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This paper describes KRL, a Knowledge Representation Language designed for use in 
understander systems. It outlines both thegeneral concepts which underlie our research and 
the details of KRL-0, an experimental implementation of some of these concepts. KRL is an 
attempt to integrate procedural knowledge with,a broad base of declarative forms. These 
forms provide a variety of ways to express the logical structure of the knowledge, in order 
to give flexibility in associating procedures (for memory and reasoning) with specific 
pieces of knowledge, and to control the relative accessibility of different facts and 
descriptions. The formalism for declarative knowledge is based on structured conceptual 
objects with associated descriptions. These objects form a network of memory units with 
several different sorts of linkages, each having well-specified implications for the retrieval 
process. Procedures can be associated direcily with the internal structure of a conceptual 
object. This procedurul attachment allows the steps for a particular operation to be 
determined by characteristics of the specific entities involved. 

The control structure of KRL is based on the belief that the next generation of intelligent 
programs will integrate data-directed and goal-directed processing by using multiprocess- 
ing. It provides for a priority-ordered multiprocess agenda with explicit (user-provided) 
strategies for scheduling and resource allocation. It provides procedure directories which 
operate along with process frameworks to allow procedural parameterization of the 
fundamental system processes for building, comparing, and retrieving memory structures. 
Future development of KRL will include integrating procedure definition with the 
descriptive formalism. 

AN OVERVIEW O F  KRL 

This paper is an introduction to KRL, a Knowledge Representation Lan- 
guage, whose construction is part of a long-term program.to build system& for 
language understanding, and through these to develop theories of human 
language use. What we describe is a formal computer language for representing 
knowledge. It has been shaped by our understanding of what is needed to build 
natural language understanders, and by analogies with human information 
processing, particularly in the areas of memory and attention. 

Our ideas are in the course of active expansion and modification, and there 

*Requests for reprints should be sent to Dr. Daniel G. Bobrow, Computer Science Laboratory. 
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA. 94304. 
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will be many changes before KRL comes close to our goals. We have 
implemented a subset of our ideas in a system which we call KRL-0, and the 
facilities we describe here are those that existed on May 1, 1976. We have con- 
ducted some experiments in system building in KRL-0 to test its utility and 
habitability. Although we have planned a number of features that will be 
incorporated in its successors, we feel it useful to present our current ideas for 
discussion and evaluation. 

1 .  WHY WE ARE DOING IT 

There is currently no suitable base on which to build sophisticated systems and 
theories of language understanding.. A complete' understander system demands 
the integration of a number of complex components, each resting on those below, 
as illustrated in Fig. 1. Current systems, even the best ones, often resemble a 
house of cards. The researchers are interested in the higher levels, and try to 
build up the minimum of supporting props at the lower levels. The standard 
available bases, such as LISP, QLISP, CONNIVER, production systems, etc., are at a 
low enough level that many middle layers must be built up in an ad hoc way for 
each project. The result is an extremely fragile structure, which may reach 
impressive heights, but collapses immediately if swayed in the slightest from the 
specific domain (often even the specific examples) for which it was built. 

Much of the work in AI has involved fleshing in bits and pieces of human 
knowledge structures, and we would like to provide a systematic framework in 
which they can be assembled. Someone who wishes to build a system for a 
particular task, or who wishes to develop theories of specific linguistic 

TASK DOMAINS: 
Travel Arrangements, Medical Diagnosis, Story Analysis, etc. 

LINGUISTIC DOMAINS: 
Syntax and Parsing Strategies; Morphological and Lexical Analysis; 
Discourse Structures; Semantic Structures, etc. 

COMMON SENSE DOMAINS: 
Time, Events and States; Plans and Motivations; Actions and 

Causes; 
Knowledge and Belief Structures; Hypothetical Worlds 

BASIC STRATEGIES: 
Reasoning; Knowledge Representation; Search Strategies 

UNDERLYING COMPUTER PROGRAMMING LANGUAGE AND ENVIRONMENT 
Representation Language; Debugging Tools; Monitoring Tools 

FIG. 1 A layered view of a language understanding system. 



phenomena should be able to build on a base that includes well thought out 
structures at all levels. In providing a framework, we impose a kind of 
uniformity (at least in style) which is based on our own intuitions about how 
knowledge is organized. We state our major intuitions here as a set of aphorisms, 
and provide justification and explanation in the body of the paper. 

a Knowledge should be organized around conceptual entities with associated 
descriptions and procedures. 

A description must be able to represent partial knowledge about an entity 
and accommodate multiple descriptors which can describe the associated 
entity from different viewpoints. 

An important method of description is comparison with a known entity, 
with further specification of the described instance with respect to the 
prototype. 

Reasoning is dominated by a process of recognition in which new objects 
and.events are compared to stored sets of expected prototypes, and in which 
specialized reasoning strategies are keyed to these prototypes. 

Intelligent programs will require multiple active processes with explicit 
user-provided scheduling and resource allocation heuristics. 

Information should be clustered to reflect use in processes whose results are 
affected by resource limitation and differences in information accessibility. 

A knowledge representation language must provide a flexible set of 
underlying tools, rather than embody specific commitments about either 
processing strategies or the representation of specific areas of knowledge. 

2. DESCRIPTION AS THE BASIS FOR A DECLARATIVE LANGUAGE 

A natural organization for declarative knowledge is to center it around a set of 
conceptual entities with associated descriptions. Much of the detailed syntax and 
data structuring in KRL flows from a desire to explore the consequences of an 
object-centered factorization of knowledge, rather than the more common 
factorization in which knowledge is structured as a set of facts, each referring to 
one or more objects. 

Objects, relations, scenes, and events are all examples of conceptual entities 
that can be associated with appropriate descriptions in KRL. A description is 
fundamentally intensional-the structure of the description can be used in 
recognizing a conceptual entity and comparing it with others. The three 
underlying operations in the system are augmenting a description to incorporate 
new knowledge, matching two given descriptions to see if they are compatible 
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for the current purposes, and seeking referents for entities that match a specified 
description. In this section we will describe the forms of description available in 
the system, the dimensions of matching as we see them, &d the basic facilities 
for context dependent search and retrieval. 

2.1 Multiple Descriptions of Conceptual Entities 
A description is made up of one or more 'descriptors. For example, the 

description associated with a particular object in a scene might include 
descriptors corresponding to "the thing next to a table," "something made of 
wood," "something colored green," "something for sitting on," and "a 
chair." Some of these descriptors express facts that might be thought of as 
additional propositions about the objects, while others reflect different view- 
points for description by comparison. 

The description of a complex event such as kissing involves one viewpoint 
from which it is a physical event, and should be described in terms of body parts, 
physical motion, contact, etc. The descriptors used from this viewpoint would 
have much in common with those used to describe other acts such as eating and 
testing someone's temperature with your lips. In the same description, we want 
to be able to describe kissing from a second viewpoint, as a social act involving 
relationships between the participants with particular combinations of moiiva- 
tions and emotions. Viewing kissing in this way, it would be described 
analogously to other social acts including hugging, caressing, and appropriate 
verbal communications. In general we believe that the description of a complex 
object or event cannot be broken down into a single set of primitives, but must be 
expressed through multiple views.' 

In addition to containing descriptors corresponding to different viewpoints, a 
description can combine different modes of description. These include: 

Assigning an object to membership in a category (such as "is a city"); 
stating its role in a complex object or event (the "destination" of a particular 

trip) ; 
providing a unique identifier (this includes using a proper name like "Bos- 

ton''); 
stating a relationship in which the object is a participant (being "to the north of 

Providence"); 
asserting a complex logical formula which is true of the object ("Either this 

person must be over 65, or a widow or widower with .dependent chil- 
dren. "); 

describing an object in terms of membership in a set, or a set in terms of the 
objects it contains ("One of the 50 Model Cities"); 

'MERLIN (Moore & Newell, 1973) was an early attempt to use multiple viewpoints of this sort. 
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combining these other descriptors into time-dependent or contigent descrip- 
tions ("The place you are today"). 

In creating a set of descriptor forms, we have been guided by our intuitions 
about how they will be used in reasoning processes. They represent an 
alternative to the standard, more uniform notations (such as predicate calculus) 
that were developed for the purposes of formal logic and mathematics. We 
believe that it is more useful and perspicuous to preserve in the notation many of 

' 

the conceptual differences which are reflected in natural language, even though 
they could be reduced to a smaller basis set. We expect this to ease the task of 
designing the strategies which guide the application of declarative knowledge. 

We believe that multiple descriptions containing redundant information are 
used in the human representation system to trade off memory space for 
computation depth, and that computer systems can take advantage of the same 
techniques. The choice of where to put redundancy provides further structure for 
memory, and can be used to limit search and deduction. As a simple example, an 
understander system might know that every plumber is a person, and that Mary 
is a plumber. The memory unit for Mary would contain a descriptor stating that 
she is aplumber, and would very likely also contain an explicit descriptor stating 
that she is a person. This is redundant, but without it the system would be 
continually re-deducing simple facts, since personhood is a basic property often 
used in reasoning about entities. Memory structure in KRL is organized in a way 
that makes it possible to include redundant information for immediacy while 
keeping the ability to derive information not explicitly stated. 

2.2 Descriptions Based on Comparison to Other Individuals and Prototypes 
In designing KRL we have emphasized the importance of describing an entity 

by comparing it to another entity described in the memory. The object being used 
as a basis for comparison (which we call the prototype) provides a perspective 
from which to view the object being described. The details of the comparisoncan 
be thought of as a further specijkation of the prototype. Viewed very abstractly, 
this is a commitment to a wholistic as opposed to reductionistic view of 
representation. It is quite possible (and we believe natural) for an object to be 
represented in a knowledge system only through a set of such comparisons. 
There would be no simple sense in which the system contained a "definition" of 
.the object, or a complete description in terms of its structure. However if the set 
of comparisons is large and varied enough, the system can have a functionally 

, complete representation, since it could find the answer to any question about the 
object that was relevant to the reasoning processes. This represents a fundamen- 
tal difference in spirit between the KRL notion of representation, and standard 
logical representations based on formulas built out of primitive predicates. 

In describing an object by comparison, the standard for reference is often not a 
specific individual, but a stereotypical individual which represents the typical 
member of a class. Such a prototype has a description which may be true of no 
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one member of the class, but combines the default knowledge applied to 
members of the class in the absence of specific information. This default 
knowledge can itself be in the form of intensional description (for example, the 
prototypical family has "two or three" children) and can be stated in terns of 
other prototypes. 

A single object or event can be described with respect to several prototypes, 
with further specifications from the perspective of each. The fact that last week 
Rusty Jew to Sun Francisco would be expressed by describing the event as a 
typical instance of Travel with the mode specified as Airplane, destination Sun 
Francisco, etc. It might also be described as a Visit with the actor being Rusty, 
the friends a particular group of people, the interaction warm, etc. 

The further specijications in a description by comparison can provide more 
detail to go along with less specific properties associated with the prototype, or 
can contradict the default assumptions which are assumed true in the absence of 
more specific information. The default for the destination of a trip simply 
specifies that it is some city, and in a particular event is further specified to be 
Boston. The default for a trip also includes the fact that the traveler starts from 
and ends at home, which might be violated in a specific instance. A comparison 
can be based on an individual rather than an abstract prototype ("He's like 
Brian, but shorter and with red hair."), again with the assumption that the 
properties of the prototype individual are assumed true of the individual being 
described unless explicitly counterindicated. It has been pointed out in many 
places how important it is to make heavy use of typical and expected properties 
in contexts in which the reasoner has incomplete information about the world, and 
cannot prove logically that a particular individual has a desired pr~perty.~ It is 
important to see this analysis as an intuition about how people structure 
descriptions, rather than as a specific technical device. Many of the mechanisms 
proposed in the literature on memory representation (e.g., semantic networks, 
frames, etc.) can be used in a style compatible with this kind of inheritance of 
proper tie^.^ We emphasize perspectives as a fundamental part of the notation. 
Other systems for simulation of human cognitive processing have used similar 
ideas4 with further specifications which must follow constraints specified in the 
prototype. . 

'The use of prototypes is the subject of much current research, in computer science (e.g., Minsky, 
1975). psychology (e.g., Rosch & Mewis, 1975), and linguistics (e.g., Fillmore, 1975). 

3See Winograd (l975a) for a discussion of propefly inheritance, and Woods (1975) for a discussion 
of the issues involved in building networks with sufficient intensional information. 

'Schank (1975a) uses conceptual dependency primitives as prototypes, with constraints on ob- 
jects which can fill various roles; Norman, Rumelhan. and the LNR Research Group (1975) allow 
constraints on arguments of processes whose prototypes are word definitions. 
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2.3 The Detailed Structure of Units and Perspectives 

In Sections 2.1 and 2.2 we presented our overall notion of the structure of 
descriptions. In order to better discuss the ways in which descriptions are used, 
we will introduce in this section some specific notations of KRL. Through the 
remainder of the paper, terns such as "unit," "perspective," and "descrip- 
tion" will be used in the narrower technical sense defined here. 

The data structures of KRL are built of descriptions, clustered together into 
structures called units, that serve as unique mental referents for entities and 
categories. Each unit has a unique name, is assigned to a category type (see 
below), and has one or more named slots containing descriptions of entities 
associated with the conceptual entity referred to by the unit as a whole. Slots are 
used among other things to describe those substructures of a unit that are 
significant for comparison. Each slot has a slot name which is unique within the 
unit, and significant only with respect to that unit. One distinguished slot in each 
unit (named SELF) is used to describe the entity represented by the unit. 
Associated with each slot is a set of procedures which can be activated under 
certain conditions of use of the unit. The use of this procedural attachment is 
described further in Section 3.1. Our convention is to capitalize the initial letter 
of unit names, but not of slot names. Each description is a list of descriptors, 
each with a set of associated features (discussed at the end of Section 2.4). 
There is a limited set of distinct descriptor types (twelve types in the May 1 
version), each with a distinct syntactic form. The descriptor type used for 
description by comparison is called a perspective. An entity is further specified 
in a perspective by further describing its slots. A perspective is expressed in 
KRL-0 notation: 

(a prototype with identifier, = jXerdescription, - 
identifiern = fillerdescription, 

where prototype names a unit being used as the basis for the comparison, there 
are indefinitely many pairs of the form identifier = fillerdescription, and each 
identij5er is either a slot name naming a slot in the prototype unit, or a description 
which matches only one of the slot descriptions in the prototype unit. Thus the 
descriptor (a Person) when used to describe an object represents the fact that the 
object is one instance of the general class Person. A descriptor (a Person with 
name = "Joe") implies that name is a slot associated with the unit for Person, 
and would be used to describe a particular individual. The descriptor: 

(a Person with 
name = "Joe" ' 

(an Address) = "1004 Main Street") 

includes both the name and address information, and assumes that there is only 
one slot in the unit for Person whose description could be matched 'by the 
descriptor (an Address). Thus a perspective combines classification with a set of 
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bindings called fillers, which establishes the correspondence between specific 
descriptions (often indicating individuals) and roles associated with the prototype 
unit in general, as indicated by the pairing of the identifiers and additional 
descriptions. 

In Fig. 2 we show some simple units which describe Rusty's trip to San 
Francisco. These illustrate some KRLO notation using a simplied example. The 
overall syntax is like that of LISP, using paired delimiters as an explicit 
representation of the tree structure. Brackets [. . .] enclose each unit, and angles 
c . .> enclose each slot in a unit. Each complex descriptor form is delimited by 
parentheses (- . .), and braces {. . -) are used to combine multiple descriptors 
into a single description. As in LISP, division of text into separate lines and inden- 
tation are used to clarify the structure for human readers; they are not used to con- 
vey syntax information to the system. 

2.3.1 Categories of Units 

The unit is a formal data structure in the KRL language for descriptions. It is 
used for entities at a number of different levels of abstraction-individuals, pro- 
totypes, relations, etc. It can be thought of as a mechanism for providing a larger 
structure which encompasses a set of descriptions, relating them to a set of 

' [Travel UNIT Abstract .... Travel is the unit name. 

Its category type is Abstract . 
<SELF (an Event) > ... description of the Travel unit itself. 

Event, Plane, Auto etc, are known units 
<mode (OR Plane Auto Bus)> ... either Plane o r  Auto or BUS 

can fill the slot named mode. 
<destination (a City)>] 

[Visit UNIT Specialization ... a specific category of Socialbteraction 
<SELF (a Sociallnteraction)> 
<visitor (a Person)> 
<visitees (SetOf (a Person) I>] 

[Event 1 37 UNIT Individual ... an event described by comparison 
with two different prototypes . 

<SELF {(a Visit with 
visitor = Rusty ... The actor is the known unit Rusty 
visitees = (Items Danny Terry)) 

... Items indicates a set containing at least 
Danny and Terry 

(a Travel with 
destination = SanFrancisco ... Sanhancisco is a unit described 
mode = Plane)})] as a City 

FIG. 2 KRL representation of Rusty's trip to San Francisco. 
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procedures. Each unit has a category type, selected from: Basic, Abstract, 
Specialization, Individual, Manifestation, Relation, and Proposition. The 
category types determine certain modes of operation for the basic system 
procedures which manipulate descriptions. 

Abstract, basic, and specialization. Units of these three types.are used for 
categories such as Person, Integer, MakeReservation, etc. These units are used 
principally as prototypes for perspectives; the distinction between them is used 
primarily by the matcher. 

Basic categories represent a simple nonoverlapping partition of the world into 
different kind of objects (such as dog, bacteria, ...). The matcher assumes that no 
individual is in two distinct basic categories. Therefore, quick tests of basic 
category match or conflict can be used in a many cases to decide whether a 
specific object fits a description. This use of simple disjoint categories 
corresponds to the use of selection restrictions as proposed in some linguistic and a 

semantic theories5 and data types in programming. 
Specialimtions represent further distinctions within a basic category (such as 

Poodle, or E. Cali). A specialized prototype will have descriptions and 
procedures associated with it which are more specific than those for a basic 
category. In general, they are more useful for their procedural attachment and 
described properties than for any uniform treatment by the matcher. The 
description of a specialized prototype can indicate a primary perspective which 
describes it as a subclass of some basic category or other specialization. The 
partial tree formed by these primary links6 is used by the matcher in comparing 
individuals from two categories which are not explicitly comparable. 

An abstract category (such as action or living thing) primarily serves as a way 
of chunking a set of descriptions and procedures to be inherited by any entity 
described by a perspective for which the abstract unit is a prototype. Very 
general problem-solving information will often be attached at this level of 
abstraction. There is no commitment in KRL as to what sorts of concepts in the 
domain should be represented at what level of categorization. The specific three 
types are based on psychological studies (Rosch, 1975; Rosch & Mervis, 1975) 
that human reasoning makes extensive use of a layered system of categories. The 
choice of whether a particular prototype (such as Person or Visit) should be 
basic, abstract, or a specialization depends on the way in which descriptions are 
built up and used in matching. What is provided is a mechanism by which the 
careful use of levels can result in achieving many of the efficiency benefits of 
semantic marker mechanisms and classification trees. 

Individuals. The KRL matcher and other primitive mechanisms for building 

SThis includes much of the work on semantics associated with transformational grammar (e.g., 
Katz & Fodor, 1964), A1 formalisms such as conceptual dependency (Schank, 1975a), and most , 
forms of case grammar (see Bruce, 1975, for a summary). 

Ernis tree corresponds to a simple generalization hierarchy, as discussed in Winograd (1975a). 
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descriptions assumes that different individuds are different unique entities in the 
world being modeled. For example, no individual can match (in a simple sense) 
a different individual. An inconsistency is signaled whenever there is an attempt 
to use pointers to two different individuals as descriptors in a single description. 
However, there are no built-in assumptions about how individuality should be 
assigned. The definition of what, should constitute anindividual within .a domain 
is relative to a particular set of reasoning purposes. As a simple example, in the, 
air travel domain, a particular flight (including date) could be an individual, with 
the flight number as a property (filling a slot), or, alternatively, each flight in the 
schedule (by number) could be treated as an individual, with a particular flight 
instance represented as a manifestation (see below). 

Manifestations. Often it is useful to group together a set of descriptions 
which belong to some individual. There are three main cases in which we 
anticipate this need, and units with category type manifestation can be used for 
all of them: 

1. Further specified individuals: A manifestation can be used to provide a 
single memory unit (for purposes of retrieval and content-dependent description) 
containing a set of descriptions belonging to an individual within one context. 
For example, we might separate out the physical properties of an object for 
which we also have functional or historical descriptions, or the description of 
some person as a scientist from the description of that person as a friend. 

2. Contingent properties: An individual can be described using time- 
dependent descriptions without creating a separate manifestation. However, it is 
often useful to collect a set of descriptions which are true at some time (or in 
some hypothesized world) and treat them as time-independent descriptions of a 
manifestation which represents the individual at that particular time. 

3. Ghosts: A representation must enable us to describe entities whose 
unique identity is not known. There are many cases in which we may know many 
properties of some object without knowing which of the known objects in our 
world it is. Such objects have at times been called "formal objects" (Sussman, 
1975) and "ghosts" (Minsky, 1975). A standard detective story plot involves 
knowing that one of the people in a house is a murderer, knowing many 
properties of the murderer, and not knowing which individual it is. The unit 
used to represent the murderer is a manifestation that has no' associated indi- 
vidual. 

Relations and propositions. An abstract relationship, such as the relative 
magnitude of two numbers, can be described using the ideas of slots and 
description we have used so far. There is a unit, with category class relation, 
which represents the relationship (or predicate) as an abstract mapping; a 
proposition unit represents each instantiation of the relationship. The truth value 
of a proposition is specified explicitly rather than being determined as an implicit 
consequence of its existence in the data base. 
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2.4 The Family of Descriptors 

Each descriptor in a description is an independent characterization of the object 
associated with the description. The variety of descriptor types corresponds to 
the notion of natural description discussed above. Each descriptor type is 
intended to express a different mode of describing conceptual objects. The 
syntax of descriptors depends on key words (such as a ,  the, from, which) based 
on analogy with simple English phrases. They are mnemonic indicators for a set 
of precisely defined structures within the formalism. 

This set of descriptors was not designed with the goal of boiling everything 
down to the smallest possible set of mechanisms. On the contrary, it is based on 
an attempt to provide a simple and nahlral way of stating information concep- 
tualized in di.fferent ways. There is a great deal of overlap. For example, the 
notion of "bachelor" might be represented in any of the following ways: 

There could be a prototype unit for Bachelor, with an individual described as 
(a Bachelor with. . .) 

Bachelorhood could be represented .indirectly by having a prototype for 
MalePerson and Adult, and a predicate for IsMarried, and using the description: 

{(a MalePerson) (an Adult) (NOT (which IsMarried))) 

There could be a unit representing a Marriage with slots for the malepartner and 
fernaleparmer, and a description: 

{(a MalePerson) (an Adult) 
(NOT (the malepartner from (a ~ a n i a ~ e ) ) ) )  

There could be a one-place predicate, IsBachelor. The predicate definition 
might (but need not) include a special procedural test for bachelorhood. An 
individual would then be described using the predication 

(which IsBachelor) 

These KRL forms are described in general in Fig. 3. No one of these forms is 
automatically primary. All of them could coexist, and be defined in terms of 
each other. The system provides the necessary reasoning mechanisms to 
interrelate the different forms in which essentially equivalent information could 
appear, and the hope is that additional knowledge (especially procedural 
knowledge) which is best stated with respect to any one form can be represented 
directly. Our intuition leads us to believe that prototypes and perspectives will 
most often -serve as the fundamental organizing representation, with the others 
serving to provide secondary information. 

In order to demonstrate the different uses of these descriptors, we present here 
a more extended example. It is based on a hypothetical system that acts as a 
travel assistant, making reservations and computing costs of trips. As with the 
example above, this is greatly oversimplified and is not intended as a careful 
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Descriptor name: direct pointer 

Format: a unit name, number, string, or quoted LISF? object' 
Use: A pointer to units, or to data directly in the description. Provides a 

unique identifier (this includes using a proper name like "Boston") 

Examples: Block1 7, PaloAlto, 356, "a string", 
(QUOTE (A PIECE (OF LIST) STRUCTURE))) 

+ i * m + + + + r + + * + + +  

Descriptor name: perspective 

Format: (a prototype with identifier1 = fillerl ... identifier, = filler,) 

Use: ,.Assigns an object to membership in a category (such as "city"). A 
,comparison of the current object with the "prototype", with slots further 
specifying this object 

Examples: (a Trip with destination = boston airline = TWA) 
*************** 

Descriptor n a r k  specification 

Format: (the slotspecifier from view targetDescription) 

Use: Specifies the current object in terms of its role in a perspective of 
prototype: "view". States a role in a complex object or event (e.g., the 
"destination" of a particular trip) 

Examples: (the actor from Act (a Chase with quarry = {Car22 (a Dodge))) 
*************** 

Descriptor name: predication 

Format: (which predicateName . predicateArgs) 

Use: Describes a relationship in which the object is a participant (being "to 
the North of Providence"). Defined in terms of a specification. A way of 
specifying an object in terms of a relation and arguments; allows special 
procedural attachment. 

Examples: (which Owns (a Dog)) (which IsBetween Block17 (a Pyramid)) 
***************  

Descriptor name: logical boolean 

Format: (OR . booleanArgs) or (XOR . booleanArgs) or (NOT booleanArg) 

Use: Simple logical connectives. A description is an implicit AND of 
descriptors, thus AND is not needed 

Examples: (OR (a Dog) {(a Cat)(which hascolor Brown))) 
(NOT (a Pet with owner = (a Student))) 

* * * * * * * * * * * * * * *  

FIG. 3 Different descriptor types in KRGO (a partial list). 
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Descriptor name: restriction 

Format: (theone restrictionDesc) 

Use: Marks the enclosed description as being sufficient to .refer to 'a 
unique object in context 

Examples: (theone {(a Mouse)(which Owns (a Dog))} 
* * * * * * * * * * * * * * *  

Descriptor name: selection 

Format: (using selectionDesc 

selectFrom selectionPatternl - selectionl ... 
~electionpattern~ - selection, 

otherwise defaultSelection) 

Use: This is a declarative form corresponding to CASE or SELECT 
statements in programming languages. 

Examples: (using (the age from Person ThisOne) 
selectFrom (which isLessThan 2) - Infant 

(which isAtLeast 12) - Adult 
otherwise Child) 

Descriptor name: set specification 

Format: one of: (SetOf setElementDescription), (In . setDescription), 

(Items . elements), (Notltems . elements), (Allltems . elements), 

(ListOf . elements), (Sequence . elements), 

Use: These descriptors allow specification of partial information about sets, 
sequences and lists. Describes an object in terms of membership in a 
set, or a set in terms of the objects it contains 

Examples: (SetOf {(an Integer)(which hasFactor 2))) 
... all elements are even numbers 

(Items 2 4) 
... at least 2 and4 are in this set 

(Allltems ,2 4 64 {(an Integer)(which hasFactor 3))) 
... a four element set 

(Notltems 5 1 ) 
... 51 is not in this set 

(In {(Setof (an Integer)) (Items 2 5 8) (Notltems 4))) 
... describes an object in a set of integers which 

contains at least 2 5 8, and not 4 
*****.**.*.**** 

FIG. 3 Continued. 
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Descriptor name: contingency 
Format: (during timespecification then contingentDescription) 
Use: Specifies a time (or hypothetical world) dependent description. 

Examples: (during State24 then (the top from (a Stack with height = 3))) 
... part of the description of an individual block 

(during (a Dream with dreamer = Jacob) then (an Angel)) 
... part of the description of an individual person 

FIG. 3 Continued. 

analysis of the travel domain. Figures 4 and 5 show a number of units with which 
we construct our examples. There is a basic unit for Person, and the different 
things we might know about a person are further grouped according to the ways 
they are used in this system. A person viewed as a Customer has a set of 
properties different from a person viewed as a Traveller. These specialized units 
can sh& information which is generally true of people. The decision of how to 
group the slots which make up units is up to the programmer and the purpose of 
the representation. In this example, age as associated with a traveller is that of 
lnfant, Child, or Adult, the necessary distinctions for fare determination, while 
age for a Person is an integer. 

Figure 6 shows a description of an individual traveller, G0043, described from 
two perspectives using these basic units. These three figures use a number of 
different types of descriptors, including specifications, set descriptors, predica- 
tions, and units representing individuals. individuals are either LISP objects (such 
as the string "Juan" and the integer 3 )  or units, such as UniversalCharge. 
Specifications provide a way to refer to fillers in perspectives associated with 
either the unit in which they appear or other units. The descriptor (the agefrom 
Person G0043) would refer to the age of the individual referred to by the unit 
named GO043 when viewed as a Person (and thus is an integer), while (the age 
from Traveller G0043) refers to his age as a Traveller, and thus is one of Infant. 
Child, or Adult. Specifications can be nested. The special unit ThisOne is 
interpreted to refer to the entity being described when the description is used as a 
prototype. Thus, for example, the descriptor: 

(the preferredAirports from City (the homeTown from Person ThisOne)) 

which appears in the unit for Traveller includes a nesting of one implicit and one 
explicit target. The descriptor (the hometown from Person ThisOne) is inter- 
preted as referring to whatever fills the hometown slot in a perspective whose 
prototype is Person. The descriptor (the 1ocalAirports from City {.-.)) is based 
on the unit for City, which has a slot 1ocalAirports. This descriptor assumes that 
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[Person UNlT Basic 

<SELF> ... There is no description for Person since it is not further 
analyzed in the travel planning task 

<firstName (a String)> 
' <lastName (a String)) 

<age (an Integer)) ... A person's age in years; distinct from theage slot 
in the unit for Traveller. 

<hometown {(a City) PaloAlto ; DEFAULT)) 

... semicolons are used to attach features to individual 
descriptors. Unless otherwise specified, the hometown of a 
Person will be 'assumed to be PaloAlto (which is  in turn a unit 
described as a City). 

<streetAddress (an Address) >] 

[Traveller UNlT Specialization 
<SELF (a Person)> ... a specialization of the unit Person 
<age {(XOR Infant Child Adult) 

... the age for any specific Traveller will be one of these units 
(using (the age from Person ThisOne) selectFrom 

(which isLessThan 2) - Infant 
(which isGreaterThan 11 ) - Adult 
otherwise Child))) 

... the selection descriptor provides a way of determining which 
case this is from the age field in the view of this Traveller 
viewed as a Person 

<preferredAirport {(In (the IocalAirports from City 
(the hometown from Person ThisOne))) 

; DEFAULT 
(an Airport)))] 

... the airport is found in the set of preferred airports found 
from the City in the hometown slot from a view of this 
Traveller viewed as a Person 

[Customer UNlT Specialization 
<SELF (a Person)) 
<billingAddress {(an Address) 

(the streetAddress from Person ThisOne) 
; DEFAULT)) 

<credit (a Creditcard)>] 

FIG. 4 Some units for an airline travel system. 

the object which is the hometown specified by the embedded specification can be 
viewed as a City. 

There is a group of descriptors based on sets which have the obvious intuitive 
interpretations. In the example, the localAirports for a City are described as a set 
each of whose members is an Airport. The default for preferredAirports is 
described as an unspecified member of the set of local airports for the hometown. 



[Airport UNlT Basic 
<SELF> 
<location (a City)>] 

[City UNlT Basic 
<SELF> 
<localAirports 

(SetOf (an Airport with location = Thisone)) ; DEFAULT)>] 

[PaloAlto UNlT lndividual 
<SELF (a City with IocalAirports = (Items SJO SF0 OAK))>] 

... these airports are units too 

[SJO UNIT lndividual 
<SELF (an Airport with location = SanJose )>] 

[Universalcharge UNlT lndividual 
<SELF (a Creditcompany )>] 

[Magnitude UNIT Relation 
<SELF (an ArithmeticRelation) 

(TRIGGERS (ToTest ... some LISP bode appears here...))) 
<greater (a Quantity )> 
<lesser (a Quantity)>] 

[IsGreaterThan PREDICATE Magnitude greater lesser] 
... defines the Predicate IsGreaterThan with focus being the slot 

greater in Magnitude. The argument which follows the predicate is 
to fill the lesser slot. This predicate is used in predications having 
a form like (which IsGreater Than 2 )  as an equivalent for 
(the greater from Magnitude (a Magnitude with lesser = 2) )  

[IsLessThan PREDICATE Magnitude lesser greater] 
... a second predication based on Magnitude, with its focus on lesser 

FIG. 5 Some units and predicates used in travel information. 

In the case in which a town had only one airport, this could be used directly to 
find the departure airport. 

The predication (which ~ s ~ e s s f h a n  2) is a descriptor using the predicate 
IsLessThan which relates pairs of numbers, and in turn is based on a unit 
Magnitude. Predicates are defined with respect to a unit in which the arguments 
to the predicate are among the slots. Two different predicates are defined in 
terms of the Magnitude relation, as shown in Fig. 5. This unit includes in its 
SELF slot a procedure to test for the truth of the relation. 

A predication is always used in describing one specific argument, as opposed 
to a proposition relating several variables in formal logic, which states the 
relationship without focusing on any one argument. Figure 7 shows another 
example of multiple predicates based on a single unit. In some cases, the 
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[GO043 UNlT Individual 
<SELF {(a Person with 

firstName = "Juan" 
IastName = {(a ForeignNamk) 

(a String with firstcharacter = "M"}) 
... These descr~plors glve parttal informat~on. A unlque 

string need not be spec~f~ed in descr~b~ng a name 
age = (which IsGreaterThan 21 )) 

(a Traveller with 
preferredAirport = SJO 
age = Adult) 

(a Customer with 
credit = (a Creditcard with 

company = Universalcharge 
number = "G45-7923-220"))}>] 

FIG. 6 A unit describing a specific traveller. 

different predicates focus on different parts of the total relationship, as in the case 
of IsHusbandOf and IsMotherOf which relate different slots in the Family unit. In 
other cases, they simply provide different points of view by choosing a different 
argument as the implicit primary argument, as in the difference between 
IsHusbandOf and Is Wifeof. Each predicate can have associated procedures for 
proving and matching both for the relationship as a whole, and the particular 
focus of its use. Except for this procedural attachment, and for economy of 
writing, prdicates and predictions can be replaced in a uniform way by 
specifications. For example, the following two descriptors are equivalent based 
on the definitions in Fig. 7: 

(which IsHusbandOf Mary) 
(the maleparent from (a Family with femaleparent = Mary)) 

[Family UNlT Abstract 
<SELF> 
<femaleparent {(a Person)(a Female)}> 
<maleparent {(a Person)(a Male)}) 
<children (SetOf (a Person)))] 

[Iswifeof PREDICATE Family femaleparent maleparent . 
(TRIGGERS (ToTest ... some LISP code appears here...))] 

... only this predicate has a special trigger 

[IsHusbandOf PREDICATE Family maleparent femaleparent] 

[IsMotherOf PREDICATE Family femaleparent (In children)] 

FIG. 7 Multiple predicates defined on the basis of one relation. 
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2.4.1 Features and Meta-Descriptions 

Often it is important to represent knowledge about knowledge. KRL allows any 
descriptor to have associated with it a feature (a lisp atom) or a meta-description 
(a full-fledged unit characterizing the descriptor viewed as a piece of knowledge). 
In the example of Fig. 4, there are descriptors marked with the feature Default, 
indicating that they can be assumed valid in the absence of other information, 
but should be superseded by any other information, and should not be used in 
looking for contradictions. Two other features are used in standard ways by the 
matching, searching, and data-adding routines: Criterial, indicating the set of 
descriptors whose satisfaction can be counted as proving a match, even if there 
are other descriptors around; and Primary, indicating the primary perspective for 
inheritance of properties in a hierarchy. 

The ability to associate a complete unit at this meta-level makes it possible to 
have representations which include facts about facts (e.g., justifications, 
histories of when things were learned or inferred, interdependencies between 
assumptions, etc.). We have not yet worked out a standard notation for use at this 
level. As we build different domain programs, we will develop a set of standard 
units for talking about descriptors and propositions, and a set of facilities for 
modifying and using them when appropriate. 

2.5 Description Matching as a Framework for Reasoning 

We believe that reasoning is dominated by a process of recognition in which 
new objects and events are compared to a stored set of expected prototypes.' The 
key part of a recognition process is a description matcher which serves as a 
framework for comparing descriptions. We have intentionally used the term 
matching for a range of functions which is broader than its standard use in A1 
languages. 

First, we have separated the issue of indexed data base retrieval from that of 
matching two descriptions. In Section 2.7 we deal separately with the processes 
of indexing, context searching, and retrieval. Our matcher takes two inputs: a 
pattern, and a specific object to be tested. Second, we use the abstract concept of 
matching in a very general sense, to include all sorts of reasoning processes that 
are used to decide whether a given entity fits a given description. Much of what 
is usually thought of as "deduction" comes under this heading, as do the notions 
which Moore and Newel1 (1973) have called ''mapping." 

We think of the matching process as a framework because the user has choices 
along several dimensions which determine how the matcher operates. In its 
simplest form, the matcher compares the exact forms of two given representa- 

'This basic approach has been advocated as "frame theory" by Minsky (1975) and Winograd 
(1974-Lecture I), as "scripts" by Schank (1975b). and as "Beta-structures" by Moore and Newel1 
(1973). There are many related notions in the current A1 literature. 
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tional structures; at the other extreme it guides the overall processing of the . 

system. The matcher may .use the semantics of descriptors, as well as their 
syntactic form to decide whether two descriptions match. The matcher may 
search for a referent of a description (in order to use its properties), invoke 
special match procedures associated with a descriptor type or a specific pattern, 
and invoke a general reasoning process to search for chains of implications. 

In extending the notion of matching, we have adopted and extended ideas that 
have been implemented in a variety of systems. Our attempt has been tointegrate 
them into a coherent framework which gives the user of K R L  a choice of the 
strategies best suited to the specific task. The choices can be viewed as 
representing four interacting dimensions. We will first list these dimensiops and 
give examples of the choices made in well known match systems, then describe 
the range of possibilities provided for each in KRL. 

Subtasks. In all but the most trivial matching operations, the pattern and the 
d a m  to which it is compared are complex objects with an internal structure. 
The match is carried out by setting up a series of' subtasks, each of which 
matches one piece of the structure of the pattern against a corresponding piece of 
the datum. In the case of simple syntactic matchers (as in the A1 languages) the 
division into subtasks is a direct reflection of the syntax of the structures-if the 

. pattern and datum are represented as lists, each subtask involves matching one 
. element of the pattern list against the corresponding structural element of the 

datum .list, using a recursive application of the same matching algorithm. 
Terminals. In applying a match process recursively to a complex structure, 

there is a choice of where the recursion "bottoms out." In matchers operating on 
individual data structures (such as assertions in the A1 languages, or well-formed 
formulas in the unification algorithm of a logic-based system) there is a natural 
set of terminals provided by the underlying language. In a LISP-based system, 
pattern variables and atoms form the terminalsthe task of matching them is not 
done by recursively setting up match subtasks, but by calling the appropriate 
procedure for deciding the match for that kind of object directly. Even though 
atoms have an internal structure, they conventionally serve as terminals. In logic, 
the predicate, variable, constant, and function symbols form a set of terminals. 
In simple network matchers, the individual links (and their labels) usually serve 
as terminals. 

Results. The simplest kind of result from a matching process is a binary 
answer-MATCH or FAIL. Most matchers add to this some kind of mechanism for 
returning a set of associations between variables in the pattern and constants (or 
other variables) in the datum, either as an explicit output or implicitly through 
side effects. 

There are a number ,of control questions which decide how the 
match process should proceed. These include deciding what subtasks to cany out 
in what sequence, and when the match as a whole should be stopped. In the 
simplest case, the subtasks are taken serially, usually in the sequence provided 
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by the syntactic structure of the pattern. The process continues until all subtasks 
have succeeded, at which point it returns the variable assignments, or until any 
subtask fails, at which point the entire match fails. 

In a multiprocess system, there are additional strategydecisiops in choosing 
when to carry out subtasks in serial or parallel. Further, since the match process 
asa  whole may be only one of several competing processes (for example, several 
patterns being compared for "best match") there are choices of when the match 
process should be suspended or resumed, and how it should compete for 
processing resources. At a still more sophisticated level, there c m  be sharing of 
overlapping subtasks between two match procekses. 

2.5.1 The Match Framework in KRL 
We provide a framework for carrying out a match process, and an pppropriate 

set of building blocks from which a matching strategy can be constructed within 
this framework for a specific user or domain or process. In Section 3.3 we de- 
scribe in more detail how such "procedural parameterization" is done. We do 
not believe that any one combination of features will provide a universally 
applicable matcher. In the course of working with KRL, we plan to experiment 
with and develop a set of generally applicable strategies that can be used in 
building a user-tailored match process. The following list of extensions is in- 
tended to give some feeling for the scope and variety of issues we believe must 
be dealt with. At the moment, what exists in KRL-0 is the framewoik into 
which they will be integrated, and a set of simple strategies which handle 
straightforward cases. Figure 8 contains some simple data that will be used in 
illustrating some problems in matching. 

The pattern and datum in a KRL match are 
both descriptions which may contain any number of individual descriptors. In 
order for a match to be completed, all of the descriptors in the pattern should be 
satisfied in some way by the datum. But there is no simple sense in which the 
sequence of descriptors in one can be set into correspondence with the sequence 
of descriptors in the other. The matcher includes a set of strategies for alignment 
of descriptors.' I f ,  for example, both pattern and datum contain a descriptor 
which is a pointer to an individual, these two individuals will be compared and 
the match will succeed or fail depending on whether they are identical. If both 
pattern and datum contain perspectives with the Same prototype, the two 
perspectives (including all of the filler pairs) will be compared in detail. If 
pattern and datum each contain a perspective whose prototype is a basic unit, 
those two prototypes will be compared. If the pattern contains a logical 
descriptor (such as a NOT) and its argument corresponds in one of these simple 
ways to a descriptor in the datum, the two will be compared. 

The algorithm for alignment makes decisions both about what subtasks will be 
attempted, and in what order the attempts will be made. In the default algorithm 
built into the matcher, only those subtasks which can be set up simply (like those 
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[Cat UNlT Basic 
<SELF {(an Animal)(a Pet)}>] 

[Dog UNlT Basic 
<SELF {(an Aniial)(a Pet)}>] 

-[Pluto UNlT lndividual 
<SELF (a Dog)>] 

[Mickey UNlT lndividual 
<SELF (which Owns Pluto)>] 

[Minnie UNlT Individual 
' 

<SELF (which Owns (a DogLicense)))] 

[Ownership UNlT Specialization 
<SELF (a State) 

TRIGGERS (ToEstablkh 
(AND (Match \(the possession) \(a Dog)) 

(Match \(the owner) 
\(which Owns (a DogLicense with 

licensed = (the possession) 1))) )> 
<owner (a Person)> 
<possession (a Thing)>] 

[Owns PREDICATE Ownership owner possession] 

[DogLicense UNlT Specialization 
<SELF> 
<licensed (a Dog)>] 

FIG. 8 Sample knowledge base used in matching. 

listed above) will be tried. The order in which these simple strategies will be 
tried can be determined by the user, and they can be intermixed with user defined 
strategies. The simple matching strategies handle a large number of the typically 
occurring cases, but do not account for all possible ways in which two 
descriptions might be matched. Whenever there is a descriptor in the pattern for 
which no simple alignment can be found, the system looks for a strategy prograrfi 
provided by the user for this specific match (either written for the special case, or 
chosen from the set of building blocks). The following examples illustrate 
possibilities for setting up an appropriate subtask for testing whether a pattem 
descriptor is matched. 

Using properties of the datum elements. Consider matching the pattem 
descriptor (which Owns (a Dog)) against a datum which explicitly includes a 
descriptor (which Owns Pluto). The S E L F  description in the memory unit for 
Pluto contains a perspective indicating that he is a dog. In a semantic sense, the 
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match should succeed. It can do so only by further reference to the information 
about Pluto. The KRL matcher can vary the level of what it considers to be 
terminals. Faced with comparing a descriptor to an individual (which corre- 
sponds loosely to an atom or constant in other matchers) it can set up a subtask of 
matching the pattern descriptor against the description stored in the unit for that 
individual. This is done only when the alignment strategies cannot find an 
appropriate descriptor in the datum, but can find a pointer to an individual. 

This extension is naturally recursive. In matching the descriptor (which Owns 
(a Dog)) against the unit Mickey we f is t  need to use the description within the 
Mickey unit to find (which Owns Pluto), then to use this we need to further look 
within the Pluto unit. The problem of finding the correct information in a general 
way has been called the "symbol mapping problem" (Fahlman, 1975), and has 
been handled to some degree by matchers based on networks rather than 
propositions (e.g . , Hendrix, 1975; Nash-Webber, 1975). These matchers do not 
have a rigid notion of scope and terminals, since matching follows open-endedly 
along links, rather than operating within a specified formula. 

Using deduced properties. The example above assumes that the desired 
properties are explicit in the data base, but are not local to the datum being 
matched. The matcher sets up a subtask which is a recursive call to the same 
matching process, with an expanded datum to work on. A further generalization 
of recursive subtasks in the matcher allows it to set up subtasks which are not 
primitive match operations or recursive calls to the match functions, but which 
require that a needed property be derived from known facts about the elements. 
This is the province of a theorem prover. 

As a simple example, we might want to match (which Owns (a  Dog)) against 
Minnie, having as our description of Minnie (which Owns (a DogLicense)), and 
having other information asserting that only dog owners own dog licenses. The 
appropriate subtask to set up is not one that can be done as a simple match 
operation, but one corresponding to the goal of proving that a dog license owner 
is a dog owner. This kind of subtask requires general capacities for reasoning and 
deduction. There is a search problem in deciding what alignments should be tried 
(which of the conclusions the system should try to prove on the basis of which 
parts of the available description). The KRL matching framework does not 
include any automatic mechanisms for making these decisions, but it does 
provide a natural superstructure in which specific deductive goals arise and, in 
the overall flow of control, it is typical that deduction tasks arise as subtasks 
called by the matcher. 

In our example of Fig. 8 we have associated a specialized procedure with the 
general unit for Ownership. In a realistic system, it would be associated with the 
combination of the concepts Ownership and Dog, using the index mechanism 
described in Section 2.7. 
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Specialized procedures for subtaskr. The previous example involves setting 
up subtasks that are not simple recursive applications of the matcher. The match 
framework provides for a general capability for calling arbitrary procedures as 
subtasks of a match. This can including setting up nonserial control regimes for 
running subtasks in parallel. 

We believe that the most important weapon for attacking the combinatorial 
problems that arise in matching and deduction is the ability to attach specialized 
matching procedures to descriptions and units. When the matcher is faced with a 
pattern and datum that cannot be simply matched, it looks in several places for 
specific procedural information telling it what to do to decide what the result of 
the match should be: 

There can be procedures associated with general types of alignment-for 
example, the user can provide a special procedure to be used when a 
perspective with its prototype in some specified set can be matched against 
another perspective with a prototype in that set. 

Procedures can be associated with a unit, to be used whenever a perspective 
having that unit as its prototype appears as a pattern descriptor. These 
procedures can either be general (to match the perspective as a whole) or 
associated with specific s10ts.~ The ToEstablish procedure associated 
with Ownership in Fig. 8 is an example of such a procedure. 

Interleaving a match with ongoing processes. In the standard notions of 
matching, a match is a unitary process with respect to the rest of the system. The 
matcher is called as a subroutine, and other processing continues when it is done. 
In using a matcher as the basis for a general process of reasoning by recognition, 
this is not an acceptable strategy. The attempted match of a "frame" or "script" 
or "schema" begins when its presence is first conjectured, but may continue 
through a series of further inputs and other processing by the system. This is a 
natural extension of the ability for specific match situations to set up arbitrary 
subtasks as described above. Rather than calling a specific subtask and waiting 
for its answer, the specialized procedures can start up tasks (in a coroutine 
fashion) that will direct the processing of the system, while the match process 
remains in the background, waiting for the appropriate information to be found. 

There are a number of ways the processing can be organized. In a simple case, 
the matcher can set up a demon waiting for each piece of information it needs 
(for example, a demon for each slot to be filled in a perspective) and simply 
resume the normal processing, waiting for the information to come in. In other 
cases, the specialized match procedures might start up information-seeking 

'This is a generalization of the notion of active elements in patterns, as in the elements originally 
called actors by Hewitt (1972). 
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processes (such as asking a question of a user in a natural language system, or 
doing a visual scan in a vision system) in addition to the demons, so that the 
attempt to,match the pattern serves as a driving force for deriving new possibly 
relevant informati~n.~ 

results. The KRL matcher is designedto 
distinguish among four possible results, both in reporting the result of the match 
as a whole and using the results of subtasks. In addition to a result of success, it 
separates two kinds of failures: those in which the pattern demonstrably does not 
.match the datum; and those in which there is insufficient evidence. The case of 
insufficient evidence is further distinguished according'to whether the matcher. 
has been limited by resources it has used in the match, or the matdher failed to 
decide after trying every strategy it knew. 

The general multiprocess capabilities of KRL can be used to suspend a match 
process and return a partial result. Thus, a match can be started, and after some 
amount of processing (using the resource limitation mechanisms described in 
Section 3.2) if no definite success or failure has occurred, it can return a result of 
"don't know yet." The process using the match can decide whether to accept 
this as sufficient for an assumed "yes," or to consider it a "no," or to abandon 
whatever it was doing for lack of sufficient information, or to resume the match 
process, giving it more resources. 

offurther pro'blems. In a case in which 
the processing so far has not produced a definite answer, the matcher should be 
able to return specific details in addition to the result of "don't know yet." 
Given the problem of matching (which Owns (a Pet)) against Mickey, with 
sufficient resources (and the data of Fig. 8), it could answer "Yes." With fewer 
resources, it could answer "Yes, if (a Dog) matches (a Pet)," and with still 
fewer, "Yes, if Pluto matches (a Pet)." In general we want to limit the depth of 
the reasoning, and have the matcher return a list of yet unresolved problems if no 
definite answer has been found within the limitation. l o  We hope to integrate this 
mechanism with the means of returning bindings relating specific elements in the 
pattern atid those which matched them in. the datum. As of the current version, 
only the "hooks" for calling these mechanisms exist, and no details have been 
filled in. 

Many uses of the matching paradigm 
are not simple cases of matching a single pattern against a single datum, but 
involve finding the best match among a set of patterns. An example of the 
matching of a set of disease patterns against a specific symptom set in doing 
medical diagnosis. The matcher should have some way of assigning values on 

BSome of the possible methods are discussed in Minsky (1975), Kuipers (1975), and Bobrow 
et al. (1976). 

'OThis is similar to the idea of residues proposed by Srinivasin (1976) in MDS, a language with 
many similarities to KRL in both goals and mechanisms. 
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some scale to the individual parts of a match, and combining these to return a 
"goodness measure" chosen along a scale of values, rather than just "yes," 
"no," or "I don't know." 

Along with a value for how good the match seems to be, there should be a 
separate value for how reliable the information is, depending on how much work 
has been done, and perhaps on reliability measures stored with the information 
used. This can be combined with progressive deepening, such that each time a 
match process is resumed, it can further evaluate the match, updating its factor 
for the goodness of fit, and increasing the factor for reliability of the knowl- 
edge." As with the binding of specific elements, we have so far only provided a 
place in the framework where such measures could be used. 

Interaction of multiple matchingprocesses. In looking for a best match, it is 
useful not to think of the separate matching operations as independent, but to 
allow interactions between them. A simple level of interaction occurs in 
operating them in a progressively deepening mode, and using some sort of 
heuristic strategy (e.g., best first generation) to decide which alternative to 
pursue at each step. At a deeper level, there can be additional information 
associated with specific ways in which a pattern fails to match (an errorpointer), 
which indicates a specific alternative or provides direct information on the 
goodness of other matches being simultaneously attempted.12 This capability 
should include the potential of triggering new patterns as candidates for a match, 
on the basis of new data turned up in the match process.13 

Forced match. A matcher can be operated in a mode in which the question 
instead of "Does this match?" is "What would you have to believe in order to 
make this match?"14 If asked to match (which Owns (a  Cat)) against Mickey, 
instead of responding with failure, it should return "You have to view a Dog as a 
Cat." This is a natural extension for the KRL matcher, since there is a general 
facility by which the user can provide procedures for alignment and the treatment 
of types of match (i.e., what to do when you try to match two different 
individuals). 

Using individuals as patterns. Given the ability to do forced match and to 
return an indication of the differences, the matcher can be used in a mode in 
which the pattern is an actual individual, rather than a general prototype. The 
result of matching two individuals would be a specification of the ways in which 
they differ. This needs to be combined with a further mechanism (associated 
with resource limitation) which heuristically guides the choice of which 
properties to follow up and which to ignore. We hope that this style of matching, 

"Simple versions of goodness evaluation are implemented in MYClN (Shonliffe, 1976) and 
Rubin (1975). 

''See Minsky (1975) and Kuipers (1975) for an extended discussion of the ways in which systems 
of patterns can be linked into a network. 

13See Rubin (1975) for a discussion of this kind of triggering in medical diagnosis. 
"The general issue of forced matching (or mapping) is developed in Moore and Newel1 (1973). 
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together with a basic commitment to description by comp@son, will provide us 
with a strong base for doing more interesting sorts of reasoning by analogy. 

2.6 Chunking of Knowledge, Accessibility, and Redundancy ' 

One of the fundamental problems in artificial intelligence is the "combinato- 
rial explosion." A large knowledge base provides an exponentially expanding 
set of possible reasoning chains for finding desired information. We believe that 
the solution to this problem must be found by dealing with it directly through 
explicit concern with the accessibility of information. The representation 
language must provide the user with a set of facilities for controlling the way in 
which memory structures are stored, so that there will be a correspondence 
between "salience" or "relevance" and the information accessed by procedures 
for search and reasoning operating under processing resource limitations. 

Much of the current research on memory structures in artificial intelligence 
deals with ways of organizing knowledge into chunks or clusters which are 
larger than single nodes or links in a semantic net or formulas in a logic-based 
system. This is particularly important in reasoning based on prototypes, using 
description by comparison, in which typical properties are assumed true of an 
object unless more specific information is immediately available. It is also 
necessary in recognition, in which identification of an object is based on 
recognizing some set of salient properties, and in analogies in which only the 
relevant properties of one object are inherited by the other.15 

The KRL data structures were designed to be used in processes that are subject 
to resource limitation and differences in accessibility. Two forms which are 
equivalent in a strict logical sense are not at all equivalent if used by a processor 
which takes different numbers of steps to come to the conclusion, and which may 
well be stopped or suspended before reaching completion. In KRL the unit is 
treated as a basic memory chunk, and processes such as the matcher operate 
differently when using information within a unit, and when retrieving informa- 
tion from a unit being pointed to or referenced by it. By making explicit 
decisions about how to divide information up between units, the user has 
structural dimension of control over the matching and reasoning processes. 

Figures 9 and 10 illustrate the use of redundant information in building up 
descriptions to be used in matching. Figure 9 gives an example of a set of facts 
representing a particular event, presenting several different forms that are 
equivalent in abstract logical content, but different in their behavior with respect 
to memory chunking and accessibility. Figure 10 gives the units which are 
referred to by these alternatives. 

The unit named Event234 represents a specific event that is being remembered 
by a KRL program. In all of the versions, the recipient is represented by a pointer 

I5For a general discussion of these issues, see Bobrow and Norman (1975). A system which 
tries to distinguish the salience of different descriptors is described in Carbonell and Collins (1974). 
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to the unit for the individual Personl , corresponding to a situation in which the 
identity of that individual was the salient fact. Also,in every version the object is : 

represented only by a description (a  Pen), indicating that the specific identity of 
the pen is not remembered. Of course, these are arbitrary choices representing 
the way one particular program (or person) would remember the event. Someone 
else remembering the same event might store a description containing the 
identity of the pen (for example, if it were a special memento) and only a 
description of the person who received it. 

The four versions differ in how much detail about the other person is 
considered salient to the specific event. In Version 1, the giver's identity is all 
that is included. In Version 2, the identity of his wife is included as well,.and in 
Version 3, so is her occupation. Version 4 differs from the others in omitting the 
specific identifies altogether. It corresponds to the kind of incomplete memory 
that might be expressed as "Let's see, David got the pen from some guy who 
was married to a lawyer." 

If we try to match Event234 with the pattern (a  Give with giver = (which Is 
Husbandof (a  Lawyer))), the amount of processing needed to determine the 

[Event234 UNIT Individual Version 1 

<SELF (a Give with 
object = (a Pen) 
giver = Person2 
recipient = Personl )>I 

[~vent234 UNIT Individual Version 2 
<SELF (a Give with 

object = (a Pen) 
giver = {Person2 (which IsHusbandOf Person3 1) 
recipient = Personl I>] 

[Event234 UNIT Individual Version 3 
<SELF (a Give with 

object = (a Pen) 
giver = {Person2 

(which IsHusbandOf {Person3 (a Lawyer)))) 
recipient = Personl )>] 

[Event234 UNIT Individual Version 4 
<SELF (a Give with 

object = (a Pen) 
giver = (which IsHusbandOf (a Lawyer)) 
recipient = Person 1 )>] 

FIG. 9 Alternative memory structures with different redundancy. 
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[Give UNIT Specialization 
<SELF (an Event)> 

. <object (a Thing)> 
<giver (a Person)> 
<recipient (a Person>] 

[Lawyer UNlT Specialization 
<SELF (a Person))] 

[Pen UNlT Basic 
<SELF (a PhysicalObject)>] 

[Person 1 UNlT Individual 
<SELF (a Person with firstName = "David")>] 

[Person2 UNlT IndividuaI 
<SELF {(a Person with firstName = "Jonathan") 

(which IsHusbandOf Person3)}>] 

[Person3 UNlT Individual 
<SELF {(a Person with firstName = "Ellen") 

(a Lawyer)}>] 

FIG. 10 Units used in the alternative fonns in Fig. 9. 

answe'r differs for the different versions. The matcher must look into the contents 
of the units for Person2 and Person3 in the cases in which there is less redundant 
information. The results for the various versions could differ as well. Matching 
(a Give wirh giver = Person2) against version 4,  all we could say is that it is 
potentially compatible, while the other versions all provide a definite "Yes." In 
a system with competing parallel processes, these differences can have a 
significant effect on the results of reasoning. 

It should be apparent that the kind of knowledge structuring involved in 
chunking facts into units is very different from the structuring of facts into truth 
contexts, as provided by the A1 languages such as CONNIVER and QLISP. In those 
systems, each context contains a set of objects and assertions whose connection 
derives from being present and true within a particular skite representing a 
hypothetical world, or time. This grouping is orthogonal to KRL'S object-oriented 
chunking based on grouping a set of facts (or properties) about a particular 
conceptual object. In KRL there are descriptors (the contingency form) that are 
applicable only in some worlds, and facts that are true in some worlds, but this 
mechanism is separate from the clustering of relevant facts into a memory 
structure. 



2.7 Indexing and Retrieval 

One of the fundamental problems in the use of memory is the retrieval of 
appropriate knowledge from a large data base. As mentioned in Section 2.5, KRL 

makes a distinction between the process of retrieval and the process of matching. 
In finding a desired object in memory, there are two steps'. The first is a rough 
retrieval step, designed to produce a small set of units which potentially fit the 
specification for what is being sought. This is followed by a more thorough 
matching process in which each candidate is matched against the retrieval 
pattern, using the mechanisms discussed above. 

This separation between retrieval and matching is carried over in the form of 
the memory. In most'existing AI systems (and models of human memory) there 
is an underlying assumption that there is a single set of data linkages, used both 
for retrieval and for matching or deduction. The data structures must contain all 
of the logical form of what is being stored, and be usable in some uniform way 
for memory search. Many researchers have explored the problems that arise in 
trying to create structures which have desirable properties for retrieval processes 
while also being an adequate representation of the logical structure; for example, 
see Anderson and Bower (1 973), Woods (1975), and Hendrix (1 975). Many 
human memory experiments (beginning with Collins and Quillian, 1969) have 
been based on the same assumption that a single.set of links must handle both 
tasks. The uniformity of logical and retrieval structure is also basic in systems 
that use complete indexing (as in CONNIVER, QLISP, etc.), and those which 
retrieve through a complex search process (as in the derivatives of Quillian's 
original network representation; see Quillian, 1968). 

We believe that the presence of associative links for retrieval is an additional 
dimension of memory structure that is not derivable from the logical structure of 
the knowledge being associated. KRL has a separate independent mechanism for 
creating associative links between arbitrary combinations of units, and for 
retrieving those units on the basis of the associations. These associations would 
be closely related to the rest of the knowledge structure, but in a way determined 
by specific memory strategies. One of the major topics for research is the 
development of strategies for deciding when to put in associative links and when 
to look for them in retrieval. 

KRL-0 has a simple indexing mechanism which allows the user to catalog any 
unit under a list-structured pattern of keys. There is a primitive to retrieve all 
units matching a key combination and another for matching all units indexed 
under any subset of a given key pattern. For most of what has been typically 
stored in AI language data bases, no indexing at all is needed in KRLO, since the 
way in which descriptions are combined into units explicitly gathers together the 
information that would be retrieved by a data base mechanism. In the future, we 
hope to explore other retrieval mechanisms, perhaps involving spreading 
activation models, and parallel computation structures. 
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In addition to the internal structure of units, and the associations represented 
by the index, there is a third type of structuring in which a set of units is collected 
in a context orfocus list .I6 These focus lists are primitive building blocks for use 
in experimenting with notions of attention and differential access to data at 
different "levels of consciousness." There are primitives for adding and deleting 
items, and for finding all (or the most recent) units in a given focus list matching 
a given description. A focus list provides one mechanism by which to implement 
and test models of short-term memory. 

One aspect of memory structure that we plan to explore in KRL is the use of 
context-dependent description.17 The results of human reasoning are context 
dependent; the structure of memory includes not only the long-term storage 
organization (what do I know?) but also a current context (what is in focus at the 
moment?). We believe that this is an important feature of human thought, not an 
inconvenient limitation. It allows great simplifications in the form of descriptions 
by allowing them to be context dependent. A descriptor which is going to be 
interpreted in a context with other descriptions and objects around can implicitly 
describe its connections to them, rather than needing to make all of the links 
explicit. The descriptor form (theone ...) is used to specify a unit by giving a 
description which will pick it out uniquely in a context. This context might be a 
stored focus list, or one dynamically created as part of a current process. 

3 .  EXTENDED CONTROL STRUCTURES 

In designing KRL-0 we chose to concentrate our efforts on the declarative side 
of the language. The control mechanisms and procedure specification formalism 
make use of LISP as much as possible, extending what was already there, rather 
than building from the ground up. There is no such thing in KRL-0 as a 
"KRL-procedure." When a procedure is to be specified, it is done as a LISP 

function that makes use of a set of primitives (LISP functions) provided for 
manipulating the KRL-0 data structures. Arguments and values are passed in the 
normal LISP way, and subroutine calling obeys the usual stack discipline rules, as 
provided by INTERLISP. This includes the use of generators and other coroutines 
made possible.by the spaghetti stack. 

The underlying control structure has been extended in several directions: 
object-oriented process specification (procedural attachment); a general signal 
mechanism for error handling, notification, and dynamic procedural parameteri- 
zation; organization oT the basic system functions around process frameworks; 
and a multiprocess executive, based on a multilevel scheduling agenda with 
resource and priority management facilities. 

"Focus lists have been used by Deutsch (1975) to establish a context for utterances in natural 
language dialogue. 

"For an extended discussion of this idea, see Bobrow and Norman (1975). 
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3.1 Procedural Attachment 

One of the major current directions in programming language research 
involves factoring procedural knowledge orthogonally to the traditional pm- 
gramrning formalisms. Each.prirnitive program step can be viewed as applying 
some operation to one or more data objects each of which belongs to some class. 
The traditional way of organizing programs is to have a procedure keyed to each 
operation. The internal structure of this procedure takes into account the 
alternatives for the data objects on which it will operate. Languages such as 
SMALLTALK (Learning Research Group, 1976) and SIMULA (Dahl & Nygaard, 
1966) and the various ACTOR formalisms (Hewitt, Bishop, & Steiger, 1973; 

' 

Hewitt & Smith, 1975) group together the different procedures to be carried out 
on objects of a single class. The programmer defines classes of objects, and 
associates with each class a procedure whose internal structure takes into account 
the different operations which will be carried out. The to-fill and when-filled 
triggers discussed in the context of frame representations (Winograd, 1975a; 
Bobrow et al. ,  1976) are further examples of this procedural attachment. A1 
languages such as QLISP and the PLANNER family represent a different 'method of 
factoring the procedures, according to configurations defined in terms of patterns 
which are to be matched against goals and assertions. These configurations 
represent potentially arbitrarily overlapping classes, which is quite different from 
the use of classes in SMALLTALK and SIMULA. 

We have extended the notion of object-oriented procedure definition in two 
important directions. The first is an integration of the ideas of object-associated 
procedures with those of frame structure and multiple description. In associating 
procedures with a class represented by a unit in KRL, procedures can be linked to 
the slots of a unit, and specifically associated with several different descriptor 
types. This makes the clustering of the procedures correspond better to the 
conceptual structuring of the domain. In addition, KRL provides through its use of 
perspectives a notion of subclass that allows objects to inherit procedural as well 
as declarative properties. Since each unit can contain multiple perspectives it can 
tie a member of a number of subclasses. 

KRGO provides facilities for procedural attachment that can be divided along 
two dimensions. The first is based on when the procedure is intended to be 
used-whether it is a servant which provides the method to carry.out some 
operation, or a demon which causes a secondary effect of some event. The 
second dimension corresponds to whether the procedure is associated with an 
individual data element or with a class (prototype). 

A servant is invoked when the system has the goal of applying some specific 
operation to a data object (or set of objects), and needs a procedure for 
accomplishing the specified task. The interpreter looks for servant procedures 
associated with the data object or its class, and if it finds one, executes it to carry 
out the operation. Ifthere is more than one, a strategy procedure is called (using 
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the signal mechanism described below) to choose. A typical use of servants is to 
attach a procedure describing how to match a descriptor involving a particular 
relation or prototype. In Fig. 8, there is a ToEstablish servant, associated with 
the unit for Ownership, which uses the LISP function And and the KRL function 
Match. It provides a specific procedure for determining ownership in a special 
case. 

A demon is invoked as a side effect of actions taken by the system. All of the 
primitive data-manipulating operations check for demons, whenever they use'or 
add information. A demon can be associated with a description of the operation 
to be done, and the object to which it is done. A unique object can be specified: 
or a demon can be invoked for any object of a specified class. The antecedent 
theorems or if-added methods of the A1 languages are examples of demon-like 
mechanisms, in which the invoking events are asserting and erasing, and the 
classes of data objects are specified by patterns. Demons can be awakened when 
something is about to be done or has just been done (there are both types). A 
demon typically might be invoked when a unit representing an individual is filled 
'in as part of the description in an instance. This could trigger further processing 
which requires knowing the individual. 

The second dimension of procedural attachment is the distinction between 
procedures associated with individual data objects (traps) and those associated 
with classes (triggers). Triggers are class-based-they apply to operations and 
events that take place on objects whose description includes a perspective whose 
prototype is the unit to which the trigger is attached. Traps are instance-based- 
they apply to operations. and events directly involving the unit to which they are 
attached. A list of triggers and a list of traps can be associated with each slot 
within a unit. Both triggers and traps can be either servants or demons. 

In addition to the servants explicitly sought by the system (in the frameworks 
for the matching and searching processes described below) and the demons 
explicitly triggered (by the data manipulating functions), the user can also 
provide arbitrary demons and servants and check them explicitly. The user can 
independently define a set of trap and trigger names, and use them for organizing 
a computation. There is a primitive used to probe for attached procedures, and if 
multiple traps or triggers are applicable, they can set up multiple processes (see 
below). 

3.2 Multiprocessing and Variable Depth of Processing 

The overall control structure of KRL is based on our belief that the next 
. generation of intelligent programs will be built using multiprocessing with 
explicit (user-provided) scheduling heuristics and resource allocation. This view 
is based partly on looking at current multiprocess oriented systems,18 and partly 

l8Such as in syntactic analysis (Kaplan, 1973b) and in speech understanding systems, as described 
in Reddy and Erman (1975). 
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on looking at properties of human processing, such as partial output based on 
variable processing depth. l 9  We want to provide. ways to build a system whose 
components can run on varying amounts of effort, producing some initial results 
with a small effort, and improving the quality of their results (either in amount of 
data, or certainty) as the effort is increased. We also want to explore issues of 
attention or focus in choosing which of competing procedures to run.20 By 
beginning with a multiprocess system whose control structure is explicit and 
visible, we hope to have a base from which to experiment with a variety of 
control and resource allocation strategies. 

We expect one of the major research areas to be the integration of data- 
directed and goal-directed processing. In the course of running, there will be an 
explicit goal structure for the program as a whole, while new processes will 
continually be triggered through procedural attachment and data from external 
sources. Resource manipulation and priorities will be used to provide a global 
direction to the processing, yet maintaining flexibility to deal with unanticipated 
combinations. 

Many of the specific facilities in KRL, such as procedural attachment and the 
extended notion of matching discussed earlier, presuppose some sort of multiple 

system, in which a 'set of procedures can be set up and control can be 
passed between them' in a systematic way. The central executive of KRL is based 
on an agenda21 of "runnable" processes, and a scheduler for running them in a 
systematic order. The agenda is a priority ordered list of queues, with all 
processes on a higher priority queue run before any on lower priority queues. 

All scheduling is.done by cooperation, not preemption. A process runs until it 
explicitly returns control to the scheduler. It can add any number of other calls to 
the agenda before it gives up control, including a call to continue itself. 
Whenever the scheduler runs, it scans down a series of priority levels on the 
agenda, and runs the first process in the highest priority nonempty queue. It 
removes that process froin the agenda and starts it (if it is new) or resumes it (if it 
has been suspended). 

The agenda levels can be used to achieve a variety of standard control 
disciplines. As one example, new inputs can be checked for periodically, and 
can put actions on the agenda at a high priority level, which will then be done 
before ongoing processing at lower levels, and may even remove such processes 
from the agenda. This makes it possible to write procedures (e.g., story 
understanders) whose depth of processing varies with the rate of the inputs. As 
another example, a part of the computation can be made relatively continuous 
(Fisher, 1970) with respect to another by causing all of its processes to be 

''See Norman and Bobrow (1975) for a discussion of human processes which are limited by 
resources. 
20See Hayes-Roth and Lesser (1976) and Paxton and Robinson (1975). 
"See Kaplan (1975) for the use of an agenda in a system for parsing natural language. 
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scheduled at a higher priority level. A higher priority process is relatively 
continuous with respect to a lower priority process in that it is guaranteed to run 
to completion between any successive actions in the lower priority process. Use 
of relatively continuous processes is especially useful for coordinating processes 
with intermediate steps which leave data in states that would be inconsistent for 
use in other parts of the computation. 

Part of the information associated with each process includes a pointer to a 
resource pool, which can be shared between any number of processes. There is 
no automatic assignment or checking of resources, but any process can chick and 
increment or decrement its resource pool, and invoke a user-provided procedure 
if resources have run out. The agenda itself is an accessible data structure, and 
the scheduler looks for specialized strategy procedures (using the signal 
mechanism described below) in all of the places in which resource and 
scheduling decisions are made. The user can design combinations of strategy 
procedures (called a control idiom) suited to the particular program or compo- 
nent. This will be described further below in discussing process frameworks. 

3.3 Procedure Directories, Modules, and Process Frameworks 

For dealing with complex descriptions and matching processes, it is critical 
that the user be able to build up different mechanisms and strategies at a high 
conceptual level which do not demand detailed concern with all the. ways in 
which different descriptor types may appear. There need to be processes built 
into the system which do the necessary bookkeeping and basic alignment for 
carrying out matching, description building, and searching operations. At the 
same time, there is no one way that things should be done. The strategy for 
carrying out a particular matching task can be selected along many dimensions, 
and detailed decisions at each step depend on the particular design choices. 

Our solution to the desire for both generality and automatic handling of detail 
is to provide processframeworks for all of the basic operations, and aprocedure 
directory which provides a mapping from a set of names (designating the 
procedure to be done) to procedures. For example, rather than having a 
semantically complete definition of what happens in a match, the system 
provides a matching framework which contains processes for setting up the 
structures to compare two descriptions, doing the alignment of comparable 
descriptors, looking for procedures attached to specific patterns, and handling all 
of those cases in which a simple syntactic match will work. 

Whenever there is a "hard case" of any sort (i.e., something which cannot be 
resolved by simple syntactic properties), the system looks in the procedure 
directory for an entry corresponding to the unique name associated with that 
case. The directory is dynamically maintained--entries can be added and 
removed either singly or in groups called directory modules. The user can 
speczj5r with each call to the matcher a directory module that has entries to take 
the appropriate actions for all of the hard cases he wants to handle. There is a 

' 

set of initial default entries in the directory which take some action (the best that 
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can be done without further information) in the absence of a user-supplied entry. 
Typically, a program will include a set of alternative modules, with one of them 
being "plugged in" to the directory for each call to the matcher. 

In some sense, this can be thought of as defining the system's basic functions 
(such as Match) using calls to subprocedures which are to be provided by the 
user. The additional directory mechanisms make it possible for the user to 
provide alternative definitions in a much more flexible way than with the static 
lexical procedure-naming conventions used by most programming languages. 
The use of directory modules makes it easy for the user to bind and unbind 
clusters of "functional arguments" in a single operation. 

As an example within the matcher, the user could provide a module with an 
entry telling what to do when matching two perspectives whose prototypes 
represent abstract categories such as (a PhysicalObject) and (an Animal). One 
possible entry would indicate that the match should be abandoned without further 
work, while a different one might call on a complex procedure that uses a 
classification hierarchy. We expect to build up a vocabulary of standard modules 
(that we call match idioms) which represent different combinations of the 
features described above. One module (used for quick checking to see if there is 
an easy match) returns "don't know" if the built-in syntactic checks do not give 
an immediate yes or no answer. A module for quick disconfirmation checks only 
for those kinds of descriptors that give definite negative evidence easily (e.g., 
conflicting individuals or conflicting basic categories). One for forced match 
would perform a complete mapping process when faced with two conflicting 
individuals, returning the places in which their descriptions differ. The standard 
modules can be augmented with specialized individual entries for specific 
situations. The user can also control the way in which new entries take 
precedence over preexisting ones. 

Briefly summarizing, a process framework provides a basic structure which 
sets up an environment and divides the process up into a set of cases (subtasks) to 
be handled. Each case is given a unique name (as part of defining the 
framework). For each such name, there are three different places to look for a 
detailed procedure: in the built-in mechanisms of the framework (e.g., the simple 
syntactic cases of matching); in procedures attached to the data on which it is 
working (e.g., To Match triggers associated with a pattern); and in the current 
procedure directory (e.g., an entry stating that when two conflicting individuals 
are to be matched, a given mapping process should be called). 

There are several occurrences other than matching in which process 
frameworks are used in KRL-0. The primitive process for adding a new 
description to an already existing unit is a framework that allows for event- 
triggered side effects of each of its actions. The scheduler described in the 
previous section is a framework that allows for modules specifying different 
control strategies. As an example, a simple program has been written to search 
an AND-OR tree, along with two different modules that cause the search to be 
breadth-first or depth-first, respectively. Other modules could specify a 
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heuristically guided search according to different strategies. We expect to build 
up a vocabulary of generally useful control idioms, including complex ones 
involving resource allocation. 

The mechanism used in KRL-0 to implement procedure directories is based on 
a notion of signals.22 The system maintains a signal path associated with each 
independent process, which is a linked list of signal tables, each of which is an 
association list pairing signal names with actions. There is a primitive which, 
given a signal name, looks on the signal path for the first place where that signal 
name is found, then executes the action associated with it. In addition, there is a 
range of primitives for putting actions into a signal table, pushing one onto or 
,popping one off the signal path, resetting the current signal path, etc. 

The signal mechanism is used for two other purposes in addition to providing 
procedure directories for process frameworks. 

Errors. Whenever an error condition arises, a signal is generated whose 
name specifies the error condition. The default action is to stop and interact with 
the user on line, but the user can specify in the current signal path any action 
whatsoever to be taken to handle the error. This could include patching things up 
so the computation can go on, or could involve aborting the process in which it 
occurred, or any complex computation that might be built in as part of a 
debugging system. 

Notification. Whenever any one of a specified set of system operations 
occurs (e.g., adding a new process to the agenda) a signal is generated. The 
default is to do nothing, but the user can specify any action, which typically 
would include printing out monitoring or debugging information, taking special 
actions, or keeping statistics. This makes it easier to provide debugging and 
monitoring tools for use in a multiprocess environment, which by its essential 
nature makes it difficult to keep track of just what is going on and when. These 
notification signals can also be used directly to trigger event-driven processes. 
For example, a data base indexing mechanism might operate by catching the 
signal generated by the primitive that augments a description with a new 
descriptor and taking the appropriate indexing actions. 

Communication between the procedure assigned to the signal (according to the 
current signal path) and the context in which it is invoked is handled through the 
use of free variables. 

4. WHERE WE ARE HEADED 

4.1 Experimental Implementation and Recycling 

Our approach in building KRL has been guided by a philosophy of working 
from actual domains and problems toward a habitable representation system, 
rather than starting with an abstractly designed representation and trying to force 

22The concept of signals has been adapted from MESA (Lampson, Mitchell, & Satterthwaite, 
1974). 
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the world into it. To some degree we have drawn orr our collective experience 
with designing language understanders. However, we believe that complex 
systems are "Whorfian" in that the underlying structure and style of .a 
representation language can have a strong effect on what people attempt to do 
with it. Therefore, we see a need for a feedback loop in which systems are built, 
used, and then redesigned on the basis of experience. 

O u r  current research strategy includes a cycle of three steps, with a step time 
on the order of six months to a year: 

1. Design a. system based on our current understanding and experi'ence. 
2. Build an experimental implementation that captures as much of this as 

feasible. 
3. Use the system in a number of test domains to understand its capabilities 

and push its limits. 

In the summer of 1976, we entered the third step on our first major round of 
design of KRL as embodied in KRL-0. For our experiments with KRL-0, we 
have chosen the strategy of implementing a set of already existing A1 programs, 
each of which we hope will exercise different subsets of its facilities, and raise 
additional representation issues. Our current plan is for the Xerox Understander 
group and several Stanford students to work on 5 to 10 programs.23 Each of 
these benchmark programs makes use of well-understood A1 techniques, which 
push the current facilities of A1 languages and systems, but which are clearly 
formulated in the already existing programs (or extended program descriptions 
which take the place of programs in several of the MIT dissertations). In some 
cases (such as MYCIN) much of the actual program deals with issues of smooth 
user interface, and the accumulation of large bodies of knowledge. We will not 
try to imitate these aspects, but only try to duplicate the basic modes of operation 
and reasoning. For most of the systems, however, it seems quite feasible to 
duplicate the complete published performance. 

By beginning with systems whose behavior and general outline are well 
defined, we can concentrate on the ways in which the KRL representation can be 
used to full advantage, and the places in which it does not meet the needs. We 

23Candidates being considered (some in progress) are: a simple cryptarithmetic problem solver 
(see Newell & Simon, 1972, for a description of the task); SAM, the Yale story understander 
(Lehnert, 1976; Schank and the Yale A1 Project, 1975); a learning program for recognizing a simple 
kind of ARCH (Winston, 1975); the Blocks world planning programs HACKER (Sussman, 1975) and 
NOAH (Sacerdoti, 1975); the Rutgers action understander, BELIEVER (Schmidt, 1975); M Y a N  

(Shortliffe, 1976), a simple medical advice system; a more complex .medical reasoner, perhaps 
CASNET (Kulikowski, 1974) or a diagnosis program sketched at MIT (Rubin, 1975); a legal reasoner 
based on a recent MIT dissertation (Meldman, 1975); GSP, a general syntatic processor (Kaplan, 
1973a); and travel assistant programs that are part of the series of GUS programs at Xerox PARC 
(Bobrow et al., 1976). We will not do all of the programs on the list, but include them as examples 
of the kinds of programs we would like to do. 
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expect each of these systems to take on-the order of 1-2 person-months of work, 
and to provide part of the feedback cycle for the design of KRL. 

4.2 Goals for Future Versions of KRL 

Although we cannot predict all the changes which our experience will force on 
us, we are aware of several major issues which we consciously avoided in 
designing KRL-0. Major areas of expansion in our future designs will include: a 
LISP-independent specification of the primitive data objects; a descriptive 
formalism for specifying procedures; integration of the different procedure- 
calling facilities and indexes; development of an integrated system for prograrn- 
ming and debugging; and development of a more convenient syntax. 

Procedure specijication. We need a way to specify procedures other than by 
giving a LISP function or expression. We believe that a representation system 
should make it possible to describe processes with the same generality and 
flexibility as any other objects. We want to take the ideas of multiple 
perspective, process frameworks, signals, and multiprocessing and integrate 
them directly into the ways procedures and arguments are specified, data are 
passed back and forth, etc. In particular we will be developing a notion of 
factored description in which a procedure is defined through a description based 
on multiple perspectives. This description may combine high level statements 
about the structure of the process, its results, conditions on various parts, etc., 
along with detailed statements about the individual steps. The system should 
be able to look at and understand descriptions of its procedures as well as run 
them. 

In most current formalisms there are completely different representations for 
the declarative statements (networks, or assertions, or clause sets) and the 
procedures. In those systems in which there is a uniform base,24 the declarative 
form is used primarily as a notation for writing programs as a sequence of steps 
to be executed. We want to greatly expand the conceptual tools for describing 
and talking about procedures from multiple perspe~tives.~~ We believe that this 
is necessary for two complementary reasons. 

First, the ability to describe and reason about procedures is useful for making 
programs easier to write, and necessary for the kinds of self-conscious strategy 
choosing, debugging, explanation,.and self-modification that are increasingly 
becoming a part of complex computer systems. One of the major beauties of LISP 

is the fact that programs are themselves built from the language's data structures 
(atoms and lists), making it easy to write editors, debuggers, program analyzers, 
and programming assistants. We would like to apply this kind of self-analytic . 
power at a higher level, using the reasoning, matching, and problem solving 

"As in MEMOD (Norman, c.t,ul., 1975), or for that matter, simple LISP structures. 
"systems like HACKER (Sussman, 1975) and MYCROFT (Goldstein, 1974) are first steps in this 

direction. 
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powers of KRL as a fundamental element in our tools for designing, building, and 
working with KRL programs. 

Second, as we explore the kinds of asynchronous, factored multi- 
process styles of program organization that are coming into existence, we will 
move away from the notion of a program as a sequence of steps (or simple 
control structures), and will explore alternative views of a process description in 
the language itself. In addition to being able to describe procedure definitions 
statically, we also need ways of describing and manipulating descriptions of 
dynamic states of processes. Even in systems such as LISP in which programs can 
be represented in the data structures of the language, the state of a process is 
represented in a totally separate set of data structures (stacks, registers, etc.). 
One advantage of production systems26 is that all control information is 
explicitly represented in the data structures. We hope to retain this property of 
uniformity and visibility, while providing a more structured set of mechanisms 
for building and manipulating control structures. These include primitives for 
building a priority ordered agenda of things to be done, assigning descriptions (in 
the declarative forms of the language) to processes on the agenda or currently 
being run, and assigning and consuming shared resource measures. This 
extension of'the way in which programs can be written is the largest part of what 
needs to be done. We hope it will be one of the major advances achieved by KRL 

as a programming language. It will involve a good deal of further research into 
how programs for a multiprocess environment are naturally conceptualized, and 
how people can best use the power of signals, procedural attachment, and other 
mechanisms that extend normal definition and coatrol structures. We also need 
to find ways of implementing interpreters and compilers who operate from 
complex descriptions of a desired procedure rather than a step-by-step program. 

Data objects. We need to formally specify the semantics of those data 
objects we are currently borrowing from LISP (atoms, strings, numbers, lists, 
arrays) and provide the necessary primitives. We will add some new data types 
oriented more toward a multiprocessing approach, such as stream, partially 
specijied lists and sets. There are currently some mechanisms for working with 
sets within KRL-0, but they need to be better integrated with the procedures and 
the primitive use of lists. Along with the primitive data objects, there will be a 
corresponding set of descriptions (in the KRL formalism) for use in programs that 
explicitly manipulate data and do reasoning about its form. 

A more uniform approach to indexing. KRL-0 contains a number of diierent 
mechanisms that can be viewed as carrying out a common task of using some 
kind of indexing mechanism to associate data objects (units or procedures) with 
names. Signal tables, the attachment of procedures to slots of units, and the 
associative index are very similar in structure. Other mechanisms (such as the 
retrieval of descriptions from fillerpairs in perspectives, and the use of variable 

2sSee Davis and King (1975) for a discussion of control structures used in production systems. 
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names in a program context) can be put into the same mold. In future versions, 
we hope to provide a better structured, more uniform mechanism for all of these, 
in order to reduce the diversity in the current system. 

All of the interfaces between programs and the world 
(user interactions, file systems, etc.) are currently done using INTERLISP (Teitel- 
man, 1975) and will have to be defined independently. This includes the obvious 
sorts of input-output, and also the user-interaction facilities for writing, filing, 
editing, compiling, running, and debugging programs. It also includes multipro- 
cessing facilities such as the spaghetti stack of Bobrow and Wegbreit (1975). We 
believe that the expanded reasoning powers of KRL programs will make it 
possible to write systems that are more flexible and useful than those existing in 
LISP. One of our research goals will be to develop intelligent programming 
apprenticesz7 within an integrated KRL system. In the area of input-output, we 
want to deal explicitly with different types of output device (random access, 
stream, formatted page) and input device (streams, pointing devices, asynchron- 
ous event devices, such as keysets) in a style which makes it easy to apply the 
general tools of KRL to programs demanding sophisticated user interaction. 

The current syntax for KRL-0 is quite clumsy, since it was designed 
to operate in a USP based system with a minimum of intermediate parsing. 
Except for the use of multiple bracket types, it is essentially LISP syntax. This 
results in an inordinately large number of bracketing characters in complex 
descriptions, and sequences such as "))))))>I" are not uncommon. We need to 
work out a more natural syntax. This will become even more important when we 
design the forms for describing programs and integrate them with the existing 
description forms. 

4.3 Building a Layered. System 

Throughout this paper we have described ways in which KRL provides a 
flexible set of underlying tools, rather than embodying specific commitments 
about processing strategies, or the representation of specific areas of knowledge. 
In terms of Fig. 1,  all we have described is the bottom layer. One of our major 
goals will be to build a set of strategy and knowledge modules on top of it. This 
will be done in the context of designing one or more specific systems for 
language understanding in a limited domain, with an emphasis on clean, 
well-defined interfaces. 

The construction of an integrated system will demand building many compo- 
nents. As we construct each one, we want to do it in a style that does not limit its 
usefulness to the specific context for which it was written. There is no one 
solution to the problems at a given level that wjll be satisfactory for all systems. 
But we believe that it is possible to develop a set of alternative modules at each 

='See Hewin and Smith (1975) and Winograd (1975b) for some ideas in this direction. 
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level 'which are sufficiently broad and flexible that someone interested in 
working at the next higher level could choose between them, rather than building 
all the way down. 

Over the course of several years and the design of several different systems, 
we hope to develop a large inventory of modules, each containing a substantial 
body of knowledge, and all expressed in a compatible formalism. If we are 
successful at finding the appropriate lines along which to decompose the 
knowledge which goes into language understanding (and thought processes in 
general), it will be possible to construct from them programs of much greater size 
and complexity than those now feasible. 

4.4 Summary 

We are in the process of developing a knowledge representation language that 
will integrate procedural knowledge with a richly structured declarative represen- 
tation designed to combine logical adequacy with a concern for issues of memory 
structure and recognition-based reasoning processes. The representation pro- 
vides for several independent dimensions of structuring which deal with the 
logical content, the relative accessibility of different pieces of knowledge, and 
the association of specialized processes with data at various levels of specificity. 

The system provides a basic orientation toward arecognition process based on 
a procedural framework for matching. The control structure is based on 
multiprocessing with explicit (user-provided) scheduling and resource control. 
Process frameworks and procedure directories are used to give the user detailed 
control over the semantics of the fundamental system operations. These include: 
adding new descriptions to memory; searching for a memory unit matching a 
given description; matching a given pattern against a specific description; and 
scheduling processes, based on resource allocation. 

The system is complex, and will continue to get more so in the near future. We 
are intentionally trying to be eclectic rather than reductive, in order to maximize 
what we can learn from our experiments with early implementations. As 
continuing experience indicates to us which of the facilities are most important, 
and points out ways in which they can be simplified, we will refine the language. 
However, we do not expect that it will ever be reduced to a very small set of 
mechanisms. Human thought, we believe, is the product of the interaction of a 
fairly large set of interdependent processes. Any representation language that is 
to be used id modeling thought or achieving "intelligent" performance will have 
to have an extensive and varied repertoire of mechanisms. 
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