
What is Computer Science?

Constraints on Acceptable Answers∗

Selmer Bringsjord
Department of Cognitive Science
Department of Computer Science

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA
selmer@rpi.edu

rough draft 8.11.06

∗I’m greatly indebted to Bill Rapaport, for not only investigating PCS, but specifi-
cally for giving a provocative presentation at the 2006 North American Computing and
Philosophy Conference on how he teaches PCS. (His course, continuously updated, is at
http://www.cse.buffalo.edu/∼rapaport/philcs.html.) I wrote this first draft of this note while
listening to this presentation.

http://www.rpi.edu/~brings
http://www.cse.buffalo.edu/protect unhbox voidb@x penalty @M {}rapaport/philcs.html

Philosophy of Computer Science (PCS) is in its infancy. For this reason alone,
the problems and questions that constitute PCS are far from determined. How-
ever, there should be no doubting that one of the driving questions in PCS is
this one:

Q What is computer science?

This note presents and defends four constraints on acceptable answers to Q.
The first constraint is that any answer to Q that includes some such notion

as “Whatever computer scientists actually do.” is unacceptable. This is easy to
see: Suppose that tomorrow, due to some Earth-wide cognitive fluke (I leave
the etiology to you: aliens do something to all the relevant brains, there is a
massive coincidence — whatever), all computer scientists decide to restrict all
their activity to abstract and physically realized finite state automata (FSAs),
and eschew mention (let alone use) of information-processing models and arti-
facts able to process functions from N (natural numbers) to N beyond those
that FSAs can handle. Would we now say that computer science is a field re-
stricted to information processing that FSAs can muster, and nothing more?
Clearly not. To bring the point home, suppose that a fluke like this strikes not
computer scientists, but physicists. (Philosophy of physics is of course quite
mature.) Specifically, imagine that physicists suddenly became constitutionally
unable to consider modeling the physical world in ways outside of the Newto-
nian paradigm. Now suppose that, after this fluke occurs, and while it’s still
in force, a philosopher begins to systematically consider a thought experiment
involving clock synchronization and simultaneity that involves trains arriving in
stations and observers watching their watches.1 We can leave the details of the
(1905) thought experiment aside, since the important point (as you no doubt
already know) is that the thought experiment cannot be modeled by Newtonian
physics. Would we say that this philosopher isn’t doing philosophy of physics,
because physicists don’t do anything beyond the Newtonian scheme? I should
think not. In fact, we are likely to say that the philosopher here is a seminal
philosopher of physics.

Now the second constraint. McCarthy has said that computer science is
the science of “computational procedures.” Shapiro has said that computer
science is the “science of procedures.” (Well, based on what I heard in Bill
Rapaport’s NA-CAP talk, these thinkers have said this — but I may have
heard wrong.) No answer of this type,2 can be palatable. The reason is simple:
Computer science, as a matter of mathematical fact, can be taught exclusively
from the standpoint of logic. Instead of procedures, we can talk only of first-
order logic, and proofs and interpretations. We don’t need to write procedural
(= imperative) or functional computer programs, or formulate instructions for
Turing machines, register machines, and so on. It’s purely adventitious that our
educational system cements, year in and year out, the idea that computation

1Einstein is in the Library of Living Philosophers, note.
2Unless it admits of recherché interpretations of ‘procedure,’ according to which the term

doesn’t mean anything like a step-by-step recipe or algorithm. But then why use the term in
the first place?

1

is to be identified with step-by-step procedures or algorithms. (And make no
mistake, the cementing has happened. Students sometimes ask me, paralyzed,
“But how can you use your logicist approach to sort n numbers?”) Things could
have gone differently. The term ‘procedure’ (and all synonyms) could be absent
from the curriculum, at all times. And yet students would still learn all the
math, and all the programming, and so on.

The third constraint is that no such answer as that computer science is the
study and application of computation by standard Turing machines (or their
equivalents) is acceptable. The reason is clear: Theoretical computer scien-
tists have long been investigating machines that can compute (or better: hy-
percompute) functions from N to N that aren’t Turing-computable. After all,
the Arithmetic Hierarchy is part and parcel of computer science.

The fourth and final constraint flows from the third, and is this: No accept-
able answers to Q can entail that computer science is not, in significant part, a
formal science. The formal sciences also include pure mathematics, formal logic,
some technical parts of philosophy, mathematical psychology, and parts of eco-
nomics. I understand that some hold that computer science is a field within
engineering. (There is little question that parts of computer science fall within
engineering. The claim here is that computer science falls within engineering.)
This cannot be true. While engineering routinely partakes of mathematics, and
while frontier-breaking engineering can be highly mathematical, engineering is
clearly distinguished by the fact that it is inseparably linked to applications, to
physical things in the physical world. Not so computer science. There, semi-
nal problem solving can consist in making a formal advance only. Others may
apply this advance, yes. But when the advance has intrinsically formal value,
we are talking about a different animal. It may be a computer scientist who
settles P=?NP, after perhaps a lifetime of formal investigation. Such a person
will have made a contribution independent of any applications that ensue.

2

