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Abstract
What is the relation between intelligence and computation? Although the difficulty of defining
‘intelligence’ is widely recognized, many are unaware that it is hard to give a satisfactory definition
of ‘computational’ if computation is supposed to provide a non-circular explanation for intelligent
abilities. The only well-defined notion of ‘computation’ is what can be generated by a Turing
machine or a formally equivalent mechanism. This is not adequate for the key role in explaining the
nature of mental processes, because it is too general, as many computations involve nothing mental,
nor even processes: they are simply abstract structures. We need to combine the notion of
‘computation’ with that of ‘machine’. This may still be too restrictive, if some non-computational
mechanisms prove to be useful for intelligence. We need a theory-based taxonomy of architectures
and mechanisms and corresponding process types. Computational machines my turn out to be a
sub-class of the machines available for implementing intelligent agents. The more general analysis
starts with the notion of a system with independently variable, causally interacting sub-states that
have different causal roles, including both ‘belief-like’ and ‘desire-like’ sub-states, and many
others. There are many significantly different such architectures. For certain architectures
(including simple computers), some sub-states have a semantic interpretation for the system. The
relevant concept of semantics is defined partly in terms of a kind of Tarski-like structural
correspondence (not to be confused with isomorphism). This always leaves some semantic
indeterminacy, which can be reduced by causal loops involving the environment. But the causal
links are complex, can share causal pathways, and always leave mental states to some extent
semantically indeterminate.

1. The Problem
Artificial Intelligence has revolutionised the study of mind by introducing computational theories
of mental processes. Many people believe that computational concepts and theories suffice to
explain the nature of perception, learning, creativity, motivation, emotions, feelings,
consciousness etc. because all these are thought to be computational states, events or processes.
Indeed, I once put forward such a view (Sloman 1978). But this presupposes that we know what
computations are. Do we? Do analog computers do computations? The concept has become less
clear with the growth of interest in ‘neural computations’. I shall try to show that we have the
following options:
a. Define ‘computation’ in the logico-mathematical sense (Turing-equivalence), but accept that in

this sense computational mechanisms are not central to explaining intelligence.
b. Extend the definition to include all the kinds of processes that play a role in intelligence. It is

then hard to draw a line between computational and non-computational processes, without
falling into either circularity (computational processes are the ones needed for intelligence) or
triviality (all processes are computational).
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c. Abandon the idea that any precisely defined concept of computation can be the key notion
underlying intelligence, and instead study different kinds of architectures and mechanisms to
learn what kinds of roles different sorts of machines can play in the design or explanation of
intelligent systems.
In support of (c) I’ll explain why most attempts to define ‘computation’ either fail to define a

concept adequate to explain intelligence, or else fall into circularity or triviality. I’ll then expand
further on option (c) and end with a discussion of how to give semantic capabilities to
computational and non-computational machines. All this is not an attack on AI, but a recipe for
progress.

2. The formal concept of computation
The mathematical concept of ‘computation’ is the only well defined concept of computation.

It is concerned with purely formal structures. This point can be obscured by the process/product
ambiguity. A process of computation may produce a trace for example a long division presented
on paper. Both the process and its enduring trace can be called computations, but in different
senses. The formal concept of computation involves no notion of process, causation or time, and
is concerned only with the structural properties of such traces, no matter how they are produced.
(Similar process/product ambiguities are associated with: ‘proof’, ‘derivation’, ‘calculation’,
‘analysis’, ‘design’, ‘construction’.)

Formally a computation is a discrete sequence of structures satisfying certain conditions: i.e.
every item in the sequence is either part of an initially given set of structures or derivable from
earlier items according to fixed rules. The structures may be machine states, expressions in a
logical language, or other configurations. Whether the sequence is physically embodied or
merely an abstract structure is irrelevant, as is any question of what sort of mechanism, if any,
produced it. In this sense leaves blown about on the forest floor could form a computation, e.g.
solving an equation, as long as there is a description of the patterns formed by the leaves under
which they conform to appropriate rules.

Not even physical embodiment is required. Using the unique factorisation of integers as
powers of primes, Go"del showed how formulas of arbitrary complexity can be systematically
encoded in integers. (See Nagel and Newman, 1958 for more details.) A complete (finite)
computation, no matter how complex, corresponds to a sequence of Go"del numbers, which itself
can be expressed as one large Go"del number. Thus a number can satisfy the formal conditions for
being a computation. An infinite computation, e.g. producing the decimal expansion of ", would
correspond to an infinite sequence of Go"del numbers.

This formal notion of computation, equally applicable to physical processes and non-physical
mathematical structures, does not on its own enable us to build useful engines or explain human
or animal behaviour. An abstract instance of computation (e.g. a huge Go"del number) cannot
make anything happen. This shows that being a computation in the formal sense is not a
sufficient condition for being an intelligent behaving system, even though the formal theory
provides a useful conceptual framework for categorising some behaving systems. For instance, it
establishes limits to what is possible and provides a framework for studying space/time
complexity requirements and trade-offs. For the purposes of construction and explanation of
intelligent systems, we need to combine computational ideas with the idea of a machine with
causal powers. Smith (1988) argues, mistakenly I believe, that ‘causation’ is already part of the
concept of computation. I have shown (Sloman, 1986, 1992b) that confusion on this point leads
to systematic ambiguity in the ‘Strong AI’ thesis, and in criticisms of it by Searle (1980) and
others.
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3. Is the standard concept of computation broad enough?
The class of finitely specifiable sequences of structures turns out to be the class of sequences that
can be generated by a universal Turing machine. There are at least three types of processes that
might be involved in human brains that would not necessarily map on to a single Turing
machine: (a) asynchronous parallel processes with independently varying speeds, (b) continuous,
or at least non-discrete processes and (c) physical processes that are not known to fit (or not to
fit) the computational model, e.g. chemical processes in the brain. I don’t know whether (c) is
subsumed by (a) and (b) or whether other classes of exceptions to Turing equivalence exist.

Any collection of synchronised parallel computers can be mapped onto a Turing machine by
interleaving their execution. However, for unsynchronised variable speed parallel machines, this
mapping cannot always be specified. The system does not have well-defined global states and
well-defined state transformations, as a Turing machine does. Similarly if a system goes through
non-discrete changes it cannot be modelled on a Turing machine, whose states form a discrete
sequence. A non-discrete set (like the rational numbers) may be merely dense rather than
continuous, if between any two different states there is always another. Continuity requires more
than this, e.g. the existence of limits of bounded monotonic sequences. Non-discrete processes,
whether merely dense or continuous, cannot be modelled on a Turing machine, for it cannot have
a succession of states such that between any two states there occurs a third. A Turing machine
can specify all the rationals, but cannot generate them in their natural order (as Zeno’s paradoxes
show). Of course, quantization allows any bounded non-discrete process to be simulated to any
required degree of accuracy on a Turing machine, with a speed cost that depends on the accuracy.
Chaotic processes may be an exception.

Not all processes that are used to solve problems, make predictions, draw inferences, simulate
something, necessarily involve discrete determinate processes. Both the non-discrete variation of
analog computers (or slide rules) and the random properties of quantum effects might be able to
play a useful role in some kinds of calculations and simulations. Should we rule out such non-
Turing processes from playing an important role in intelligence?

An example relevant to some kinds of image processing and physical problem solving is
continuous rotation of an image. We often find it useful to rotate or slide sheets of paper and
transparencies continuously relative to each another, e.g. in planning or problem solving.
Digitised approximations to such continuous change are now commonplace in computer
graphics, and have been used internally in AI programs (Funt 1980). But they are only
approximations. In this case it is not clear that fully continuous processes would add anything,
though some non-discrete processes when embedded in physical mechanisms of an appropriate
kind can go much faster than a simulation on a discrete computer, which is why analog
computers are sometimes used for speed.

It is an open question whether animal intelligence depends (in part) on brain processes using
non-discrete variation, such as states of neurons. Chemical soups (e.g. drugs and hormones) can
alter the character of mental processes). Are these all to be called ‘computational’? Why stop
there? Why not include digestion, the growth of a tree, or even the processes in a thundercloud?

It may be that all physical processes are discrete at some level. Any set of measurements
made over a finite time will be discrete (Fields 1990). But for many purposes, like predicting the
motion of planets, it is useful to conceive of them as non-discrete, e.g. so that differential
equations can be used in making predictions. Is there any reason to rule this out in mechanisms
underlying natural or artificial intelligences? Defining computation in terms of discreteness or
Turing equivalence (Pylyshyn 1986, Haugeland 1985) excludes these things. But is this just an
arbitrary restriction of mechanisms to be used in AI (for engineering purposes, or for explanatory
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purposes)? We could broaden the definition of ‘computation’ so as to include, for instance,
devices for solving problems using non-discrete processes, like slide rules and analog computers,
or soap bubbles stretched on frames to work out minimum stress designs. That would increase
the range of tools available within the framework of a computational approach.

It may turn out that systems that appear to be varying non-discretely are actually discrete at
some lower, sub-atomic, level, but if so that is an empirical fact: there is no conceptual reason to
rule out essentially continuous mechanisms from playing a useful role in human-like mental
processes. However, if we allow ‘computation’ to include possibly non-discrete brain processes,
slide rules and soap bubbles then it is hard to see how we can draw a boundary between
computations and non-computations. Why should we bother?

Even if all processes in intelligent machines are exactly mathematically equivalent to Turing
computations, it remails possible that some processes cannot be simulated on a Turing equivalent
machine except too slowly for practical use. Even if all can, there may be some important
differences. For example, three synchronised machines doing the same task in parallel are
mathematically equivalent to one machine, yet the difference in reliability is significant to an
engineer.

So, if real intelligent agents require some processes that cannot be produced by a single
physically embodied Turing-equivalent computer within required constraints (of time, cost, bulk,
energy consumption, reliability, etc.) then the mere theoretical possibility of close digital
approximation would be irrelevant to explaining how actual systems work.

A possible counter-argument is that all processes are computational. In (Sloman 1978) I
speculated, half seriously, that all physical processes might turn out to be computational. Fields
(1990) attempts to prove that measurable states of any observable physical process can be
interpreted as the execution of an algorithm that could be run on a universal Turing machine. His
proof assumes both quantum physics and the existence of a well defined mapping from events to
times. These assumptions need not hold in all logically possible universes. Morever, if it were
true that all physical processes were computational, then it would be trivially true, and therefore
uninteresting, that intelligent systems are computational, though it would remain an interesting
task to try to demarcate the special types of computations required for intelligent systems.

However, if, as physicists tell us,
(a) no physical system has a totally determinate observable state
(b) transitions from one state to another are probabilistic rather than deterministic

then even physical objects in themselves, as opposed to our measurements of their behaviour,
cannot be treated as Turing-equivalent computers, since (a) and (b) contradict requirements for
Turing machines. Actual computers are built so as to minimise the large-scale effects of (a) and
(b). Failure to do this completely leads to malfunctions, though mechanisms such as self-
correcting memory devices reduce their impact.

We can sum up so far as follows: (i) The only precisely defined concept of ‘computation’ is
the mathematical concept. This is a purely structural concept. (ii) This concept is in some ways
too general and in other ways too narrow to provide a general framework for studying all
possible mechanisms underlying intelligence. (iii) It is not clear, however, that we can find an
alternative useful general definition that covers all the interesting cases and avoids the twin traps
of circularity (because it presupposes some aspect of intelligence) and triviality (because it
implies that all processes are computations).

Let us look at a few alternative attempts at defining ‘computation’: as a functional concept, as
symbol manipulation, and as rule-governed processing.
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3a. Computation as a functional concept
Clark (1988) proposes that instead of defining computers on the basis of their intrinsic properties
we should do so on the basis of their origin and use: if a mechanism was designed or used for a
particular sort of purpose or if it evolved biologically to serve certain needs of organisms then it
might be computational, otherwise not. I.e. ‘computation’ is a functional concept like ‘table’. In
order to be a table something has to be used as one or intended for use as one: a rock in the
wilderness with a table-like structure would not be a table unless used as such. Similarly any
physical process has the potential to be a computation in the functional sense, e.g. if used (like a
wind-tunnel) to solve a problem such as modelling some other object, to explain or predict its
behaviour.

We would still, however, have to specify exactly what functions are characteristically served
by computations. Digestive mechanisms that discriminate and analyse chemical substances
evolved to serve animal needs. Are they computational? Visual perception involves intelligence,
but is the eye-ball a computer, or part of one? Is it correct to say that the retina performs
computations but not the lens? It is not clear that the functional analysis helps us answer such
questions.

In the context of trying to explain intelligence as computational, it would be circular to define
computers as those things that evolved, or were designed, for use by intelligent agents in
processes like calculating, sorting, searching, perceiving, remembering, deciding. We need a
characterisation of computational processes that enables us to use them to explain how
intelligence is possible, not one that presupposes the existence of intelligent systems.

3b. Computation as symbol manipulation
Some people think of computation as symbol manipulation, where ‘symbol’ implies having a
meaning. This also risks circularity; it is circular to assume that there are meaningful symbols to
be manipulated, if we are trying to explain how meaning arises. In this context we must reject
any definition of ‘computation’ in terms of manipulation of meaningful structures, and
definitions in terms of making inferences or drawing conclusions.

3c. Computation as rule-governed processing
We could drop the reference to symbols, and simply define computations as ‘rule-governed’
processes. But this still risks circularity, if being governed by rules involves understanding the
rules. Understanding is part of what we wish to explain: we must not assume it as a primitive.
Can we avoid circularity by using a notion of being ‘governed’ that does not presuppose
understanding, but might provide a basis for it? Computational processes would then be
processes controlled by rules.

But if the rules are not understood, i.e. meanings play no role in the control, then the words
‘rule’ and ‘governed’ are misleading, and we are simply left with the notion of processes that are
controlled by something. What, then, is control? Various forms of control — mechanical,
hydraulic, electronic, chemical, etc., — have been studied under the heading ‘control theory’. It
seems acceptable to say that all computations are controlled processes, but are all controlled
processes computational? Is the control of a spinning stone by its distribution of mass a
computation?

Control is just a special case of the notion of causation: one thing controls another if there is
some sort of causal relation between the controller and the controlled. (If it is a two-way relation,
then the control includes feedback.) Analysing the concept of ‘cause’ is one of the hardest
problems in philosophy (cf. Taylor 1992), but I shall, for the purposes of this paper, assume we
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all understand it.
We now seem to be moving towards a definition of ‘computation’ that is so general (e.g.

computations are processes controlled or partially controlled by structures) that it includes
everything, trivialising the claim that mental states are computational. We could try to avoid the
triviality by limiting computation to cases where the kinds of controlling structures are more like
computer programs. Unfortunately, as previously indicated, that would rule out too many
candidates for inclusion as computations, for instance neural computations. Moreover, the notion
of ‘control by program’ has difficulties, as I’ll now show.

4. Do computer programs control processing?
There are several different kinds of control relation between a computer program and the
behaviour it produces, some tighter than others. In particular, programs need not totally control
the behaviour, since programs often run under operating systems that limit what they can do. On
a time-shared computer each process is frequently interrupted by the operating system and
suspended while another program runs. If a program attempts to access certain parts of memory
or certain devices this causes it to be interrupted or aborted. Programs can have time bounds and
space bounds. The ‘permissions’ and ‘privileges’ handled by modern operating systems impose
various limitations of control by individual programs. So each program typically has only
‘bounded control’ over the processes it generates. (Cf. Sloman 1992b).

Many programs written by human programmers are not even partially in control of the
processes they generate, at least not as a driver is in control of a car. Some programs are
compiled to a different, machine-code, program, and after compilation the original program is
not in control: no change in the original will affect the execution in the way that turning a
steering wheel affects the motion of a car. Control by such programs is ‘ballistic,’ not ‘online’.

A program has more direct ‘online’ control if it is not compiled but stored in the machine and
‘interpreted’. But what is in control depends on a point of view. The program can be construed as
actively controlling the process, or as a passive structure, used by the controlling interpreter.
Even a compiled machine code program can be viewed as a passive structure used by the CPU to
generate behaviour.

The ‘ballistic’ vs ‘online’ distinction is not the same as the familiar distinction between ‘open-
loop’ and ‘closed-loop’ control. A machine code program’s control is online, but whether it is
open-loop or closed-loop depends on whether its behaviour depends on results of preceding
behaviour, i.e. whether it uses feedback, in which case the control uses a closed loop. The loop
may include the external environment (accessed through sensors and motors) or just internal
states. A program with no conditional instructions and no parameters set at run time via sensors
would be open-loop. A program that does not use any feedback is open-loop. It may nevertheless
be online if it is in direct control of behaviour.

So the attempt to define a non-circular, yet sufficiently general, notion of computation in
terms of control by structures requires clarification of the amount and kind of control required, as
well as what sort of entity may be in control. We can’t require a separable stored program using
an explicit programming language, if we wish to include neural computations - unless we stretch
the notions of program and language to encompass the topology of neural interconnections and
connection weights. If we are prepared to say that a neural net constitutes a program, then what
isn’t a program? Why not include every physical or chemical structure that controls the
behaviour of something?
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5. Control by virtual machines
Another problem with compiled programs is that their instructions specify quite different actions
from those referred to in the original high level programming language: there is a semantic
mismatch. Programs written by human programmers usually refer to ‘virtual’ structures and
operations on them, e.g. arrays, lists, records, trees, graphs, data-streams, or numbers, whereas
the machine code instructions will generally refer only to operations on bit patterns and locations
in a linear array of bit patterns.

Can instructions of the latter kind control processes of the former kind? Could we be mistaken
in describing computers as manipulating arrays, lists, and other abstract data-structures? Do they
really only manipulate bit patterns? Bit patterns themselves, however, are also virtual structures:
what the physical machine contains is not bit patterns but wires, switches, voltages, currents, etc.
Even these can be thought of as virtual mechanisms implemented in still lower level quantum
physical processes.

The word ‘virtual’ as used here (as in Computer Science) does not contrast with ‘real’. (The
word ‘abstract’ might be more appropriate.) Neither does it have anything to do with so-called
‘virtual reality’ systems, which are convincing simulations of physical processes. Virtual
processes in virtual machines really exist and can have causal consequences. They are virtual in
the sense that their contents are high level abstractions which are implemented in a ‘lower level’
machine. It could be argued that the kinds of physical mechanisms we normally talk about, e.g.
lawnmowers, printers, are virtual machines in this sense, i.e. implemented upon lower level
machines that only physicists know about. Whether there is a ‘bottom layer’ is an old
metaphysical question, to which I offer no answer here.

Some readers may be inclined to argue that there is only one ‘ultimate’ level of reality and
only at that level can processes be controlled. This requires drastic rejection of most common
sense concepts of causation and control. Moreover Taylor (1992) produces arguments for liberal
applicability of the concept of ‘cause’ to any type of domain. I shall continue to talk as if
structures in a virtual machine can control processes in a virtual machine: i.e. virtual machine
states and processes can have causal powers.

Most useful computations are not spatially located physical processes, but virtual processes in
virtual machines, e.g. alphabetically sorting a list of words, which rearranges pointers but does
not physically move anything. Such processes can have causal roles. E.g. re-ordering a list of
words can change the order in which external actions are performed. Similarly a virtual machine
event, like adding a word to a sentence in a word-processor can cause other virtual machine
events, like rearranging page boundaries. These are causal relations between states and events in
virtual, not physical, machines, though their implementation depends on physical causation. So
do social, political and economic causation. In all cases, there are true counter-factual
conditionals of the form: if X had not occurred Y would not have occurred, and as long as X
occurred, Y would have occurred even if Z had also occurred. This justifies attributions of
causality whether in physical machines, socio-economic systems, the human mind, or software
systems.

Some people find it hard to accept that processes in virtual machines can have real causal
powers, because they think there is a ‘bottom’ level physical reality which is the only realm in
which causes can operate, for which I know no good argument. If true, that would imply that
most of the things that we regard as causes are not real causes. That would be disastrous for
normal human planning, the operation of the law courts, software engineering, and so on
(Sloman 1994c).
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So, when a compiled, machine-code program is controlling behaviour at the bit level, there is
also usually another virtual program controlling behaviour of a higher level virtual machine at a
level of abstraction closer to the original source code. (Such a program can change itself at run
time so that it no longer corresponds to the original.) When a compiler performs optimising
transformations it may not be clear exactly which virtual machine is implemented in the resulting
code. But that does not mean there isn’t one. Sometimes there are several layers of virtual
machines: implementation is often multi-level. So we may have to allow our intelligent system to
include some high level virtual machines.

6. We need a better set of concepts
We have many ill-defined concepts that evolved for purposes of everyday life, but do not suffice
for more sophisticated purposes. When we try to apply these concepts in new situations to make
fine, previously unnoticed, distinctions we discover that they are unsuited for the job. This often
happens in the development of science or a culture, leading to significant conceptual change. A
striking example is the way concepts of kinds of matter developed under the influence of atomic
theory, through the periodic table and theories of chemical composition. We need a similar
revolution in concepts of mind and control.

The concept of computation played a useful catalytic role in extending our understanding of
some intelligent processes (e.g. proving theorems, planning, parsing sentences), and has opened
our minds to much wider classes of (virtual) mechanisms than were previously dreamed of.
Nevertheless, for reasons given above, we do not yet have a notion of computation adequate to
provide a non-circular, explanatory foundation for AI and cognitive science: (a) because the
formal concept needs to be combined with some sort of notion of causation, control or machine,
and (b) because the forms of processing in intelligent systems may go beyond computations that
fit the Turing-equivalent model.

There is no sensible place to make a sharp boundary between computational and non-
computational mechanisms, except by using one of the standard formal definitions that are all
mathematically equivalent to the definition of ‘computation’ as what a Turing machine can do.
This definition is inadequate for the purpose of identifying the central feature of intelligence,
because satisfying it is neither sufficient nor necessary for a mechanism to be intelligent.

(a) It is not sufficient because the mere fact that something is implemented on or is equivalent to
a Turing machine does not make it intelligent, does not give it beliefs, desires, percepts, etc.
Moreover, a computation in this sense can be a purely static, formal structure, which does
nothing.

(b) Turing machine power is not necessary for such aspects of intelligence as the ability to
perceive, act, learn, make plans, have desires, feel pain, or communicate, because is no evidence
that animals that have these abilities also have Turing equivalent computational abilities: human
beings, for example, appear to be limited in the depth of recursion that they can use in
understanding sentences. Moreover, with or without external memory aids in their calculations,
they often make mistakes that no Turing machine would make.

As argued above, there is no apriori reason to rule out the possibility that non-Turing
equivalent processes play a useful in human brains. In any case, I argue (Sloman 1992b, 1993,
1994c,) that architecture dominates mechanism. The particular mechanisms used are not as
important as the global organisation of sub-systems with different functions. This is what
determines the main capabilities of the system. By comparison, varying the mechanisms, for
instance, switching between neural and symbolic mechanisms, or introducing non-computational
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mechanisms will have a marginal impact on the main capabilities of the system..
Because the relevance of computation to intelligence is so problematic, I suggest that we

should keep an open mind and examine the potential uses of all potentially relevant mechanisms,
whether computational in any sense or not. Then the task of a theory of mechanisms for
intelligence is to analyse similarities and differences between mechanisms of all kinds and their
implications for both explaining and replicating animal and human capabilities. Computational
mechanisms may turn out to be relevant only to an subset of human capabilities. (Sloman 1994a,
1995a describe a process of exploring mappings between ‘design space’ and ‘niche space’.) All
this is not an attack on AI, but an attempt to generalise it, and to defuse attacks on AI which
claim that computation will not suffice for intelligence. We can respond by asking "Show us the
mechanisms that do suffice, and we’ll add them to the AI toolkit".

7. The variety of ‘computation-like’ processes
There is a wide variety of machines whose internal and external behaviour is controlled by
internal structures. We can call a machine (or its behaviour) more or less ‘computation-like’
according to how close it is to implementing Turing equivalent powers. This is not meant to be a
precise measure.

A special case is a conventional computer ‘obeying’ a machine-code program expressed as bit
patterns. This provides bit-manipulations in a virtual machine controlled by a structure in the
same virtual machine. The controlling structure is a set of bit patterns interpreted as instructions,
addresses and ‘data’ bits. The computer has a primitive grasp of the semantics of its machine
language because of combined effects of (i) structural properties (e.g. relationships between bit
patterns and an ordered set of locations) and (ii) the underlying design which provides causal
links between bit patterns and such things as: internal actions, locations in the machine, and
counting operations (Sloman 1985b). The combination of structural and causal links provides a
foundation for meaning. This is a recurring pattern.

The machine understands, in a limited fashion, instructions and addresses composed of bit
patterns. While obeying instructions it manipulates other bit-patterns that it need not understand
at all, although it can compare them, copy them, change their components, etc. This limited,
primitive understanding provides a basis on which to implement more complex and indirect
semantic capabilities, including much of AI (Sloman 1985b, 1987a).

AI need not restrict itself to processes running on conventional computers. Biologists talk of
development of an embryo as a computation (with DNA as program); and it is now
commonplace to regard networks of neuron-like mechanisms, as performing computations. We
can also think of the biosphere and natural selection as performing computation-like processes
that produce new genes and gene combinations. These all illustrate the admittedly vague concept
‘computation-like’ which subsumes normal computer processes but is not committed to Turing-
equivalence, as long as processes are controlled by some structure.

If embryo development, neural processes biological evolution, and conventional computer
processes are all computation-like, is there any process that is not computation-like? This request
for a well-defined boundary should be resisted. In deep science good definitions arise from good
theories, which we still lack. We should study the variety of cases, their similarities and their
differences. Trying to understand many small but real boundaries and their implications is more
fruitful than arbitrarily imposing binary divisions.

When you push the corner of a table, all the atoms communicate with their neighbours,
adjusting their own motions and mutual relationships as needed to fit in with what the neighbours
are doing. The processes are at least partly under the control of the structure of the table. Is that

-9-



structure a sort of program? Is the applied force a sort of input to the program? Is the process
computation-like? The best answer may be that it is a special case - just as a circle is a special
case of an ellipse, lacking some properties of other ellipses. Once this is clear, any debate about
whether a circle is or is not an ellipse loses interest: in the mathematical sense it is an ellipse,
whereas in a colloquial sense it is not. We can then ask exactly how this special case differs from
others. Similarly with special cases of computation-like processes.

What other computation-like processes are there? How are the more interesting varieties
different from motion of a table? One important difference concerns structural variability, which
includes changes in complexity as opposed to quantitative changes in a fixed set of dimensions.
Another involves differences of functional roles within a larger architecture. I’ll try to explain
both.

8. Steps towards a classification of behaving systems

8a. Variability of states
One reason why computers are so useful is that their digital memory structure supports enormous
variability of sub-states: there are astronomically large numbers of significantly different internal
states between which the machine can change. In computers and brains this is achieved by
having large numbers of independently switchable elements. N switches each with K possible
states permit K to the power N possible total states. If N is large, even small values of K (e.g. 2)
produce unimaginably large sets of possible states. The possible sequences of such states form
even larger sets, supporting enormous diversity of behaviour. If the elements can vary non-
discretely an even larger set of significantly different states can exist, with non-discrete
transitions (though it is not clear whether this is important for intelligence). However,
continuously varying systems may not be able to control themselves reliably over diverse
trajectories in state space. Continuous variation makes it harder for control mechanisms to
discriminate their own states reliably. Thus, even if continuous variation plays a role, it may be a
restricted role.

8b. Redundant state transitions in serial systems
A difference between a brain and a simple computer is that in the latter a single processor has to
change all the units. Whether it changes 16 or 32 or 64 bits at a time, certain state changes cannot
be done in one step, but have to go through intermediate states, whereas a parallel network of
processors can all change at once. Whether the need to traverse useless intermediate states is a
serious limitation will depend on such things as the speed of the processor, ways in which
intermediate states can cause errors, and so on. Contrary to current philosophical fashions I do
not believe that the differences between a neural net and a computer are deeply significant from
the point of view of designing an intelligent system, though they may affect engineering
requirements like speed and robustness: useless and potentially undesirable intermediate states
occur in one but not the other.

8c. The importance of ‘structural’ variability
Many physical systems, and their variation, are usefully represented in terms of a point moving
in a high dimensional vector space. Richer kinds of variation, allowing changing complexity, are
required for biological and intelligent systems. For example, biological growth is not merely a
process of changing measurements: it can produce an entirely new structure, such as an eye or
wing, or a new relationship such as connection via a nerve fibre. Many kinds of human learning,
e.g. learning a new language or learning algebra, seem to require structural variability, unlike,
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for example, the fine-tuning of a pre-existing motor skill by practice.
Similarly, states of understanding different sentences cannot easily be represented by

changing values in fixed dimensional vectors of measurements, because of the potentially
unbounded complexity of sentences in natural languages. There are limits to our ability to handle
unbounded depth of nesting in sentence structures, but we can cope with long rambling sentences
with variable numbers of significant sub-structures. (Compare the children’s song: ‘This is the
house that Jack built’.)

Although the retina does not change in complexity as different scenes are viewed, visual
percepts do vary in structure. The differences between seeing a ballet, seeing an Indian temple,
and seeing a printed poem are differences in the numbers and kinds of objects and relationships
perceived, not just differences in values of a fixed size vector. Different scenes need descriptions
with quite different structures, and there does not seem to be any upper bound to the complexity
of what might be seen: a square can have sides made of smaller squares, whose sides are made of
smaller squares, whose sides....

State changes in biological and cognitive processes therefore involve creation, deletion or
rearrangement of substructures. This structural variation is different from either continuous or
discrete variation along a one-dimensional scale, or simultaneous variation in N different
dimensions in a uniform multi-dimensional space. Structural variation can involve increasing or
decreasing complexity. So, for a mechanism with structural variability, the space of possible
states is not homogeneous: there are different kinds of neighbourhoods at different locations.

The amount and kind of structural variability in a system limits the kinds of interactions it can
have with the rest of the world. A system that can have only N distinct states cannot distinguish
N+1 kinds of environmental situations. However, the environment can be counted as part of the
state, like the trail blazed by a forest dweller, (Sloman 1978, chapter 6.)

8d. Structural variability in virtual machines
Computer science and AI have shown how we can use a machine whose states are fixed-
dimensional binary vectors to implement many new ‘virtual’ machines with very different kinds
of sub-states and causal interactions. (Crucial to this is the use of ‘pointers’ — bit patterns
interpreted as referring to memory locations.) A virtual machine with great structural variability
can be implemented in a fixed dimensional structurally invariant lower level machine. Similarly,
a fixed-structure neural net can implement a virtual machine providing structural variability,
though usually at a great cost in speed.

AI has shown how computational systems can be connected to an environment via sensory
transducers which trigger complex structural changes in internal sub-states, e.g. produced by
changes in the environment or changes in the viewpoint. The internal sub-states so produced can
in turn control behaviour in complex ways. Slight environmental differences can produce
elaborate differences in behaviour. (Compare hearing ‘Your mother is well’ and ‘Your mother is
ill’.)

Sensitivity to the environment is a feature of many life forms, including growing plants. Not
all organisms support rapid internal state changes. Not all support great structural variability. Not
all can build a representation of the structure of an object or situation, as opposed to a collection
of measures like temperature or chemical gradients. These are some of the important
‘discontinuities in design space’ that will have to be understood if we are to understand the
evolution of human mental capabilities.
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Discrete variability, including creation of new sub-structures and new connections between
old structures, seems to be required for some aspects of human intelligence, mainly because
discreteness can support long term stability (e.g. stored plans, or grammatical knowledge). But
that does not rule out other kinds of mechanisms, including some with non-discrete variability.

8e. Independently variable, causally interacting, functionally differentiated
sub-states
A finite state machine, like the ‘engine’ of a Turing machine, has only one unanalysable global
state at a time. Other systems, like a Turing machine together with its tape, or a thermostat, have
a collection of coexisting sub-states that can change independently and interact causally with one
another . A collection of coexisting interacting sub-states defines an architecture. A special type
of architecture is one in which behaviour is controlled by information (Sloman 1993, 1994c). In
such a system there will be mechanisms for taking in information, for interpreting information,
for transforming information, for transmitting information and for storing information (over
varying time periods). The type and variety of information, and the kinds of uses to which it can
be put, will depend on the architecture and the environment.

We have seen that sub-states may have fixed or changing structure, they may be physical or
virtual, and causation (control) may be direct or indirect, bounded or total, online or ballistic,
open-loop or closed-loop, ongoing or momentary, mediated by an ‘interpreter’ or physically
direct. All these differences determine the kinds of functional roles available within the
architecture. In some cases even the architecture can change. While a program is running in a
computer the number of causally significant sub-structures (e.g. parse trees, or items in a
database, or incrementally created sub-programs) can change drastically. So the number and
variety of functionally distinct sub-states can vary. The same seems to be true of brains, even if
the underlying sub-mechanisms are very different. The virtual machine architecture of an
individual’s mind can develop over time.

By contrast, chairs, tables, slide-rules, amplifiers, and steam-engines, have nothing like the
variety of causal interactions between different sub-states to be found in brains or the simplest
modern computers. They lack the functional differentiation, the variety of causally distinct sub-
states, and the ability to remove old or add new sub-states. This renders most physical objects
unsuitable as major components in an intelligent system (though they may be used for restricted
purposes as part of a more general system). A related criticism can be made of the once
fashionable analogy between a brain and a telephone exchange. It is not just a matter of degree
of complexity: a storm cloud has hugely varying internal states with intricate and changing
patterns of causal interaction, but lacks the functional differentiation between states needed for
intelligence.

It is not worth arguing over which mechanisms ‘really’ are computation-like, nor which are
‘really’ intelligent. We should instead ask which mechanisms are useful, or even necessary, for
different kinds of intelligence. We should not expect that human intelligence requires exactly the
same kinds of mechanisms as the capabilities of ants or mice or squirrels, though there is likely
to be some overlap. For instance, both need the environment sometimes to control behaviour
fairly directly, and sometimes indirectly.

To summarise so far: important differences between mechanisms are concerned with the
number and kinds of independently variable sub-states that can co-exist at one time, the kinds of
variation of the sub-states, the kinds of interactions between sub-states, whether the number of
sub-states is fixed or can change, and so on. These are all architectural issues, concerned with
functional differentiation within a global design. Different sorts of sub-mechanisms might be
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used to implement the same architecture for a higher level virtual machine, just as different
electronic components can implement the same amplifier circuit.

8f. Functional differentiation of mind-like sub-states
In an intelligent agent, different sub-states have different causal roles in the total system. For
example, we can distinguish ‘belief-like’ and ‘desire-like’ states if the system can apply a
‘correspondence’ test comparing sub-states with the environment, and failed correspondences
generate different compensatory actions for different classes of sub-states. If S is a belief-like
sub-state, failure of correspondence tends to cause the S state to be changed until the test
succeeds, whereas if S is desire-like sub-state, the same correspondence failure initiates
processes that tend to change the environment until the test succeeds. Note that for some systems
the environment will be partly internal. In more complex systems, there will be far more than
two types of controlling sub-states (Sloman 1993). For example planning will require
‘supposition-like’ control states.

8g. Semantic correspondence without isomorphism
It should not be assumed that the ‘correspondence’ mentioned above is anything like
isomorphism. Neither sentences nor most pictures are isomorphic with what they say, describe,
or depict. All that is required is some systematic way of checking a sub-state S against a
perceived (internal or external) environment such that two outcomes are possible. One of them
can be given a special status and called ‘truth’. States for which the check gives that special
result are said to ‘correspond’ with the environment. In that sense numerals, ‘1’, ‘2’, ‘3’ etc. can
be checked against groups of objects by using a counting procedure. But there is no sense in
which the numeral ‘10’ is isomorphic with the groups that correspond to it. Requiring
isomorphism between representing states and what they represent would require animals and
robots to build internal replicas of the environment, with internal eyes to perceive the replicas,
leading to an infinite regress.

9. Behaviour is not enough: objections to Turing tests
A question that causes deep philosophical disagreement is whether internal mechanisms are
relevant to whether a behaving entity is intelligent or conscious or has certain mental states. One
view is that since all we have to go on in judging other people to be intelligent is behaviour,
nothing more should be required of machines than that they provide appropriate behaviour. This
presupposes that our beliefs about other minds are based entirely in inference from evidence. I
suspect this is a myth, and that evolution has imbued us with deep assumptions about the nature
of agents and objects in the environment. What perceived behaviour does is merely determine
details of what we believe about other minds, not whether we believe.

Evidence could never suffice, for any behaviour observed over a finite time could in principle
be produced by indefinitely many very different mechanisms, including possibly a giant
precomputed lookup table which would not have any intelligence: only its designer would. Even
Turing-equivalent systems, i.e. systems that map the same inputs to the same outputs, may differ
significantly in how they do it.

We thus have two views: (a) intelligence is merely a matter of what a system does. (b)
intelligence depends not only on what is done, but also on how it is done. It is foolish to take
sides in this debate, since the relevant concepts (e.g. ‘intelligence’, ‘mind’) are too ill defined, as
Turing saw clearly (Turing 1950). Instead what we should do is analyse exactly the space of
possible designs to understand the implications of various differences in architecture or
underlying mechanisms.
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10. Towards a classification of behaving systems
Having abandoned the precise, formal, idea of computation as the central key concept, and
replaced it with the more general notions of architecture and mechanism, we can now start trying
to classify behaving systems according to how they work, e.g. (a) how many different kinds of
sub-states they can simultaneously support, (b) what kind of variability those states can have, (c)
what their causal interactions are, (d) how much internal functional differentiation they have, and
so on. The following questions can be asked about each design:
1. How many independently variable (physical or virtual) co-existing sub-states can the machine

support?
1.a. Is the machine able to extend the number or is it permanently fixed? (For some machines,
answers to these questions will depend on the level of analysis in the implementation
hierarchy.)

2. What forms of variation do the sub-states admit?
2.a. Do they vary discretely, non-discretely, continuously, smoothly?
2.b. Do different substates have different kinds of variability?
2.c. Do the mechanisms support structural variation?
2.d. Do the underlying mechanisms provide the kind of variability required for logical or
propositional representations (fixed function symbols with changing arguments and vice
versa, with hierarchical composition)?
2.e. Can one sub-state be ‘stored’ in another and then later ‘retrieved’ on the basis of a partial
match? (I.e. is there a flexible content-addressable memory?)
2.f. Do the mechanisms allow new associations to be created? (An association between X and
Y requires a mechanism that when presented with X produces Y.)
2.g. Do they allow arbitrary tangled networks of associations, or only linear chains, or trees?
E.g. does the mechanism allow the items linked by associations themselves to be associations,
like a tree of trees? Does it allow the links to have structure, e.g. with complex labels?
2.h. Do the mechanisms permit implicit sub-states, like the theorems implicitly stored in a
logical database, or information stored in a sparse array? (Some of the virtual structures may
have more components than the physical structures that implement them, making it futile to
seek correlations between information states and physiology.)

3. What kinds of causal interactions and functional differentiation does the machine support?
3.a. Which changes in states can cause other changes in states? I.e. which substates are
causally linked?
3.b. Does it allow internal variation of one sub-state to be finely controlled ‘online’ by another
complex sub-state (like a stored program controlling execution)?
3.c. Does it allow the addition of a new sub-state S to trigger further sub-states, and so on?
(Compare production systems, forward-chaining predicate logic systems, etc.)
3.d. Are most of the changes controlled or initiated by the environment or is the majority of
processing ‘internally generated? In humans, mental states are continually changing, with or
without external influence.)
3.e. What kinds of internal feedback loops does it support? (Structural variability makes
possible more than just positive and negative feedback.)
3.f. Does it allow internal structures to be built that store information about other internal
structures, or describe relations between them, for use by the machine? I.e. are there belief-
like states concerning the machine’s own internal state?
3.g. Are all changes synchronised or can sub-states change at different independently varying
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speeds, i.e. asynchronously?
3.h. Can some states be belief-like, i.e. largely under the control of the environment, and
others desire-like, i.e. able to generate actions when the environment does not ‘fit’ them. (See
definition in section 9(c).)
3.i. Does the mechanism allow internal records of internal processes to be constructed for
future use (in recollections, thoughts, etc.)?
(This is just a small sample of a wide variety of causal abilities and functional relationships to
be investigated.)

4. How fast can states change and causes propagate, relative to the kinds of changes that can
occur in the environment?
Speed limits can have profound design implications. E.g. I’ve argued elsewhere (1987b
1992a) that certain emotional states arise out of mechanisms connected with resource limits.

5. What is the global (high level) architecture of the system?
5.a Are there separable, but interacting, sub-systems each performing some complex function
within the larger whole? What sorts of functions?
5.b. Are the architecture and the collection of functions fixed, or can the architecture change
through pre-programmed development or learning (as seems to be the case with human
children when they learn new forms of self-control, or new forms of learning, or new
reflective capabilities, or new sets of concepts)?
5.c. Does the architecture support semantic capabilities, e.g. does it allow the machine to use
some sub-structures to refer to others? (Discussed below.)
5.d. Does the architecture allow different sorts of mechanisms to be used for different
purposes, e.g. neural nets, production systems, etc.? (Hybrid systems may allow sub-
mechanisms to be optimised for different tasks.)

6. Are the different sub-states spatially separable, i.e. embedded in different sub-structures (like
computer data-structures) or superimposed in a distributed form (like superimposed wave
forms or distributed neural states)?

7. Is there always ‘cross-talk’ between the different sub-states, so that changing one always has
some effect on others, or can they be causally isolated?

8. What kinds of internal and external self-monitoring can the system support, how reliable is it,
and what can it be used for?

9. How much of the internal state is displayed externally, voluntarily or involuntarily?
These are only some of the kinds of questions that can be asked about different sorts of

architectures and mechanisms potentially relevant to designing or explaining intelligent systems.
The answers will identify different classes of systems.

Some of the questions need to be made more precise, in particular the analysis of the causal
roles characteristic of belief-like and desire-like states. That requires an exercise in the global
design of intelligent systems. (Cf. Sloman 1987b, 1992a, 1993). The rest of this paper
concentrates on the question how a system with independently variable sub-states can interpret
some of its own states as having a meaning. No completely definite answer is to be expected
because the question is inherently vague and ambiguous owing to the indeterminacy of our
ordinary concepts.

11. The roots of semantics
If a mechanism can store and retrieve sub-states then people can use it as an information store,
like a filing cabinet. But a filing cabinet does not understand anything. How can a machine treat
some of its own internal substructures as referring to anything, i.e. as having a semantics for the
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machine, and not just for us? (This is the question that Haugeland 1985 posed in terms of a
distinction between ‘derivative meaning’ and ‘original meaning’, which was later labelled by
Harnad as the ‘symbol grounding’ problem.) Does a machine with ‘original meaning’, i.e. a
machine for which certain symbols have a meaning independently of whether they have a
meaning for anyone else, have to be a computational machine, i.e. capable of being completely
replicated on a Turing machine? Could a purely computational machine support ‘original
meaning’?

In (Sloman 1985b, 1987a) I argued that there is no sharp distinction between systems that do
and systems that don’t understand the structures they manipulate. Rather there is a whole cluster
of prototypical semantic capabilities in human beings, and different subsets of capabilities may
be instantiated in different mechanisms - natural and artificial. Simple concepts from ordinary
language, like ‘understand’ need to be replaced by a richer family of far more precisely defined
concepts, related to underlying mechanisms, just as our concepts of kind of stuff evolved with
advances in physics. ‘Intelligent’ is another such concept full of muddles: which is why I make
no attempt to define it here. ‘Consciousness’ is an even worse swamp of confusions camouflaged
by misplaced confidence that we know what we are talking about.

Some of the requirements for human-like semantic capabilities are structural (i.e. mechanisms
are needed with certain capabilities) some functional (i.e. the mechanisms need to be used with
certain roles within the whole system). AI work on understanding language or images hitherto
has been more concerned with the structural than with the functional conditions: little or no
attention has been paid to issues concerned with motivation, for instance.

I have shown (1985b) how some semantic capabilities can be found even in the way a digital
computer uses its machine language. It uses some sub-structures (i.e. bit-patterns) to refer to
locations in its (virtual) memory, some to possible internal actions (in a virtual machine), some to
numbers, when counting, and so on. Of course the uses of semantic relations made by a simple
computer are far more limited than the uses we make: for instance there is not yet motivation in
the computer. Nevertheless, even now, it is the computer, not a person, that (a) uses the bit-
pattern in an address register to determine which location is to be interrogated or changed, and
(b) uses the bit pattern in another register to determine which action to perform. Filing cabinets
were never like this.

Giving a machine a larger collection of semantic capabilities, with semantic competence
closer to human abilities, requires both (i) a richer formalism than most machine languages (i.e.
sub-states with richer kinds of variability) and (ii) a richer architecture, including both belief-like
and desire-like roles (explained below). Such a virtual machine could be implemented in a much
simpler physical machine.

The full story of the kind of architecture that not only begins to allow symbols to be related to
the world by the machine, but also allows the meanings they express really to matter to the
machine (as the news ‘Your mother is ill’ would matter to you), is very complex. It requires a
theory of how different motivational processes work, on which more below. (See also Sloman
1987b and 1993).

12. Combining Tarskian semantics with causal links
There does not have to be any direct and simple mapping between representing structures and
what they represent, as should be obvious from the fact that there are sentences containing
disjunctions, negations and quantifiers, and pictures that have both a smaller dimensionality than
the scenes they depict and often also a different topology: a typical 2-D picture of a 3-D wire-
frame cube has more junctions than the cube has vertices, whereas a picture of an opaque cube
has fewer.
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Tarski (1956) showed precisely how a set M of real or possible objects can form a model for a
set S of logical axioms, without M and S being isomorphic: e.g. a small finite set S, like Peano’s
axioms for arithmetic, may have an infinite model M. However, if M’ is isomorphic with M,
them M’ is also a model for S, whatever M’ may be. Thus Tarskian semantics can never
determine a unique referent. (In general, not all models of a given set of axioms will be
isomorphic with one another.)

If a mechanism has sub-states whose structural variability matches requirements for a logical
formalism, with transformations corresponding to valid rules of inference, then Tarskian
semantics will allocate an indefinitely large set of possible models to the sub-structures in the
machine. These models may be either abstract mathematical structures or objects and relations in
the world (e.g. a social system may model some set-theoretic axioms).

The set of possible models for S can be reduced by adding constraints in the form of new
independent axioms, but this never suffices to pin down the model to a particular bit of the
physical world; for there is always the possibility that some other exactly similar world, or
portion of the world, provides as good a model as the intended one. Pure syntactic structure,
however intricate, can never guarantee semantic definiteness (though uniqueness at a certain
level of description may occur.

Semantic ambiguity can be further partly constrained if some of the sub-structures are
causally linked with bits of the world. For example, electronic mechanisms ensure that bit-
patterns in a computer are causally related to locations in its own memory rather than locations in
another machine, despite having the same structural relations to both. Less direct causal links
via the Internet can connect a more complex bit pattern (or symbolic address in a virtual
machine) with a computer, or even a user, in a remote part of the world. In software engineering,
unique semantic links of many kinds are set up by means of a judicious blend of structural
mapping and causal linkage: without this mixture, electronic information services could not
work. The use of structural mapping allows the causal links to be very loose (e.g. Internet
connectivity is constantly changing). The existence of causal links removes, or reduces, the
ambiguity inherent in the purely structural semantics.

Similarly, in AI systems, or animal brains, perceptual mechanisms and motors controlled by
the internal sub-structures can set up causal links in both directions between internal sub-
structures and aspects of the external environment. These links reduce the possible Tarskian
interpretations of internal ‘axioms’, ‘predicates’, ‘individual constants’, etc. But they never
totally eliminate semantic indeterminacy: in a rich and complex world we can always be
surprised by unexpected ambiguities in our words and phrases.

Much work in epistemology and the philosophy of science has attempted to satisfy
philosophical sceptics by eliminating such semantic ambiguity, but I see no reason to require
guaranteed uniqueness of reference, as long as the mechanisms usually function adequately for
the organism or agent concerned. In any case, I don’t believe such guarantees can be achieved.
Some philosophers will be unhappy about this, but neither human designers nor evolution, need
adopt unsatisfiable requirements!

Can we extend Tarski’s ideas beyond the case where the representing formalism is a logical
(Fregean) notation (Sloman 1971, 1985a. 1995c)? We also need to allow different kinds of
meaning that don’t easily fit into Tarski’s framework, e.g. emotive meaning.

A more general theory will allow a wider variety of structures, including non-discretely
variable sub-states, to have semantics, while extending the kinds of semantic indeterminacy that
can occur. Work on computer vision shows how the structural notion of semantics can be
extended beyond logical representations. Here disambiguation by causal linkage is fairly direct,
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though semantic relations involving intermediate and high level interpretations (e.g. ‘X looks
happy’) are complex and subtle. (Ballard & Brown 1982, Sloman 1989)

Human and animal visual systems and robots using TV cameras all seem to provide existence
proofs that analogical representations (e.g. pictures or diagrams), and perhaps some non-
discretely variable sub-structures, can have a useful semantics. Can we explain how? We can
extend the notion of a portion of the world being a model for some representing structure in a
machine by relating machine sub-states to the roles that they can play in a behaving system, and
the ways in which these roles interact with the environment, via causal loops. Examples would
be the different functional roles of bit-patterns and analog sensors in a robot. However, at present
I can offer only an incomplete sketch of ‘loop-closing’ semantics.

13. Towards ‘loop-closing’ semantics
Let’s start with a thermostat and gradually add design complications. A thermostat connected to
a room heater has a (primitive) belief-like sub-state that represents current temperature of the
room, for example, the curvature of a bi-metallic strip. The thermostat also has a (primitive)
desire-like sub-state corresponding to the required temperature setting. For each desire-like state
D there is a range R of belief-like states such that if D and R co-exist the thermostat will make no
attempt to change the environment. Otherwise it will turn the heater on or off. For each belief-
like state B there is a set of possible states of the environment that will tend to produce B (when
the sensors are working normally) and will tend to be produced by corresponding desire-like
state D(B) when the heater is working normally).

For every sensor/controller pair there is an aspect of the environment whose variability
matches the variability of the relevant internal sub-states. The match may be approximate. E.g.
temperature settings may be discrete while the range of possible environmental temperatures is
non-discrete (the reverse might be true in some machines, e.g. an analog representation of the
number of objects in a container). Also the correspondence may not be one-to-one because of
noise, lack of resolution, time-delays, projection from 3-D to 2-D, or other aspects of the
measuring device or controller.

A thermostat whose behaviour depended on who was in the house, where they were, and how
they felt, would require a far more complex set of internal states with more varied causal links. If
the sensor produced not just a measurement but a structural description in a logical language then
the causal links between the external and internal states could be very complex and indirect (e.g.
going via a parser), and the sensing process could discard some incoming information (e.g. fine
detail) and add other information (e.g. inferences about unobserved surfaces or likely behaviour
of perceived objects).

13a. Loosening the links with belief-like states
Now consider a more complex controller that can separately measure and control a range of
properties P1,P2,...Pn, of a machine or plant, but can only work on one of them at a time. For
each such property Pi it has
(a) some kind of sensor Si that will produce or change the corresponding belief-like sub-state Bi,
(b) a settable control knob (or set of keys, etc) Ci that modifies the corresponding desire-like sub-
state Di and
(c) an output-channel Oi that controls the relevant property Pi.
Suppose also that the machine can have only one such output channel turned on at a time, and
has a selector that can switch between the different environmental properties to determine which
is controlled.
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For such a machine, sub-states still correspond to possible environments, except that it is no
longer true all the time that each desire-like sub-state tends to change the environment to
correspond to it. However, at any time when the i-th controller is disabled we can talk about the
effect the i-th desire-like state Di would have in that context (including the belief-like state Bi) if
the output channel Oi were selected. Similarly, if there are more possible desire-like states than
output channels, then only a subset of the Di can be having an effect on the environment at any
one time. This is clearly true of human beings: our legs, hands, mouths, etc. can be used to
achieve different purposes at different times, but not all of them at once.

Likewise, if the different sensors can be temporarily disconnected, this suppresses the
environment’s tendency to influence belief-like sub-states, yet we can ask what the causal
correspondence would be IF the particular sensor or controller were connected, and working
normally. (The causal link is dispositional.)

Let us further loosen the connection between sensors and belief-like substates. There might be
N different sensors, and K different belief-like states all derived (possibly via a neural net) from
different combinations of the sensor readings, where K varies over time. So some of the sub-
states are ‘computed’ on the basis of the signals received from several sensors, perhaps also
using background information. An example could be a visual system building a 3-D scene
description from a 2-D array of retinal information. If the process uses prior knowledge of the
world, then that weakens the causal link between environment and belief-like states, e.g. when
prior information is used to resolve ambiguities and reject some evidence (e.g. not seeing
mistakes when proof-reading).

Some of the belief-like sub-states thus produced may be stored for future use, instead of being
‘overwritten’ as new information comes via the sensors. Then some effects of the environment
would be long delayed. Similarly if desires lead to plans for future execution.

Causal links between the environment and the current set of belief-like states can be far more
complex and indirect than in a thermostat, where the environment has direct online control of the
belief-like state. The more complex and indirect the process that creates internal structures from
sensory input, the more scope there is for internal malfunction and context-sensitive effects.
Then the set of counterfactual conditionals linking the internal states to the environment becomes
even more complex, and the correspondence depends less and less on direct causal links and
more and more on structural properties of the internal states that constrain possible
interpretations. This helps to explain the possibility of false beliefs, which cannot normally occur
in a thermostat.

13b. Loosening links with desire-like states
Now, instead of a fixed set of desire-like states Di permanently connected to corresponding
controllers or even a changing subset of Di directly connected to output channels, consider a high
level virtual machine containing a variable sized store of desire-like states, created by ‘motive-
generator ’ rules, with context-sensitive ‘motive-comparator’ rules and decision-making rules for
determining relative priorities of desire-like states, selecting a subset for action, retrieving or
creating plans, and executing plans, possibly over an extended period with different plans
interleaved if necessary. As with belief-like states, this extra complexity of processing (sketched
in Sloman 1987b, 1992a, 1993, Beaudoin 1994) reduces the directness of the causal links
between desire-like states and states in the environment. Instead of a simple discrepancy measure
sufficing to turn control signals on and off (as in the thermostat) it may require quite complex
internal processing of the relationship between belief-like and desire-like states, checking
whether a desire-like state is ‘satisfied’, or not. Moreover, where a desire is not satisfied,
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complex planning and reasoning, making use of belief-like states, may be needed to produce
appropriate control signals. Causation is often round-about.

There is clearly a huge variety of possible designs for mechanisms, some whose internal
belief-like and desire-like sub-states are directly linked to the environment, and some where the
links are very indirect, with varying numbers of intermediate stages in input channels or output
channels and changing allocation of input channels and output channels to particular belief-like
and desire-like states. Perhaps this provides one way of categorising the control systems of
biological organisms.

13c. Loose causal links, and semantics
These complex designs undermine the notion that causal connections account for semantic
relations. The loose and indirect causal links do not support finite detail of semantic relations. In
thermostats where the belief-like states have dedicated input channels and the desire-like states
have dedicated output channels, the semantic properties of different belief-like and desire-like
states are determined almost entirely by their causal links. As we move away from such
simplistic designs we encounter systems with more complex, loose and indirect causal links.
Increasingly, semantic significance of their states will depend on structural as opposed to causal
properties. I.e. we get closer to the Tarskian kind of semantics. However, we also find more and
more scope for indeterminacy in the semantics, because of the weak and indirect causal links,
and inability of structure to determine reference uniquely.

The more indirect and abstract semantics, together with generative capabilities in the
mechanisms, can also explain the use of sub-states that refer to things remote in space and time
or even to possibilities that are never realised (e.g. a bit-pattern addressing a non-existent
location). This is an essential requirement for intelligent planning. The ability to give an internal
sub-state a ‘supposition-like’ instead of a ‘belief-like’ role depends on the causal links with the
environment being far less direct than in the thermostat.

I conjecture that biological evolution includes developments along the directions indicated
here, with decreasing causal coupling of internal and external states going hand in hand with
increasing structural complexity and functional differentiation of internal virtual sub-states, and
longer term storage replacing online control. If these ‘design-space’ ideas can be used to
distinguish different possible kinds of machines, perhaps they are also important for
understanding different kinds of nervous systems?

14. Loop-closing models
Can we combine structural and causal ideas and specify a general semantic relation between sub-
states in a behaving system and what they refer to. Consider an environment E containing an
agent A, whose functional architecture supports belief-like and desire-like sub-states. Suppose A
uses similar sub-structures for both, just as a machine can use bit-patterns both for addresses and
for instructions. Then we can define the class of possible ‘loop-closing’ models for a set of
structures S by considering a set of possible environments E satisfying certain conditions, when
the action-producing mechanisms, the sensors, and the correspondence tests (section 8f, above)
are working normally:
(a) States in E will tend to select certain instances of S for A’s belief-like sub-states.
(b) If Si is part of a desire-like state of A and E is in state Ei, A’s correspondence tests show a
discrepancy between Ei and Si, then (unless A’s other belief-like and desire-like states interfere)
A will tend to produce some environmental state Ej in E which tends to pass A’s
‘correspondence’ test for Si.
(c) If that happens Ej will tend to produce a new belief-like state in A.
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So there are dispositional causal loops through which A’s desire-like states tend to influence the
environment, and the environment tends to influence A’s belief-like states.

I repeatedly say ‘tend to’ to indicate that there are many additional factors that can interfere
with the tendency, such as conflicts of desires, perceptual defects, accidents, wishful thinking,
bad planning, and other common human failings. So these are very loose regularities, and cannot
be taken to define internal states in any precise way. None of this presupposes that A is rational.
It merely constitutes a partial specification of what ‘belief-like’ and ‘desire-like’ mean. However,
a full specification will be relative to an architecture, within which functional roles can be
defined more precisely.

More complex causal loops involving the environment will be involved in the way A’s desire-
like states are changed. This can involve internal motive generators, urgency, importance, and
relative priorities, (Beaudoin 1994, Beaudoin & Sloman 1993). In simple designs, output is
directly and continuously controlled by a discrepancy between desire-like and belief-like state,
whereas in more complex cases the desire-like and belief-like states, together produce chains of
actions, often specified in advance as part of the process of selection. In other words, advance
planning is sometimes used. But not all architectures can support this. In those that do, the causal
loops between states are more indirect.

14a. Causal loops and limited rationality
If A were completely rational and always had consistent motives and beliefs, then the tendencies
mentioned above would be strict, whereas in real agents conflicts and errors occur, and more or
less irrational behaviour is possible. In extreme cases people have to be forcibly restrained from
harming themselves. Even when interactions between sensory input, belief-like and desire-like
states, and motor output are not rationally comprehensible, this does not mean that internal states
have no semantics.

For these reasons I think that any attempt to define mental states or process in terms of
rationality or even approximate rationality is unacceptable. This undermines Dennett’s notion
(1978, 1987) of the ‘intentional stance’, which requires agents to be rational in order to have
states with semantic content. The mechanisms and internal states that underly rationality can
sometimes interact in bizarre ways to produce totally different results. We need a theory that
explains both the rational and the irrational behaviour on equal terms, for instance an account of
an architecture composed of interacting information processing subsystems, that sometimes
function as required for rationality, but not always. Software engineers know how to build such
systems, using not the intentional stance but the design stance applied to information-processing
level descriptions (Sloman 1994).

14b. Local vs global semantic consistency
For a really complex agent with a large set of belief-like sub-states S there may be no possible
environment providing a model for the total set S, because the current beliefs are globally
inconsistent. Similarly the desires may conflict, with one another and with beliefs. People may
want things which they know to be incompatible. The agent may be unable to detect all
inconsistencies: for doing so reliably in large systems is computationally intractable, and
therefore neither evolution nor robot designers can impose that requirement. In such systems
semantic relations have to be local, or piecemeal: only fragments of the system have models, not
the whole system. Perhaps this works because different subsets of the system are fully ‘active’ at
different times, like the scientist who prays on Sundays or the kind father who bullies his
employees.
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14c. The irrelevance of history
The helplessness of human neonates tempts many to assume their minds are empty. This may be
part of the strong tendency to require concepts to have been derived from individual experience.
But a new-born foal can run with the herd within hours, and could not possibly have learnt all the
required concepts of 3-D structure and motion and action. So if we accept that it sees and that
seeing is an intentional state, the interpretive concepts underlying that state need not come from
the individual’s interaction with the environment: the interactions of long dead ancestors may
suffice, as they do for the foal.

But even that cannot be a logical requirement. Suppose that by a highly improbable fluke of
mutation an animal were born with the visual and action capabilities of a foal without this being
the result of previous selective pressures. Would the new sport see or have intentions relating to
the environment as well as a new foal? Surely the current internal structures, mechanisms and
causal links would suffice, for all practical purposes, without the normal causal history. (Whether
such a mutation is likely to happen is irrelevant.) (Compare Young 1994.)

No doubt some philosophers will retort: ‘this animal does not ‘‘Really’’ see, or think, or take
decisions, despite appearances, because it does not have the right evolutionary history’. We
should resist disputes about essentially trivial matters of ‘correct’ definition. To avoid such
disputes, we can define two notions of ‘see’: one of which (to seeH) requires a normal historical
source, while the other (to seeA) is a-historical. Apart from that there is no difference in the
details of the capabilities, i.e. how well they enable the organism to survive. Those of us who
use ‘see’ to mean ‘seeA’, have a ready made way of talking usefully about new specimens whose
perceptual ability is not rooted in evolutionary history. Those who insist on using ‘see’ to mean
only ‘seeH’ will find it very awkward to describe.

14d. Semantics and inaccessible referents
A requirement that semantic relations depend on causal links that preserve a correspondence
between representing and represented things obviously fails for semantic states referring to
remote parts of the universe, the distant past, the distant future, unrealised possibilities, etc.
These referents are not capable of directly engaging causally with current beliefs or desires,
though they may be linked through counterfactual conditionals about what would happen if the
agent had a different location in space and time. However, if one tries to work out what would be
the case if the agent were sufficiently close to the remote place or time for direct causal
interaction, it may be impossible to decide what else would be the case: an extreme example of
the ‘Frame’ problem. For agents that are capable of using a generative notation with inference
techniques, it may be better to define the possible models in Tarskian terms, using a generative
compositional semantics, with the restriction that the models contain sub-models in the
environment that act as causal loop-closing models, to select the right referents.

Not all organisms and machines have the internal architecture required for coping with this
kind of semantic relation. For those that don’t, any kind of semantics that they support will be
simplified compared with human capabilities. Unlike Fodor (1987), we do not require all
representing notations to be generative, although a system with generative capabilities will, of
course, have more scope for creative intelligence and coping with unexpected situations, as well
as thoughts and desires concerning remote places.

There need be no sharp boundary to the class of possible environments that are models of a
sophisticated agent’s beliefs or desires - i.e. the semantics for the internal states will be
indeterminate in various ways. This in itself should not disturb us if we are interested in
explaining human intelligence, since there is plenty of evidence that human languages (and
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probably internal representations too) are indeterminate in various ways. (E.g. how big is a big
man? How much water must fall on a rainy day? Is a circle an ellipse? Is it 3 o’clock on the
moon? Are liquids mixtures or compounds? Where are the boundaries between species of birds?)
Semantic indeterminacy is part of the human condition. It may be unavoidable in robots.

15. Work to be done
The ideas presented so far concerning semantics are both tentative and lacking in precision.
Considerable research is needed to clarify and extend them. In particular:
- Unlike the languages discussed by Tarski and most logicians there is no need for a fixed
precisely delimited syntax to be used: intelligent systems can creatively extend the variety of
representing structures they use, and humans frequently do this.
- The semantics assigned to particular notations by an individual need not be fixed: even one-off
interpretations are possible (including ‘lets pretend’ games by children). It is tricky to fit this into
an analysis that is very dependent on counterfactual conditionals, which, in turn, depend on
lawlike generalisations. (This example of ‘one-off’ semantics refutes many philosophical
theories of meaning!)
- The notation can include context sensitive elements whose semantic role needs special
treatment, like the indexicals whose denotation depends on the instance of use: ‘this’, ‘now’, ‘I’,
‘we’, ‘he’, etc.
- Semantic relations may depend not only on an individual’s mechanisms and functional
architecture, but also a social system or culture involving other intelligent individuals. This can
determine the ‘scope’ of concepts, like ‘valley’, ‘healthy’, ‘marriage’, ‘war’ and ‘honourable’.

16. Conclusion
Although computation has had a powerful catalytic effect in extending our ideas concerning
possible mechanisms, we can now abandon the notion that the concept of computation is the only
or even the central foundation for the study of mind. Instead we need to look at a whole variety
of architectures and mechanisms, from the design standpoint, to see what kinds of more or less
mind-like systems they can support. This was option (c) defined in the introductory section.

I’ve offered the beginnings of a conceptual map, albeit still a blurred and incomplete one, into
which we can fit many kinds of natural and artificial mechanisms and processes that could be
useful for intelligent systems. Some will be closely related to our precise notion of computation,
and some will not. Whether they are or are not is of little importance for the question whether
they provide the kind of functionality required for various sorts of intelligent capabilities, except
where we are studying intelligent systems with particular computational requirements, e.g.
proving theorems, making plans, etc.

I have not argued (like Searle) that a digital computer cannot understand symbols it uses. I
simply draw attention to the need to consider a broader range of machine types than simply
Turing-equivalent machines, for the purpose of explaining or designing intelligent systems that
can function as effectively as we do in our world. We also need a range of mental concepts
corresponding to each of our everyday concepts like ‘understand’, ‘refer’, ‘believe’, ‘desire’,
‘perceive’, etc. The different concepts will be grounded in capabilities supported by different
architectures.

This is not a philosophical argument about ‘correct’ concepts to use, but an engineering
argument about the appropriateness of different (animal or artificial) designs for different tasks.
Exploring such relations (mappings between design-space and niche space) is part of the goal of
AI (Sloman 1995a). I claim that also provides the best framework for philosophy of mind.
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I have shifted the emphasis away from computation towards a general notion of mechanism
because it is hard precisely to define a concept of computation that is adequate as a non-circular,
non-trivial, foundation for explaining mentality. So the hoped-for single boundary between
computations and non-computations is replaced by sets of features of computation-like
mechanisms defining a variety of design boundaries with different implications, which we still
need to explore. The notion of computation can then be replaced by a new taxonomy of designs,
covering a more general class of architectures and mechanisms, which may lead us both to
consider new designs and to improve our understanding of old ones.

On this basis we can explore a variety of more or less rich semantic notions, some relatively
closely tied to causal links with the environment, some closer to the structural relations defined
by Tarski (not to be confused with isomorphism!) and some linked to functional roles within the
architecture. Mixtures of these different kinds of semantics can be instantiated in machines with
different sorts of architectures and mechanisms.

Showing in detail how different subsets of machine types can support different forms of
intelligence is a task remaining to be done, though some fragments are reported in work listed in
the bibliography. This work needs to be related to studies of human psychology, neuroscience,
biological evolution and comparative ethology.
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