing a, and then
performing the entire sniterate again. If none of
the p; can be inferred, and if else(d) is included,
d is performed. Otherwise, nothing is done.

Performing the act snsequence(a,, a,) con-
sists of performing the act a, and then the act
a,.
Performing the act withall(x, p(x), a(x), [d])
consists of performing backward inference to
find entities e such that p(e) is believed, and, if
such entities are found, performing a on them
all in a nondeterministic order. If no such e is
found, and the optional act d is present, d is
performed.

Performing the act withsome(x, p(x), a(x), (d))
is like performing withall, but if any entities e
such that p(e) are found, ais performed on one
of them, nondeterministically chosen.

Primitive, Defined, and
Composite Acts

SNePS actions and acts may also be classified as
either primitive, defined, or composite. Primi-
tive acts constitute the basic repertoire of a
SNePS agent. They are either provided by the
SNePS system itself or are implemented at the
PML. An example predefined action is believe;
an example primitive action defined at the
PML is the Fevahr Cassie’s find. Because primi-
tive actions are implemented below the KL,
SNePS agents have no cognitive insight into
how they perform them.

A composite act is one structured by one of
the control acts. For example, the Wumpus-
World Cassie, whose only primitive turning
acts are go(right) and go(left), can turn around
by performing the composite act, snse-
quence(go(right), go(right)).

A defined act is one that, unlike composite
acts, is syntactically atomic, and unlike primi-
tive acts, is not implemented at the PML. If a
SNePS agent is to perform a defined act g, it
deduces plans p for which it believes the propo-
sition ActPlan(a, p), and performs a do-one of
them. Such a plan is an act which, itself, can be
either primitive, composite, or defined. For
example, the Wumpus-World Cassie has a
defined act turn(around) defined by
ActPlan(turn(around), snsequence(go(right),
go(right))).

Examples of Metacognition

In this section, we discuss five example SNePS
projects that incorporate metacognition: self-
awareness; lack-of-knowledge acting; consis-
tency-maintenance and optimization; contex-
tual vocabulary acquisition; and mathematical
problem-solving.

Articles

all (p) (Person (p)
=> ActPlan(call (p),

withsome (n,

Has (p, PhoneNumber,n) ,
dial (n),

snsequence (lookup (p) , call(p)))))

Figure 2. A Plan for Calling a Person.

Self-Awareness

If “a metacognitive reasoner is a system that
reasons specifically about itself” (Cox 2005), it
needs a model of itself. There are two aspects to
our approach to self-modeling: representation
techniques in SNePS at the KL; and PML-KL
interaction. At the KL, the agent, itself, is repre-
sented by a SNePS term that is in no way differ-
ent from the SNePS terms representing other
agents. Beliefs about itself are represented as
propositions containing the self-term as an
argument. Beliefs about what the agent is doing
and has done are represented using an interval
model of time (Allen 1983), with the times
principally connected by before and during rela-
tions (which each represent a disjunction of
several of Allen’s temporal relations). These
beliefs form the agent’s episodic memory.

The PML is involved in self-awareness in
order to model an agent’s sense of embodied-
ness and of being situated in the world. There
are two aspects to this: a source of beliefs; and
a locus of indexical and similar information.
Beliefs about what the agent is doing and
beliefs derived from the agent’s sensory organs
are put into the KL directly from the imple-
mentation of primitive sensory and efferent
actions in the PMLa. For example, as men-
tioned previously, find is a primitive action for
the Fevahr Cassie (Shapiro and Ismail 2003).
The implementation of find in the PMLa inserts
into the KL the belief that Cassie has found
whatever she did. So after being told to
find(Bill), Cassie believes, and then says
(through her natural language [NL] generation
component) “I found Bill.” Having the agent’s
beliefs of what it senses and does inserted
directly by the PML models these beliefs as
“first-person privileged knowledge.”

Another aspect of being situated in the
world is continuous awareness of one’s self and
of one’s general orientation in the world. We
accomplish this through a set of PML deictic
registers and modality registers, each of which
is a variable whose value is one or a set of KL
terms.

The deictic registers derive from the theory
of the deictic center (Duchan, Bruder, and

Hewitt 1995), and include: I, the register that
holds the KL term denoting the agent itself;
YOU, the register that holds the KL term denot-
ing the individual the agent is talking with;
and NOW, the register that holds the KL term
denoting the current time. It is by using these
registers that the NL generator generates “I
found Bill” in first-person, in past tense, and
using the third-person referring expression,
“Bill.” If she had been talking to Bill at the
time, she would have said, “I found you” or “I
found you, Bill.”

Each modality register contains the KL term
or terms representing the act(s) the agent is
currently performing, or the percept(s) the
agent is currently having in each effector or
affector modality. The mechanisms for advanc-
ing NOW use these registers, as they change
their contents, to place past acts and percepts
in the past (Ismail 2001). For example, Fevahr
Cassie starts out talking with Stu. If Stu then
tells her to “Talk to Bill,” and Bill asks her,
“Who have you talked to?” she says,”I talked
to Stu and I am talking to you.”

Lack of Knowledge Acting

The optional default act in the SNePS control
acts withall and withsome provide for acting on
the basis of lack of knowledge (see Moore
[1988]). We are using this facility for a SNePS
solution to what we call McCarthy’s second
telephone number problem (McCarthy 1977).
In this problem, the agent is asked to call some-
one. If the agent knows the person’s phone
number, it should make the call. However, if it
doesn’t, it must obtain the number from some
directory or other agent, and then dial it.
Obtaining the number is to result in the agent’s
knowing the person’s phone number.

Our agent’s plan for calling someone is
depicted in figure 2, where Has(p, PhoneNum-
ber, n) means that “p’s phone number is n.” Fig-
ure 3 demonstrates a SNePS agent solving this
problem. The agent engaged in an informa-
tion-acquiring act because it lacked the infor-
mation needed to perform another act. After
acquiring the information, it performed the
latter act, and then knew the information it
acquired.

SPRING 2007 21

Articles

Person (?x) ?
Person (Stu)
Person (Mike)

Has (?x, PhoneNumber, ?y) ?
Has (Mike, PhoneNumber,N(5,N(5,N(5,N(5,N(6,N(1,2)))))))

perform call (Mike)
I am pressing 5.
am pressing 6.

I am pressing 5.
I am pressing 1.

perform call (Stu)
I could not find Stu?s phone number in any external information source
available to me.
Do you know Stu?s number? vyes
What is Stu?s number (e.g.
I am pressing 5.
am pressing 8.

555-5555) ?
I am pressing 5.
I am pressing 9.

Has (?x, PhoneNumber, ?y) ?
Has (Stu, PhoneNumber,N(5,N(5,N(5,N(7,N(8,N(9,0)))))))
Has (Mike, PhoneNumber,N(5,N(5,N(5,N(5,N(6,N(1,2)))))))

I am pressing 5.
I am pressing 2.

I am pressing 5. I

555-7890
I am pressing 5.
I am pressing 0.

I am pressing 7. I

Figure 3. The Agent Knows Mike’s Phone Number, but Must Get Stu’s Number from the User.

Material output by the agent is shown in bold. The colon is the system prompt. User input is in roman.

22 Al MAGAZINE

Metacognition in Consistency
Maintenance and Optimization

Any computational system that stores and rea-
sons with information must have some means
for adding new information, changing existing
information, and removing information. These
belief change operations are especially needed
to resolve contradictions (also called “consis-
tency maintenance” or “truth maintenance”).

SNePS uses a monotonic logic, so contradic-
tion resolution requires that at least one base
(input) belief that underlies a contradiction
must be retracted to eliminate that contradic-
tion.8 The retraction process unasserts the
belief, effectively removing it from the current
base (also called the current context); both the
contradiction and any derived beliefs that were
dependent on that base belief are no longer
derivable. The retracted belief is retained in the
KB as an unasserted belief about which the sys-
tem can still reason.’

Belief change is managed in SNePS by SNe-
BR, the SNePS belief revision system (Martins
and Shapiro 1988, Shapiro 2000b). As imple-

mented in SNePS 2.6.1, SNeBR detects contra-
dictions, presents the user with possible cul-
prits, provides the interface for base belief
retraction, and removes from the active KB
derived beliefs whose assertion status depend-
ed on any removed base beliefs. Automated
retraction of base beliefs (Johnson and Shapiro
1999, Shapiro and Johnson 2000) and the
belief base reoptimizing operation of reconsid-
eration (Johnson and Shapiro 2005a, Johnson
2006) are implemented in other, developmen-
tal versions of SNePS.

Key guidelines for consistency maintenance
are!® when some beliefs are considered more
important (or credible) than others, and con-
sistency maintenance forces the removal of
some beliefs, then the least important beliefs
should be selected for removal; and any beliefs
removed during consistency maintenance
must be responsible for the inconsistency.

Because each belief is a term in the SNePS
logic, metabeliefs can be used to indicate vari-
ous levels of credibility. For example, we can
order the beliefs Truck(Obj1) (object 1 is a truck)
and Helicopter(Obj1) (object 1 is a helicopter)

Articles

Source (UAV, Truck (Objl))

(An unmanned aerial vehicle (UAV) is the source of the information that Object 1 is a truck.)

Source (Satellite, Helicopter (Objl))
(Satellite imagery is the source of the information that Object 1 is a helicopter.)

all(sl,s2,bl,b2) ({Source(sl,bl), Source (s2,b2) }
&=> { (sourceMoreCredible (sl,s2) => moreCredible (bl,b2)),
(sourceEquallyCredible ({s1,s2}) => equallyCredible ({bl,b2}))})
(Information from a more credible source is more credible than information from a less credible source, but
information from two equally credible sources are equally credible.)

Figure 4. Assigning Sources to Information and Ordering the Sources.

to indicate that the first is more credible by
asserting moreCredible(Truck(Obj1), Helicop-
ter(Obj1)). This belief credibility ordering
enables the automation of contradiction reso-
lution. Reasoning with the rule that
all(x)(andor(0, 1){Truck(x), Helicopter(x)}) (an
object cannot be both a helicopter and a truck)
the system detects a contradiction and, follow-
ing the guidelines listed above, removes the
least credible belief!! and reports,

| will remove the following node:

Helicopter(Obj1).

Ordering beliefs by their source or category
(Johnson and Shapiro 1999, Shapiro and John-
son 2000) is more reasonable than ordering all
beliefs individually. This results in a preorder
over the beliefs; some sources may be equiva-
lent (or incomparable) in strength, and beliefs
from the same source (or equivalent sources)
would have equivalent strength (unless there is
an additional subordering of those beliefs).

Again, because each belief is a term in the lan-
guage, assigning and ordering sources is easily
represented in SNePS (figure 4). When we then
input sourceMoreCredible(UAV, Satellite) (the
UAV is more credible than satellite imagery), the
system infers moreCredible (Truck(Obj1), Heli-
copter(Obj1)), which is used during automated
contradiction resolution, as before.

Ordering beliefs is also helpful if a system
needs to reoptimize the base. This can happen
when new input and/or inferences result in
changes being made to the base or its ordering.
For example, if the new information forces
contradiction resolution to remove some belief
p from the base, then any belief g that is weak-
er than p and was removed because it conflict-
ed with p should be considered for possible
return to the base. Alternatively, if the new

information reorders the sources or beliefs (or
further refines the preordering), the base may
need to be reoptimized with respect to this new
ordering. This optimization process is called
“reconsideration” (Johnson and Shapiro
2005a, Johnson 2006) and is implemented
using the any-time algorithm of dependency-
directed reconsideration (DDR) (Johnson and
Shapiro 2005b, Johnson 2006).

DDR processes unasserted base beliefs that
might be able to return to the current base due
to a stronger conflicting belief being recently
retracted or a reordering of the base beliefs. A
belief can be reasserted if its reassertion either
(1) does not raise an inconsistency or (2) each
inconsistency its return raises can be resolved
by retracting one or more strictly weaker beliefs
(called belief swapping). Beliefs are processed
in a nonincreasing order of credibility and are
examined only if they are directly linked to
some change in the belief base.

This scales well in the case where new infor-
mation forces a retraction. Each inconsistency
resolution typically involves a small subset of
base beliefs, and reconsideration would involve
a similarly small subset.!? If a belief is returned
with swapping, reconsideration continues but
is progressing through ever decreasing credibil-
ity weights; if there is no swap—whether or not
the belief is reasserted—reconsideration along
that branch of the KB is pruned. The computa-
tional complexity of the DDR algorithm is
minimal when a belief cannot return (no
change to the base) and has a higher cost when
the base is improved.

Reordering base beliefs (both asserted and
unasserted) might occur when a source is dis-
covered to be unreliable—forcing information
from that source to be considered less credible

SPRING 2007 23

Articles

24 Al MAGAZINE

than once thought. Reconsideration reopti-
mizes the base to reflect the new ordering by
processing retracted base beliefs that are now
more credible than conflicting base beliefs that
are currently asserted. Unasserted base beliefs
that have not changed their order relative to
stronger conflicting beliefs need not be
processed.

Any implemented system is restricted by the
real-world limitations of the size of its memory
and the time it takes to reason. There may be
times when DDR must be interrupted so that
further inferences can be made or actions tak-
en. Because the logic used in SNePS is a para-
consistent logic,'? the SNePS system can even
reason in an inconsistent space—though, typi-
cally, the inconsistency needs to be unrelated
to the propositions being used in the reason-
ing. When time allows, DDR can be recalled to
reoptimize the KB and provide a more pre-
ferred belief base from which to act and reason.

Whether for contradiction resolution or base
optimization, the system uses metabeliefs to
determine what it should believe—ensuring
that it maintains and reasons from the most
credible knowledge base possible given the cur-
rent constraints and needs of the user.

Metacognition and Contextual
Vocabulary Acquisition

Reading is a cognitive activity that begins by
requiring a great deal of conscious processing
(in order to assign sounds to letters and mean-
ings to words and sentences). Readers must
think about which sounds go with which let-
ters, and then whether the resulting combined
sound is a word that they know. For good read-
ers, this process evolves into an automatic
process requiring little or no conscious activity
(for example, when looking at a text in their
native language, good readers cannot not read
the passage, since reading has become so auto-
matic). But, for excellent readers, it evolves
once again into a conscious activity during
which the reader monitors his or her reading
(for example, in order to draw inferences about
the passage being read). (See, for example,
McNamara and Kintsch [1996], van Oosten-
dorp and Goldman [1999], and Ruddell and
Unrau [2004].) In short, for excellent readers,
reading involves metacognition.

But even for readers who are not that excel-
lent, reading contains metacognitive compo-
nents. Moreover, we believe that practice with
at least one of these components (vocabulary
acquisition) can improve reading and compre-
hension skills. In our contextual vocabulary
acquisition project,'* we are developing a com-

putational theory of how readers can “figure
out” (that is, compute) a meaning for an
unknown word from the textual context aug-
mented by the reader’s prior knowledge
(Ehrlich 1995, Ehrlich and Rapaport 1997,
Rapaport and Ehrlich 2000, Rapaport 2003,
Rapaport 2005, Rapaport and Kibby 2007). This
is a metacognitive task requiring readers to
monitor their prior knowledge while reading,
that is, to think about their thoughts in order
to improve their vocabulary. We are adapting
our theory (implemented in SNePS) to a school
curriculum that, we hope, will help improve
students’ reading and comprehension abilities
by showing them a precise series of steps they
can follow (that is, by providing them with an
algorithm) for figuring out meaning from tex-
tual context plus prior knowledge.

In this section, we present one example of
how our algorithm works. In Le Morte D’Arthur
(Malory 1470)—one of the earliest versions of
the King Arthur legends—there occurs the fol-
lowing passage (here minimally paraphrased
into modern English):

Therewith two of them (that is, two evil

knights) dressed their spears and Sir Ulfyus and

Sir Brastias (Arthur’s knights) dressed their

spears; they ran together with great force. (Mal-

ory 1470, p. 15)

Even a very excellent reader who can man-
age to penetrate the archaic grammar (itself
probably a metacognitive task) is likely to be
puzzled by this use of “dress” given that for
modern readers, “dress” means—without ques-
tion—“to put clothes on.” Did these knights
really put clothes on their spears?

Thus, puzzled readers compare what they are
reading with what they antecedently believed
about dressing and spears in order to discover
an inconsistency. This is therefore a metacog-
nitive activity; metacognition tells the reader
that this makes no sense. So perhaps we should
take the passage metaphorically; perhaps the
“clothes” they put on their spears were some
sort of sheaths. But that, too, makes no sense:
One would expect them to remove such sheaths
before battle, not put them on. Such (con-
scious) thinking about a cognitive process is
also a metacognitive task.

A bit later, Merlin advises King Arthur on the
disposition of troops:

When it is daylight, dress your battle right

before the Northern host and the strong pas-

sage-way, so that they may see all your host.

(Malory 1470, p. 19)

Here, the context strongly suggests that “bat-
tle” means “troops.” Does this mean that the
great King Arthur puts clothes on his troops
before battle? Again, even a metaphorical read-

ing according to which he helps his troops don
their armor makes little sense; surely, King
Arthur has better things to do with his time.

We have conflicts among what the text says,
the reader’s knowledge of the meaning of
“dress,” and the reader’s prior beliefs that
spears don't wear clothing and that kings don't
put clothing on their troops.

Our implemented algorithm handles this sit-
uation as follows (as adapted from Rapaport
and Ehrlich [2000]: First, the system’s prior
knowledge base for this example includes the
following two beliefs: all(x, y)(dresses(x, y) =>
{wears(y, clothesOf(y)), Isa(clothesOf(y), cloth-
ing)}) (if x dresses y, then y wears y’s clothes);
all(x, y)({Instance(x, spear), Isa(y, clothing)} &=>
~wears(x, y)) (spears don’t wear clothing.)

Next, the system reads a sequence of pas-
sages containing “dress,” adapted from Malory
(1470), interspersed with questions and
requests for definitions. First the system reads,

Passage D1. King Arthur dressed himself.

Then, asked to define “dress,” the system pro-
duces,

Definition D1. A person can dress itself; result:
it wears clothing.

Then it reads,
Passage D2. King Claudas dressed his spear

At this point, the system infers that King Clau-
das’s spear wears clothing. However, chal-
lenged with

Question D2. What wears clothing?

A contradiction is detected, and SNeBR is
invoked, automatically replacing the prior
belief that if x dresses y, then y wears y’s clothes
(rather than the prior belief that spears don't
wear clothing, because of the occurrence of a
verb in the antecedent, since people tend to
revise beliefs about verbs rather than beliefs
about nouns [Gentner 1981]). There follow sev-
eral passages in the text in which dressing
spears precedes fighting. Rather than rejecting
the prior definition, it is modified. The system
decides that to dress is either to put clothes on
or to prepare for battle:

Definition D3. A person can dress a spear or a

person; result: the person wears clothing or the

person is enabled to fight.

Such disjunctive definitions are consistent
with dictionarylike definitions of polysemous
words.!> We plan to investigate a method to
induce a more general definition: In the pres-
ent case, further experience with such phrases
as “salad dressing,” “turkey dressing,” and so
on, should lead the reader to decide that
“dress” more generally means something like
“prepare” (for the day, by putting on clothes;

for battle, by preparing one’s spear; for eating,
by preparing one’s salad; for cooking, by
preparing one’s turkey; and so on).

Metacognition arises in this situation in a
variety of ways. First, there is metacognitive
activity when the reader breaks out of the pre-
dominantly subconscious process of reading
when faced with an inconsistency; the reader
believes that what she or he is reading is incon-
sistent with other things that she or he
believes. This belief about a belief is metacog-
nitive. Second, when the reader decides to rein-
terpret what she or he reads in order to elimi-
nate the inconsistency, there is metacognitive
activity, because this is a decision about what
to believe. It is a cognitive process (deciding)
about another cognitive process (what to
believe). Finally, the search for a more general
meaning that subsumes the apparently incon-
sistent ones is metacognitive, because it
involves reasoning about not merely with one’s
other beliefs.

Metacognition in a
Math-Capable
Computational Agent

Mathematical problem solving often requires
some degree of metacognitive reasoning. The
importance of metacognition in mathematics
education is well known (Cohors-Fresenborg
and Kaune 2001, Gartmann and Freiberg 1995,
Schoenfeld 1992)) and should not be ignored
when developing math-capable Al agents.

The applicability of multiple solution meth-
ods to any given problem is a driving force for
metacognition in mathematics. The differences
between solution methods may involve differ-
ent mathematical contexts (for example, a stu-
dent may know how to solve a problem both
algebraically and geometrically) or subtle vari-
ations (for example, a child may count from
either the smaller or larger addend when
count-adding two numbers). Furthermore, a
student may use (or improvise) a “nonstan-
dard” solution method in certain problem con-
texts (for example, checking to see whether
4152342 is even to find the remainder of
4152342/2, rather than performing the long
division as with the other numbers). These
abilities suggest two metacognitive require-
ments for a math-capable Al agent: the ability
to represent multiple procedures for the same
task; the ability to select between procedures
using contextual information.

In this section, we will describe how these
abilities can be supported in SNePS agents. The
focus will be on mathematical procedures at
the level of counting and arithmetic.

Articles

SPRING 2007 25

Articles

26 Al MAGAZINE

all (x,y) ({Number (x) ,Number (y) }
&=> ActPlan (Add (x,V) ,
{CountAdd (x,y), ArithAdd(x,y), CalcAdd(x,y)})).

Figure 5. Specifying That There Are Three Procedures for Adding Two Numbers.

Multiple Plans for a Single Act

Even in the early mathematical domain of
arithmetic, a plurality of procedures arises for
each of the arithmetic operations. There are at
least three ways two natural numbers, x and y,
can be added: count-addition; arithmetic addi-
tion; and calculator addition.

In count-addition, x + y is computed by count-
ing from x for y numbers, and seeing what
number has been reached. The result of the
counting procedure is the result of the addition
procedure.

In arithmetic addition, single-digit sums for all
pairs of single-digit numbers are given. The
numbers x and y are treated as strings of deci-
mal digits, and the notion of a “carry” is used
when a single-digit sum exceeds 9. The sum x +
y is computed by performing columnwise sums
for each increasing place-value in x and y, and
concatenating these results in the appropriate
way.

In calculator addition, x + y is computed by
performing a sequence of button presses on a
calculator (for example, entering x, pressing +,
entering y, pressing =).

Each of these procedures specifies a poten-
tially infinite set of ActPlans, one for each x and
y pair.'® These are specified in SNePS as shown
in figure 5.

The propositions representing the result for
each specific plan should be different, so that
Cassie will remember which way of addition
was used. The three ways of adding two num-
bers require three propositions: CountSum(x, y,
z), ArithSum(x, y, z), and CalcSum(x, y, z). When-
ever Cassie performs a series of arithmetic oper-
ations, she will have a trail of result proposi-
tions that indicate which plan was chosen at
each step. This memory of how a plan was per-
formed is essential for metacognitive reason-
ing.

In addition to specific result propositions,
there should also be a general result proposi-
tion so the sum may be used in other opera-
tions without regard to how it was computed
(figure 6).

When Cassie is asked to perform an opera-
tion, say perform CountAdd(2, 3), she will
believe CountSum(2, 3, 5) and, through for-

ward inference, Sum(2, 3, 5). The question
“What is the sum of 2 and 3?” can be asked in
two ways: Sum(2, 3, ?x)?, which is plan-inde-
pendent; and CountSum(2, 3, ?x)?, which
depends on Cassie having used the CountAdd
method to obtain her sum.

Without any additional machinery, Cassie
will nondeterministically select an addition
plan whenever she is asked to perform Add(x,
y). Metacognition requires that Cassie make a
more informed decision. A plan should be cho-
sen when it is an appropriate way of doing
addition in the current context. To determine
the contextual relevance of a plan, it will be
useful to categorize the different kinds of arith-
metic procedures.

Categorization of
Mathematical Procedures

Clearly, there are many more procedures for
addition than those given in the previous sec-
tion. The three listed above are representative
of three different procedural categories. Count-
addition is a procedure in which an operation
is performed by appealing to a more basic oper-
ation. In fact, we can build up all of the funda-
mental arithmetic operations in this way: addi-
tion is achieved by counting, subtraction is
inverted addition, multiplication is repeated
addition, and division is inverted multiplica-
tion. These are categorized as semantic proce-
dures because they involve a semantic inter-
pretation of the given procedure in terms of
another (simpler) procedure. Arithmetic addi-
tion is a procedure characterized by syntactic
operations in a positional number system and
uses columnwise operations. This is done with-
out a semantic interpretation for each of the
single-digit sums (that is, it doesn’t tell us what
addition is in terms of another concept). Such
procedures are categorized as syntactic proce-
dures. Calculator addition requires nonmathe-
matical operations (that is, button presses) and
an external (trusted) source. Such procedures
are categorized as extended procedures.

The borders between these procedural cate-
gories are not sharp ones. Arithmetic addition,
for example, usually requires a student to mark

Articles

all (x,y,z) ({CountSum(x,y,z), ArithSum(x,y,z), CalcSum(x,y,z)}
v=> Sum(x,y,z)) .

Figure 6. Regardless of How the Sum of x and y Was Computed, It Is the Sum of x and y.

all (x,y) ({Number (x) ,Number (y) }
&=> {(InContext (Explanation) => ActPlan(Add(x,y),CountAdd (x,y))),
(InContext (ShowingWork) => ActPlan (Add(x,y),ArithAdd(x,y))),
(InContext (Discovery) => ActPlan(Add(x,y),CalcAdd (x,y)))}) .

Figure 7. Specifying Different Contexts for the Three Procedures for Adding x and y.

single-digit sums on a piece of paper; using an
extended medium is a characteristic of an
extended procedure. However, even with an
imperfect categorization, it is important to
assign some category to each of the agent’s pro-
cedures. A procedure’s category will be indica-
tive of the situations in which a procedure will
be most useful.

Semantic routines will be most useful for an
agent in a context of explanation. This might
include anything from a tutoring system for a
human user to an agent taking a Turing test (in
which mathematical understanding is tested
alongside natural language understanding).
Syntactic routines will be most useful when an
agent must “show its work” or leave some indi-
cation of its activities. The utility of extended
routines is very much dependent on the
extended medium being used. In general,
extended routines may be most useful in vari-
ous contexts of discovery, or when a syntactic
or semantic routine is simply unavailable. An
agent that must obtain mathematical results
quickly (perhaps reacting in a time-sensitive
setting) and use those results without explana-
tion could apply an extended routine that uses
a calculator. Extended routines may also be
applied when real-world objects (external to
the agent) must be manipulated to find a solu-
tion. The problem context will ultimately
determine which category is most appropriate.

Enforcing a problem context in SNePS can be
done in two ways: (1) by extending the
antecedent constraints for ActPlans and (2) by
redefining the SNeRE do-one primitive act to
guide Cassie’s decision making.

Antecedent Constraints
An act such as Add(x, y) can be meaningfully

performed by Cassie only if x and y are restrict-
ed to the domain of numbers. This is achieved
through the Number(x) proposition. Given a
contextual proposition InContext(x) indicating
that the agent is in current context x, we might
have figure 7. Unless each antecedent is satis-
fied, including the contextual proposition,
Cassie will not consider acting upon an Act-
Plan. This is an a priori and “conscious” con-
sideration (that is, it will explicitly appear in
Cassie’s chain of reasoning before any act is
attempted). Further refinement of antecedent
constraints will lead to more specific contextu-
al behavior. For example, if an agent is told to
add 2 and 3, CountAdd (that is, counting from
2 for 3 numbers) will not be an expensive oper-
ation. On the other hand, if an agent is adding
123 and 728123, CountAdd is very costly (that
is, counting from 123 for 728000 numbers!).
We might add antecedent constraints forcing
an agent to perform CountAdd when the num-
bers are single digits (through a Digit(x) propo-
sition) and ArithAdd for multidigit numbers.
Redefining the do-one Act

Another technique for enabling context-driven
action is to modify the do-one primitive act.
When Cassie is able to derive multiple plans for
an act, the SNeRE executive cycle schedules a
do-one on the set of those plans. In its unmodi-
fied form, do-one selects one of the plans at ran-
dom. It can be modified to make a more delib-
erative decision by incorporating path-based
reasoning (Shapiro 1991) to determine the cur-
rent context (using an InContext(x) proposition
as in the previous section) and the procedural
category of each plan being considered. The lat-
ter piece of metaknowledge can be stored in a
proposition ActCategory(x, y) (figure 8).

SPRING 2007 27

Articles

ActCategory (CountAdd
ActCategory (ArithAdd

Semantic) .
Syntactic) .

X,Y)

(
(x,vy)

7
7

ActCategory (CalcAdd (x,y), Extended) .

Figure 8. Giving Each Adding Procedure a Different Category.

Figure 9. Two Procedures for Solving x — 2 = 0 for X.

28 Al MAGAZINE

With an appropriately redefined do-one,
making an assertion about context guarantees
that the appropriate procedure is chosen (for
example, selecting CountAdd(x, y) when InCat-
egory(Semantic) is asserted).

In contrast to the method of adding
antecedent constraints, this method is online
and “subconscious” for Cassie (that is, it hap-
pens after Cassie has decided to perform the
general act Add(x, y) and uses path-based infer-
ence to decide upon a plan in the PML layer).

Sensitivity to context (as provided by either
of the above techniques) is a useful application
of metacognition. It will also lead to a more
humanlike behavior of the arithmetic task
(that is, we tend to count-add on our fingers
only for small numbers and sum up larger
numbers in columns and rows).

Self Regulation

The capacity for control and self-regulation is
an important feature of mathematical
metacognition: “How well do you keep track of
what you're doing when (for example) you're
solving problems, and how well (if at all) do
you use the input from those observations to
guide your problem solving action” (Schoen-
feld 1987, p. 190).

Given a standard algebraic problem such as
x —2 =0, consider the two solution procedures
(solving for x) in figure 9. Clearly procedure A
is a more direct solution. Procedure B seems to
be a roundabout way towards the solution. The
“directness” or “roundaboutness” of a proce-

dure is a metacognitive judgment. This judg-
ment is based on the fact that procedure B uses
more operations (of comparable complexity)
than procedure A.

Goldfain (2005) describes a technique with
which SNePS agents can enumerate their own
actions while they are acting. By counting up the
arithmetic routines in a mathematical task (for
example, an algebraic task), an agent can get a
rough sense of a plan’s efficiency. An agent
must be provided with enough logic to estab-
lish which operations are comparable in com-
plexity (this is even more metacognitive infor-
mation).

A math-capable agent should have some
sense of whether each step in its reasoning is
bringing it any closer to a solution. For the
example above, adding y to both sides to pro-
duce x — 2 + y = y leaves us with something
more complex than the original problem. An
agent who performs such a step should stop in
its tracks; detecting that it is moving “farther”
away from an answer. We would never teach a
student a rule to always make every line of
work “simpler” than the previous one. Howev-
er, there are several mathematical procedures
where this would at least be a good rule-of-
thumb. A SNePS implementation of this abili-
ty is beyond the scope of this article, but it is
worth further investigation.

Conclusions

The SNePS knowledge representation, reason-
ing, and acting system has several features that
facilitate metacognition in SNePS-based agents.
The most prominent is the fact that proposi-
tions are represented in SNePS as terms rather
than as logical sentences. The effect is that
propositions can occur as arguments of propo-
sitions, acts, and policies without limit, and
without leaving first-order logic. The SNePS
acting subsystem is integrated with the SNePS
reasoning subsystem in such a way that there
are acts (believe and disbelieve) that affect what
an agent believes, there are acts (snif, sniterate,
withall, withsome) that specify both knowledge-
contingent acts and lack-of-knowledge default
acts, and there are policies (ifdo, whendo, when-
everdo) that serve as “daemons,” triggering acts
when certain propositions are believed or won-
dered about.

The GLAIR agent architecture supports
metacognition by specifying the PML as the
source of self-awareness. Affective and effective
actions implemented in the PML are the source
of first-person privileged knowledge about
what the agent is sensing and doing. Deictic
and modality registers located in the PML pro-

vide the agent a sense of situatedness
in its world.

Several SNePS-based agents have
taken advantage of these facilities to
engage in self-awareness and metacog-
nition: Fevahr Cassie has a model of
herself and episodic memory of what
she has done; a SNePS agent uses lack-
of-knowledge acting to acquire infor-
mation it needs to make a telephone
call; an enhanced SNePS belief revi-
sion system can use belief credibility
and source credibility information,
represented as metaknowledge, to do
automatic belief revision on knowl-
edge from multiple sources; a SNePS
agent modifies its prior beliefs of word
meaning to accommodate unusual
usages in a text; a version of Cassie
uses knowledge of the context to
choose an appropriate method of
arithmetic. The ongoing implementa-
tion and development of SNePS may
allow for further applications of
metacognition.

Acknowledgments

This work was supported, in part, by
the U.S. Army Communications and
Electronics Command (CECOM), Ft.
Monmouth, NJ, through contracts
with CACI Technologies and
Booze-Allen & Hamilton. The authors
appreciate the comments of other cur-
rent members of the SNePS Research
Group, and the contributions of the
many past members.

Notes

1. SNePS (semantic network processing sys-
tem) is available for download without
charge from www.cse.buffalo.edu/sneps/
Downloads.

2. In previous papers,”things” were called
“individuals,” but that was probably con-
fusing, since this kind of entity includes
classes and relations.

3. Fevahr is an acronym standing for
“Foveal extra-vehicular activity helper-
retriever.”

4. Actually, since the Fevahr Cassie uses a
natural language interface, the act of find-
ing Bill is represented by the term
act(lex(find), b6), where find is a term
aligned with the English verb “find”;
lex(find) is the action expressed in English
as “find”; and b6 is a term denoting Bill.
However, we will ignore these complica-
tions in this article.

5. ifdo was called DoWhen in Kumar and
Shapiro (1994a).

6. The term {P,, ..., P} &=> {Q,, ..., Q,}
denotes the proposition that if all the P, are
believed then belief is justified in any or all
of the Q/. (Shapiro 1979). If either n or m is
1, the set brackets can be omitted.

7. andor (Shapiro 1979) is a parameterized
connective that takes a set of argument-
propositions, and generalizes and, inclusive
or, exclusive or, nand, nor, and exactly n of. A
formula of the form andor(i,){P,, ..., P,}
denotes the proposition that at least i and
at most j of the P;s are true.

8. In this section, “propositions” are
referred to as “beliefs,” whether they are
asserted or not.

9. Note the difference between the current
base, which is the context composed of
the input propositions that are currently
believed, and the entire knowledge base
(KB), which contains all base propositions
(both asserted and unasserted) as well as
derived beliefs. The active KB contains
only asserted base beliefs and the beliefs
that have been derived from them. It is
important to retain noncurrently believed
propositions when reasoning in multiple
contexts (Martins and Shapiro 1983,
Shapiro 2000b), and when allowing for
reconsideration, as will be discussed later
on.

10. These guidelines are paraphrased from
Gardenfors and Rott (1995) and Hansson
(1997).

11. In this example, rules are preferred over
observations. In the implementation of
automated contradiction resolution (John-
son and Shapiro 1999, Shapiro and John-
son 2000), which is not included in the
SNePS 2.6.1 release, if the system cannot
identify a single belief for removal, it advis-
es the user, who must make the final selec-
tion.

12. This assumes inconsistency mainte-
nance uses dependency-directed, truth
maintenance system (TMS) techniques (de
Kleer 1986; Forbus and de Kleer 1993) as
opposed to some “entire base” technique
using SAT testing, where scalability is an
issue.

13. It is not the case that everything is
derivable from an inconsistency.

14. www.cse.buffalo.edu/~rapaport/CVA/.

15. Their resemblance to “weakening” in
belief revision is worthy of further investi-
gation; see, for example, Benferhat et al.
(2004).

16. Because SNePS uses the unique variable
binding rule (Shapiro 1986), which stipu-
lates that no one term can substitute for
different variables, separate ActPlans must
be defined for adding a number to itself
(“doubling a number”).

Articles

References

Alchourrén, C. E.; Girdenfors, P.; and
Makinson, D. 1985. On the Logic of Theo-
ry Change: Partial Meet Contraction and
Revision Functions. The Journal of Symbolic
Logic 50(2): 510-530.

Ali, S. S., and Shapiro, S. C. 1993. Natural
Language Processing Using a Propositional
Semantic Network with Structured Vari-
ables. Minds and Machines 3(4): 421-451.

Allen, J. F. 1983. Maintaining Knowledge
about Temporal Intervals. Communications
of the ACM 26(11): 832-843.

Benferhat, S.; Kaci, S.; Berre, D. L.; and
Williams, M.-A. 2004. Weakening Conflict-
ing Information for Iterated Revision and
Knowledge Integration. Artificial Intelligence
153(1-2): 339-371.

Brachman, R. J., and Levesque, H. J., eds.
1985. Readings in Knowledge Representation.
San Francisco: Morgan Kaufmann Publish-
ers.

Chalupsky, H., and Shapiro, S. C. 1994. SL:
A Subjective, Intensional Logic of Belief. In
Proceedings of the Sixteenth Annual Confer-
ence of the Cognitive Science Society, 165-170,
Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohors-Fresenborg, E., and Kaune, C. 2001.
Mechanisms of the Taking Effect of
Metacognition in Understanding Processes
in Mathematics Teaching. In Developments
in Mathematics Education in German-Speak-
ing Countries, Selected Papers from the Annu-
al Conference on Didactics of Mathematics,
29-38. Ludwigsburg, Germany: Goettingen
University Press.

Cox, M. T. 2005. Metacognition in Compu-
tation: A Selected Research Review. Artificial
Intelligence 169(2): 104-141.

De Kleer, J. 1986. An Assumption-Based
Truth Maintenance System. Artificial Intel-
ligence, 28(2): 127-162.

Duchan, J. E; Bruder, G. A.; and Hewitt, L.
E., eds. 1995. Deixis in Narrative: A Cognitive
Science Perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates .

Ehrlich, K. 1995. Automatic Vocabulary
Expansion through Narrative Context. Ph.D.
dissertation, Technical Report 95-09, Depart-
ment of Computer Science, State University
of New York at Buffalo, Buffalo, NY.
Ehrlich, K., and Rapaport, W. J. 1997. A
Computational Theory of Vocabulary
Expansion. In Proceedings of the 19th Annu-
al Conference of the Cognitive Science Society,
205-210. Mahwah, NJ. Lawrence Erlbaum
Associates.

Forbus, K. D., and de Kleer, J. 1993. Building
Problem Solvers. Cambridge, MA: The MIT
Press.

Gardenfors, P., and Rott, H. 1995. Belief
Revision. In Handbook of Logic in Artificial

SPRING 2007 29

Articles

Intelligence and Logic Programming, Volume
4, ed. D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, 35-132. Oxford: Oxford Univer-
sity Press.

Gartmann, S., and Freiberg, M. 1995.
Metacognition and Mathematical Problem
Solving: Helping Students to Ask the Right
Questions. The Mathematics Educator 6(1):
9-13.

Gentner, D. 1981. Some Interesting Differ-
ences between Nouns and Verbs. Cognition
and Brain Theory 4: 161-178.

Goldfain, A. 2005. Counting and Early
Mathematical Understanding. Unpub-
lished paper, State University of New York
at Buffalo, Buffalo, NY (www.cse.buffalo.
edu/~ag33/CAEMU.pdf).

Hansson, S. O. 1997. Semi-Revision. Journal
of Applied NonClassical Logic 7(3): 151-175.

Hexmoor, H.; Lammens, J.; and Shapiro, S.
C. 1993. Embodiment in GLAIR: A Ground-
ed Layered Architecture with Integrated
Reasoning for Autonomous Agents. In Pro-
ceedings of the Sixth Florida Al Research Sym-
posium (Flairs 93), ed. D. D. Dankel and J.
Stewman, 325-329. Gainesville, FL: The
Florida Al Research Society.

Hexmoor, H., and Shapiro, S. C. 1997. Inte-
grating Skill and Knowledge in Expert
Agents. In Expertise in Context, ed. P. J. Fel-
tovich, K. M. Ford, and R. R. Hoffman, 383—-
404. Cambridge, MA: AAAI Press/The MIT
Press.

Ismail, H. O. 2001. Reasoning and Acting
in Time. Ph.D. dissertation, Technical
Report 2001-11, University at Buffalo, The
State University of New York, Buffalo, NY.

Iwanska, L. M., and Shapiro, S. C. 2000.
Natural Language Processing and Knowledge
Representation: Language for Knowledge and
Knowledge for Language. Cambridge, MA:
AAAI Press/The MIT Press.

Johnson, F. L. 2006. Dependency-Directed
Reconsideration: An Anytime Algorithm
for Hindsight Knowledge-Base Optimiza-
tion. Ph.D. dissertation, Department of
Computer Science and Engineering, Uni-
versity at Buffalo, The State University of
New York, Buffalo, NY.

Johnson, F. L., and Shapiro, S. C. 1999. Says
Who? Incorporating Source Credibility
Issues into Belief Revision. Technical
Report 1999-08, Department of Computer
Science and Engineering, University at Buf-
falo, The State University of New York, Buf-
falo, NY.

Johnson, F. L., and Shapiro, S. C. 2005a.
Dependency-Directed Reconsideration:
Belief Base Optimization for Truth Mainte-
nance Systems. In Proceedings of the Twenti-
eth National Conference on Artificial Intelli-
gence (AAAI-05), 313-320. Menlo Park, CA:
AAAI Press.

30 AI MAGAZINE

Johnson, FE L., and Shapiro, S. C. 2005b.
Improving Recovery for Belief Bases. Paper
presented at the IJCAI-05 Workshop on
Nonmonotonic Reasoning, Action, and
Change (NRAC'0S). 1 August, Edinburgh,
Scotland.

Kumar, D. 1996. The SNePS BDI Architec-
ture. Decision Support Systems 16(1): 3-19.
Kumar, D., and Shapiro, S. C. 1994a. Acting
in Service of Inference (and Vice Versa). In
Proceedings of the Seventh Florida Al Research
Symposium (Flairs 94), ed. D. D. Dankel,
207-211. Gainesville, FL: The Florida Al
Research Society.

Kumar, D., and Shapiro, S. C. 1994b. The
OK BDI Architecture. International Journal
on Artificial Intelligence Tools 3(3): 349-366.

Lehmann, E,, ed. 1992. Semantic Networks in
Artificial Intelligence. Oxford: Pergamon
Press.

Maida, A. S., and Shapiro, S. C. 1982. Inten-
sional Concepts in Propositional Semantic
Networks. Cognitive Science 6(4): 291-330.
Malory, T. 1470, 1982. Le Morte d’Arthur, ed.
R. M. Lumiansky. New York: Collier Books
(page references are to the 1982 edition).
Martins, J. P.,, and Shapiro, S. C. 1983. Rea-
soning in Multiple Belief Spaces. In Pro-
ceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, 370-373. San
Francisco: Morgan Kaufmann Publishers.
Martins, J. P, and Shapiro, S. C. 1988. A
Model for Belief Revision. Artificial Intelli-
gence 35(1): 25-79.

McCarthy, J. 1977. Epistemological Prob-
lems of Artificial Intelligence. In Proceedings
of the Sth International Joint Conference on
Artificial Intelligence (IJCAI-77), volume 2,
1038-1044. Los Altos, CA: William Kauf-
mann, Inc.

McNamara, D. S., and Kintsch, W. 1996.
Learning from Texts: Effects of Prior Knowl-
edge and Text Coherence. Discourse Process-
es 22(3): 247-288.

Moore, R. C. 1988. Autoepistemic Logic. In
NonStandard Logics for Automated Reasoning,
ed. P. Smets, E. H. Mamdani, D. Dubois,
and H. Prade, 105-127. London: Academic
Press.

Moses, L. J., and Baird, J. A. 1999. Metacog-
nition. In The MIT Encyclopedia of the Cog-
nitive Sciences, ed. R. A. Wilson and F. Keil,
533-535. Cambridge, MA: The MIT Press.
Orilia, F.,, and Rapaport, W. J., eds. 1998.
Thought, Language, and Ontology: Essays in
Memory of Hector-Neri Castafieda. Dor-
drecht, The Netherlands: Kluwer Academic
Publishers.

Pape, D.; Anstey, J.; Dolinsky, M.; and
Dambik, E. J. 2003. Ygdrasil—A Framework
for Composing Shared Virtual Worlds.
Future Generation Computer Systems 19(6):
1041-1049.

Rapaport, W. J. 2003. What Is the “Con-
text” for Contextual Vocabulary Acquisi-
tion? Paper presented at the 4th Interna-
tional Conference on Cognitive
Science/7th Australasian Society for Cogni-
tive Science Conference (ICCS/ASCS-2003),
Sydney, Australia, 13-17 July.

Rapaport, W. J. 2005. In Defense of Con-
textual Vocabulary Acquisition: How to Do
Things with Words in Context. In Modeling
and Using Context: S5th International and
Interdisciplinary Conference (Context 2005),
Lecture Notes in Artificial Intelligence
3554, eds. A. Dey, B. Kokinov, D. Leake, and
R. Turner, 396-409. Berlin. Springer-Verlag
Publishers.

Rapaport, W. J., and Ehrlich, K. 2000. A
Computational Theory of Vocabulary
Acquisition. In Natural Language Processing
and Knowledge Representation: Language for
Knowledge and Knowledge for Language, ed.
L. Iwanska and S. Shapiro, 347-375. Cam-
bridge, MA: AAAI Press/The MIT Press.

Rapaport, W. J., and Kibby, M. W. 2007.
Contextual Vocabulary Acquisition as
Computational Philosophy and as Philo-
sophical Computation. Journal of Experi-
mental and Theoretical Artificial Intelligence.
Forthcoming.

Rapaport, W. J., Shapiro, S. C., and Wiebe,
J. M. 1997. Quasi-Indexicals and Knowl-
edge Reports. Cognitive Science 21(1): 63—
107.

Ruddell, R. B., and Unrau, N. J. 2004. Theo-
retical Models and Processes of Reading, 5th
ed. Newark, DE: International Reading
Association.

Russell, S. J. 1999. Metareasoning. In The
MIT Encyclopedia of the Cognitive Sciences,
ed. R. A. Wilson and F. Keil, 539-541. Cam-
bridge, MA: The MIT Press.

Santore, J. F,, and Shapiro, S. C. 2003. Crys-
tal Cassie: Use of a 3-D Gaming Environ-
ment for a Cognitive Agent. Paper present-
ed at the IJCAI 2003 Workshop on
Cognitive Modeling of Agents and Multi-
Agent Interactions, 9-11 August, Acapulco,
Mexico.

Schoenfeld, A. H. 1987. What’s All the Fuss
about Metacognition? In Cognitive Science
and Mathematics Education, ed. A. Schoen-
feld, 189-215. Hillsdale, NJ: Lawrence Erl-
baum Associates.

Schoenfeld, A. H. 1992. Learning to Think
Mathematically: Problem Solving,
Metacognition, and Sense-Making in Math-
ematics. In Handbook for Research on Mathe-
matics Teaching and Learning, ed. D.
Grouws, 334-370. New York: Macmillan.

Shapiro, S. C. 1971. A Net Structure for
Semantic Information Storage, Deduction
and Retrieval. In Proceedings of the Second
International Joint Conference on Artificial

Intelligence, 512-523. Los Altos, CA:
William Kaufmann, Inc.

Shapiro, S. C. 1979. The SNePS Semantic
Network Processing System. In Associative
Networks: The Representation and Use of
Knowledge by Computers, ed. N. V. Findler,
179-203. New York: Academic Press.

Shapiro, S. C. 1986. Symmetric Relations,
Intensional Individuals, and Variable Bind-
ing. Proceedings of the IEEE 74(10): 1354
1363.

Shapiro, S. C. 1989. The Cassie Projects: An
Approach to Natural Language Compe-
tence. In EPIA 89: 4th Portugese Conference
on Artificial Intelligence Proceedings, Lecture
Notes in Artificial Intelligence 390, ed. J. P.
Martins and E. M. Morgado, 362-380.
Berlin: Springer-Verlag.

Shapiro, S. C. 1991. Cables, Paths and “Sub-
conscious” Reasoning in Propositional
Semantic Networks. In Principles of Seman-
tic Networks: Explorations in the Represen-
tation of Knowledge, ed. J. Sowa, 137-156.
Los Altos, CA: Morgan Kaufmann Publish-
ers.

Shapiro, S. C. 1993. Belief Spaces as Sets of
Propositions. Journal of Experimental and
Theoretical Artificial Intelligence (JETAI) S(2—
3): 225-235.

Shapiro, S. C. 1998. Embodied Cassie. In
Cognitive Robotics: Papers from the 1998
AAAI Fall Symposium, Technical Report FS-
98-02, 136-143. Menlo Park, CA: American
Association for Artificial Intelligence.

Shapiro, S. C. 2000a. An Introduction to
SNePS 3. In Conceptual Structures: Logical,
Linguistic, and Computational Issues, Volume
1867, Lecture Notes in Artificial Intelli-
gence, ed. B. Ganter and G. W. Mineau,
510-524. Berlin: Springer-Verlag.

Shapiro, S. C. 2000b. SNePS: A Logic for
Natural Language Understanding and
Commonsense Reasoning. In Natural Lan-
guage Processing and Knowledge Representa-
tion: Language for Knowledge and Knowledge
for Language, ed. L. Iwanska and S. Shapiro,
175-195. Cambridge, MA: AAAI Press/The
MIT Press..

Shapiro, S. C. 2004. A Logic of Arbitrary
and Indefinite Objects. In Principles of
Knowledge Representation and Reasoning: Pro-
ceedings of the Ninth International Conference
(KR2004), ed. D. Dubois, C. Welty, and M.-
A. Williams, 565-575. Menlo Park, CA:
AAAI Press.

Shapiro, S. C., and Ismail, H. O. 2003.
Anchoring in a Grounded Layered Archi-
tecture with Integrated Reasoning. Robotics
and Autonomous Systems 43(2-3): 97-108.

Shapiro, S. C., and Johnson, F. L. 2000.
Automatic Belief Revision in SNePS. Paper
presented at the 8th International Work-
shop on NonMonotonic Reasoning

(NMR2000), Breckenridge, CO, 9-11 April
(www.cs.engr.uky.edu/nmr2000/proceed-
ings.html).

Shapiro, S. C., and Kandefer, M. 2005. A
SNePS Approach to the Wumpus World
Agent, or Cassie Meets the Wumpus. Paper
presented at the IJCAI-05 Workshop on
Nonmonotonic Reasoning, Action, and
Change (NRAC'0S). 1 August, Edinburgh,
Scotland.

Shapiro, S. C.; Martins, J. P.; and McKay, D.
P. 1982. Bi-Directional Inference. In Pro-
ceedings of the Fourth Annual Meeting of the
Cognitive Science Society, 90-93. Mawah, NJ:
Lawrence Erlbaum Associates.

Shapiro, S. C., and Rapaport, W. J. 1987.
SNePS Considered as a Fully Intensional
Propositional Semantic Network. In The
Knowledge Frontier, ed. N. Cercone and G.
MccCalla, 263-315. Berlin: Springer-Verlag.

Shapiro, S. C., and Rapaport, W. J. 1991.
Models and Minds: Knowledge Representa-
tion for Natural-Language Competence. In
Philosophy and Al: Essays at the Interface, ed.
R. Cummins and J. Pollock, 215-259. Cam-
bridge, MA: The MIT Press.

Shapiro, S. C., and Rapaport, W. J. 1992.
The SNePS Family. Computers and Mathe-
matics with Applications 23(2-5): 243-275.

Shapiro, S. C., and the SNePS Implementa-
tion Group. 2004. SNePS 2.6.1 User’s Man-
ual. Department of Computer Science and
Engineering, University at Buffalo, The
State University of New York, Buffalo, NY.

Sperber, D. 1999. Metarepresentation. In
The MIT Encyclopedia of the Cognitive Sci-
ences, ed. R. A. Wilson and F. Keil, 541-543.
Cambridge, MA: The MIT Press.

Van Oostendorp, H., and Goldman, S. R.
1999. The Construction of Mental Representa-
tions during Reading. Mahwah, NJ: Lawrence
Erlbaum Associates, .

Wiebe, J. M., and Rapaport, W. J. 1986. Rep-
resenting de Re and de Dicto Belief Reports
in Discourse and Narrative. Proceedings of
the IEEE 74(10): 1405-1413.

Stuart C. Shapiro is pro-
fessor of computer sci-
ence and engineering,
affiliated professor of
linguistics and philoso-
phy, and director of the
Center for Cognitive Sci-
ence at the University at
Buffalo, The State Uni-
versity of New York. He received an S.B. in
mathematics from the Massachusetts Insti-
tute of Technology, and an M.S. and Ph.D
in computer sciences from the University
of Wisconsin-Madison. His primary
research interests are in knowledge repre-

Articles

sentation and reasoning, especially in sup-
port of natural language competence and
cognitive robotics. He is a past chair of
ACM/SIGART; past president of Principles
of Knowledge Representation and Reason-
ing, Incorporated; a senior member of the
IEEE; an ACM Distinguished Scientist; and
a fellow of the AAAI. He can be reached at
shapiro@cse.buffalo.edu.

William J. Rapaport
(Ph.D., philosophy, Indi-
ana University, 1976;
M.S., computer science,
University at Buffalo,
1984) is an associate pro-
fessor in the Department
of Computer Science
and Engineering, an
affiliated faculty member in philosophy
and in linguistics, and a member of the
Center for Cognitive Science, all at the Uni-
versity at Buffalo, The State University of
New York. His research interests are in
semantics, cognitive science, and philoso-
phy of computer science.

Michael W. Kandefer is
a Ph.D. student in the
Department of Comput-
er Science and Engineer-
ing at University at Buf-
falo, The State Univer-
sity of New York. He
holds a B.S. in computer
science from Canisius
College and an M.S. in computer science
from the University at Buffalo. His research
interests include multiagent collaboration
and action recognition. He can be reached
by e-mail at mwk3@cse.buffalo.edu.

Frances L. Johnson is a
member of the inference
team at Cycorp, with
interests in belief revi-
sion, machine learning,
and knowledge state
optimization as applied
to large, real-world rea-
soning systems. She
holds a B.S. in chemical engineering from
Princeton University and an M.S. and a
Ph.D. in computer science and engineering
from the University at Buffalo, The State
University of New York. She can be reached
at Cycorp, Inc., 3721 Executive Center Dr.,
Austin, Texas 78731; fjohnson@cyc.com.

Albert Goldfain (ag33@
cse.buffalo.edu) is a Ph.D
candidate at SUNY Buf-
falo. He is currently
working on a computa-
tional theory of mathe-
matical cognition using
the SNePS system.

SPRING 2007 31

