
■ Intelligent systems need knowledge. However, the
simple equation “knowledge is power” leaves three
major questions unanswered. First, what do we
mean by “knowledge”; second, what do we mean
by “power”; and third, what do we mean by “is”?
In this article, I will examine the first of these ques-
tions. In particular I will focus on some of the mile-
stones in understanding the nature of knowledge
and some of what we have learned from 50 years
of AI research. The discipline and detail required to
write programs that use knowledge have given us
some valuable lessons for implementing the
knowledge principle, one of which is to make our
programs as flexible as we can.

Thank you for this distinguished award
and the opportunity to share some
thoughts with you.1 What I would like to

give you in this article2 are some of the princi-
ples guiding the implementation of knowl-
edge-based systems that follow from work in
philosophy and AI. Many of them are well
known, but they can serve as reminders of the
difficulty of implementing the “knowledge is
power” principle.3 I wish to clarify the knowl-
edge principle and try to increase our under-
standing of what programmers and program
designers need to do to make the knowledge
principle work in practice.

The “knowledge is power” principle is most
closely associated with Francis Bacon, from his
1597 tract on heresies: “Nam et ipsa scientia
potestas est.” (“In and of itself, knowledge is
power.”) Incidentally, Bacon was probably as
much interested in the political power to be
gained from knowledge as the power to under-

stand nature,4 but the concept of knowledge is
much the same.

Bacon was among the first of the modern
philosophers to separate the concept of scien-
tific knowledge from knowledge gained
through the two dominant methods for attain-
ing truth in his time: magic and religious reve-
lation. The essential difference for him, as for
us, is that knowledge gained through experi-
ment is replicable by others.

Although all the empirical sciences rely on
the replication of observations and experi-
ments, AI has been slow to embrace this prin-
ciple.5 Programs demonstrating research ideas
in AI are often too large and not well enough
documented to allow replication or sharing.
Applications programs, however, are designed
to be used by others outside the research lab
and thus are more amenable to multiple runs
in diverse conditions. Thus they have the
potential to provide experimental data demon-
strating strengths, weaknesses, and benefits.

Contributions before AI
The knowledge principle predates Bacon. For

example, it was pretty clearly articulated in Bib-
lical times: “A man of knowledge increaseth
strength” (Proverbs 24: 5).

Socrates, Plato, Aristotle, and other early
Greek philosophers based their lives on acquir-
ing and transferring knowledge. In the course
of teaching, they sought to understand the
nature of knowledge and how we can establish
knowledge of the natural world.

Socrates is famous for pointing out the value
of knowledge and seeking truth, as in “… that
which we desire to have, and to impart to oth-

Articles

WINTER 2006 35Copyright © 2006, American Association for Artificial Intelligence. All rights reserved. ISSN 0738-4602

IAAI/AI Magazine 2006 Robert Engelmore Award Address

What Do We Know
about Knowledge?

Bruce G. Buchanan

ers, [is] expert knowledge….” (Plato, Phaedrus
270d).

He was also fond of pointing out how little
we actually know—and was put to death,
essentially, for pointing that out to everyone:

When I conversed with him I came to see that,
though a great many persons, and most of all
he himself, thought that he was wise, yet he
was not wise. Then I tried to prove to him that
he was not wise, though he fancied that he was.
… I thought to myself, “I am wiser than this
man: neither of us knows anything that is really
worth knowing, but he thinks that he has
knowledge when he has not, while I, having no
knowledge, do not think that I have. I seem, at
any rate, to be a little wiser than he is on this
point: I do not think that I know what I do not
know.” Next I went to another man… (Plato,
Apology VI:22).

Plato, Socrates’s pupil and Aristotle’s mentor,
was the first to pose the question in writing of
what we mean when we say that a person
knows something about the world (Cornford
1935). He was distinguishing empirical knowl-
edge, lacking complete certainty, from the cer-
tain knowledge of mathematics. The whole
dialogue, The Theaetetus, is worth reading but—
if I may oversimplify the conclusion—Plato,
speaking for Socrates, concludes that person S
knows empirical proposition p if and only if:

S believes p
p is true (otherwise it is a false belief, not a fact
that is known)
S can provide a rationale for why p is true
(which Plato calls giving an account).

The last condition has been modified by
philosophers in recent years to read that S is
justified in believing p. This modification pre-
serves the requirement of a rationale but
removes the onus of providing it from subject
S. That is, the belief is justified, but S does not
need to be the one providing it. But, of course,
philosophers are not at all in agreement about
what constitutes a proper justification or
rationale. One view that would seem to be rel-
evant for AI is that either the belief or the jus-
tification is formed through a reliable cognitive
process. S didn’t just come to believe p through
a series of bad inferences or guessing based on
the wrong reasons (Steup 2006).

Aristotle continued the search for knowl-
edge, extending the methodology in two
important ways beyond the rational discussion
of Plato and the mathematics of Pythagoras. His
term for science, incidentally, was “natural phi-
losophy,” which was used by scientists as late as
Newton to describe their own work. One of
Aristotle’s most lasting contributions was show-
ing the importance of knowledge gained
through observation, as opposed to pure rea-

son. Aristotle wrote at least 31 treatises describ-
ing every aspect of the natural world and offer-
ing physical explanations of many phenomena.

Aristotle also advanced the rational tradition
of Plato and Pythagoras by developing a logic
that captures many forms of symbolic argu-
ment, which was powerful enough to survive
two thousand years. He demonstrated the
expressive power of simple propositions, “A is
B,” along with quantification, “All A’s are B’s,”
or “Some A’s are B’s.” He also established rules
of symbolic inference for combining quanti-
fied propositions.

Euclid’s geometry firmly established the con-
cept of rigorous proof within mathematics.
Some of the Greek philosophers’ contributions
to our concept of knowledge are highlighted in
table 1.

In the intervening several centuries before
the Middle Ages and the rise of modern science
in the West,6 the search for knowledge was
overwhelmed by the power of the Christian
church to make new knowledge fit with estab-
lished dogma. The resulting dark ages should
be a reminder to all of us that knowledge-based
systems should not merely perpetuate the
established dogma of an organization.

The English theologian and philosopher
Robert Grosseteste (1170–1253) is known for
emphasizing the role of mathematics in under-
standing the natural world. Galileo later under-
scored this principle when he wrote that the
“book of nature” is written in “the language of
mathematics.” Grosseteste is also credited with
establishing the experimental method as a
path to knowledge in his own experimental
work on the refraction of light.

William of Ockham was the most influential
philosopher of the 13th century. His two major
contributions to the study of knowledge that
are relevant to AI were nominalism and his
insistence on simplicity. With nominalism, he
argued that what we know is expressed in lan-
guage. As a pragmatic principle in AI program-
ming, that translates roughly into the principle
that if someone can accurately describe how
they solve a problem, then a program can be
written to solve it. The principle of parsimony,
now known as Occam’s Razor, states that plu-
rality should not be assumed without necessity. In
other words, explanations that mention fewer
entities and mechanisms should be preferred to
more complex ones.

So, by the time modern science was getting
started, several important principles about
knowledge had already been clearly established
by the ancient Greeks. Medieval philosophers
reinforced and added to the early concepts, as
shown in table 2.

Articles

36 AI MAGAZINE

Skipping ahead a few more centuries into
the 15th and 16th centuries, philosophers con-
tinued to investigate scientific questions by
elaborating the earlier themes and by making
new distinctions. By the 1500s many people
were using observation and experimentation
(that is, the scientific method) to produce new
knowledge about the natural world. In the
17th and 18th centuries scientific discoveries
were made at an unprecedented rate (Pledge
1939) and the foundations of modern science
were clearly established.

Some of the most relevant principles and
ideas to come out of the early modern work are
shown in table 3.

Francis Bacon’s epigram “knowledge is pow-
er” is where we started. Bacon clearly articulat-
ed what is now known as the scientific
method, the steps of empirical investigation
that lead to new knowledge, as opposed to
deductive logic “as acting too confusedly and
letting nature slip out of its hands.” The old
logic, he said, “serves rather to fix and give sta-
bility to the errors which have their foundation
in commonly received notions than to help
the search after truth” (Bacon 1620). He is also
known for his description of science as a mul-
tistep process that may involve teams of people
in specialized tasks, such as data gathering. He

emphasized planned experiments as an essen-
tial step in the inductive process.

René Descartes is most known today for his
work on algebra and geometry, but he also
wrote about the scientific method (Descartes
1637). In the Discourse on the Method of Rightly
Conducting the Reason and Seeking Truth in the
Sciences he advocates accepting as knowledge
only “clear and distinct” truths. He articulated
the divide-and-conquer strategy of problem
solving and advocated enumerating all possi-
bilities in considering solutions to a problem so
as not to overlook any—both powerful ideas
for AI.

Sir Isaac Newton’s scientific and mathemati-
cal contributions, of course, are awe-inspiring.
Perhaps less appreciated is his emphasis on
clear writing, starting with publication in a
contemporary language (English) instead of
Latin. As noted by one historian, “Newton
established for the first time in any subject
more concrete than pure mathematics the
strictly unadorned expository style of Euclid,
an important advance on the cumbrous and
pretentious habits until then current” (Pledge
1939, p. 66).

Newton’s method, described in 1669, is one
of successive approximations, which he
applied to solving polynomials and others

Articles

WINTER 2006 37

Pythagoras Mathematics holds the key to correct descriptions of the world.

Socrates Seeking knowledge is good. Knowing what we don’t know (metaknowledge) is valuable.

Socrates
(Plato)

Empirical knowledge is true belief with an account: beliefs have to be justified to be called
knowledge.

Aristotle Observation is a legitimate source of knowledge. Symbolic logic is a means of increasing our
store of knowledge through valid inference: Knowledge beyond mathematics can be
proved.

Euclid New knowledge can be derived by rigorous proof.

Table 1. Some Contributions of Early Greek Philosophers to Our Understanding of the Concept of Knowledge.

R. Grosseteste Mathematics is essential for knowledge of the natural world.
Knowledge can be established experimentally.

William of
Ockham

Knowledge is linguistic. Simpler expressions of knowledge are
preferable.

Table 2. Some Contributions of Medieval Philosophers to our Understanding of the Concept of Knowledge.

have applied to more complex functions. It was
also used by Heron of Alexandria (Hero) to find
square roots in the first century.7 His method
was one of the first clearly articulated princi-
ples of heuristic reasoning, which can be
applied to symbolic reasoning as well as math-
ematics.

Newton added to the concept of scientific
reasoning the idea of the “crucial experiment”
(Boorstin 1985). This kind of experiment estab-
lishes a critical question whose answer, once
observed, can falsify a hypothesis. A negative
outcome cannot prove the hypothesis, but the
absence of refutations is widely accepted as
support. Although there are methodological
difficulties with the concept, it is still a power-
ful idea in every science.

Bayes’s Theorem is particularly important
because it establishes the probability of a
hypothesis H conditional on evidential support
E (Joyce 2006). For the first time, scientists had
a way to quantify the degree to which evidence
supports a hypothesis and a way to revise a
degree of belief incrementally as new evidence
becomes available. A cornerstone of Bayesian
probabilities is that the prior probability of the
evidence is an essential starting point.

Some additional principles we can draw on
from the early modern period are shown in
table 4 without comment.

During the last hundred years or so, philoso-
phers and scientists have continued to add to
the list of things we need to pay attention to in
implementing the knowledge principle (see
table 5). One of the towering giants of the cen-
tury was Bertrand Russell.

Bertrand Russell and Alfred North White-
head developed the first-order predicate logic
and showed its power for expressing much of
what we know. But we also have seen that it
needs to be augmented, or replaced, with other
tools for representation and reasoning. For

example, nonmonotonic reasoning does not
obey the laws of first-order logic because new
information can negate previously believed
propositions. Kurt Gödel’s proof that there are
some true statements that cannot be proved in
first-order logic is not relevant for building
knowledge-based systems and may be totally
irrelevant to the question of whether AI is pos-
sible (contrary to what others have claimed).
However, it does underscore the need to con-
sider metalevel knowledge when building an
intelligent system.

Russell also showed us that we—or a pro-
gram—can get into serious logical difficulties
when we describe things self-referentially.
When Epimenides the Cretan says “All Cretans
are liars,” we don’t know how to assess the
truth or falsity of his statement. Also, when we
define a class in terms of membership in the
same class we lose the ability to assess class
membership. For example, Russell’s famous
barber paradox concerns a barber who shaves
all men who do not shave themselves. Logic
does not let us answer the question whether
the barber himself is in that set or not. Para-
doxes such as these are strong reminders that
we do not yet know everything about manag-
ing knowledge (Quine 1966).

Because of Gottlob Frege’s work on inten-
sional predicates, we know that statements
about beliefs and knowledge, among other
things, do not follow the logical rules allowing
substitution of equals for equals. Consider:

John believes Aristotle invented logic.
Aristotle was Plato’s pupil

. . . but it is not necessarily true that:

John believes Plato’s pupil invented logic
(because John does not know the relationship
between Aristotle and Plato)

Therefore, when we build knowledge-based
systems, keeping track of what the program
knows and believes is not a simple matter of

Articles

38 AI MAGAZINE

F. Bacon Knowledge is power. Planned experiments facilitate scientific investigations. Scienctific
questions can be investigated by large teams.

R. Descartes Solve problems by divide-and-conquer. Make complete enumerations to be sure nothing is
overlooked.

I. Newton Clear exposition facilitates knowledge transfer. Iterative refinement is a powerful heuristic for
solving hard problems. Crucial experiments can be defined to refute hypotheses, or, if
negative, help support them.

T. Bayes Prior probabilities are important pieces of knowledge. Laws of probability can establish the
conditional probability of an event given the evidence.

Table 3. Some Contributions from the Early Modern Period to Our Understanding of the Concept of Knowledge.

deduction. As John McCarthy and others have
pointed out, it can be enormously complicated
to keep track of a computer’s—or a person’s—
set of beliefs, and revise the set as more infor-
mation becomes available. Jon Doyle’s work on
truth-maintenance provides some implemen-
tation guidelines to start with.

Carl Hempel clarified the concept of an
explanation in a way that is very relevant to a
program’s offering explanations of its beliefs.
Acceptable explanations of a phenomenon P—
such as a rainbow8—under the deductive-
nomological model of explanation, follow the
form:

Why P? (for example, why is there a rainbow?)

If A is observed then P follows

(If the sun reflects and refracts off water
droplets …)

A is observed

(These conditions exist)

Therefore a rainbow is to be expected

Hempel’s model turns out to be intuitively
acceptable for the users of knowledge-based
systems who want a rationale for a program’s
advice. It was, in fact, one of the guiding prin-
ciples behind Mycin’s explanation system
(Buchanan and Shortliffe 1984).

Thomas Kuhn introduced the concept of a
paradigm into discussions of knowledge,
extending Immanuel Kant’s notion that our
beliefs and knowledge structures are framed
within a conceptual framework (Kuhn 1962).
For Kuhn, a paradigm in science includes not
just the vocabulary and conceptual framework
of a domain, but the shared assumptions,
accepted methods, and appropriate instrumen-
tation of the social community working within
that domain. In this sense, the paradigm
defines both the legitimacy of questions and
the acceptability of proposed answers.9 When

implementing a knowledge-based system, we
now understand the importance of making
both the ontology and the assumptions as
explicit as we can.

Nelson Goodman has examined the kinds of
statements that make good general laws—the
sorts of statements that describe causal rela-
tions and can be used in Hempel’s model of
explanation. Pure descriptions of things in the
world that “just happen” to share a common
property may fit into a universal generaliza-
tion, but they are not good candidates for sci-
entific laws. In Aristotle’s terms, these are acci-
dental predicates. For example, the assertion,
“All people in this room at this hour today are
interested in AI,” may be a true description
(more or less) of everyone here, but it only
“happens” to be true. We could not use it, for
example, to predict that a janitor in the room
waiting for me to finish is interested in AI.
Goodman and others have found difficulties in
trying to define criteria for the kinds of predi-
cates that are appropriate for scientific laws.
But one criterion we can use operationally in
knowledge-based systems and machine learn-
ing systems is that the predicates used appro-
priately in general laws are predicates whose
semantics have allowed such use in the past. So
a predicate like “reflects light” can be tagged as
potentially useful for a theory, while an acci-
dental predicate like “is in this room at this
hour” would not be tagged.

There are (at least) two other concepts from
contemporary writers outside of AI that are
useful for us to remember in building knowl-
edge-based systems. George Polya (1945) intro-
duced the concept of heuristics into our para-
digm of reasoning, referring to rules that are
not always true but can be very powerful when
they are. He was not referring to probabilistic
arguments leading to a conclusion that is prob-

Articles

WINTER 2006 39

G. Leibniz An object is completely defined by its features (attribute-value pairs) .

I. Kant Our own conceptual framework determines what we can know about objects in the world.

D. Hume Knowledge of the natural world is never completely certain. Much of what we know rests on
the assumption that the future will be like the past.

J. S. Mill General laws can be discovered from data. Causality is determined, in part, by systematic
variation of an independent variable with observed variation in a dependent variable shortly
afterward.

Table 4. Additional Contributions from the Early Modern Period to Our Understanding of the Concept of Knowledge.

ably true or about measuring a heuristic’s
degree of applicability, but to the importance
of the rules themselves in making progress
toward solving hard problems. One of the
sources of ideas for Polya was a diagram of the
situation. In a geometry problem, for example,
if two line segments look equal in the diagram,
it might be useful to try to prove that they are
in the general case. For us, the main lessons in
Polya’s work are that reasoning programs need
heuristics and heuristics can be made explicit.

Michael Polanyi emphasizes that much of
the useful knowledge a person has cannot be
made explicit—in his terms, it is tacit knowl-
edge. In building expert systems by acquiring
knowledge from experts, we often run into
areas of expertise that are not easily articulated.
We might say the expert’s knowledge has been
compiled. It is good to be cautioned that such
knowledge is not easy to acquire. Asking an
expert, “How do you solve this kind of prob-
lem?” may lead nowhere. But we have also
found another tack to be useful in eliciting
knowledge: when an expert seems to be strug-
gling to articulate what he or she does, turn the
question around and ask, “For this kind of
problem, what would you tell an assistant to
do?”

Psychologists and economists have also giv-
en us some considerations relevant to the
implementation of knowledge-based systems.
Kahneman, Slovic, and Tversky (1982) collect-
ed numerous data showing that human reason-
ing under uncertainty is not strictly Bayesian.
For example, reasoning about a new case often
involves comparisons with the most recent cas-
es seen. And people tend to ignore reversion to
the mean when assessing their own perform-
ance on a task; instead they (we) believe that
our best performance has become the new
norm and we’re disappointed with below-peak
output. One lesson to draw from this work is
that AI programs need not outperform the best
experts to be beneficial: they may help prevent
mistakes on the parts of practitioners thus rais-
ing the lowest common denominator among
people performing a task.

The well-known Pareto Principle states that

most effects come from relatively few causes—
in quantitative terms, it is known as the 80/20
rule: 80 percent of the benefit from performing
a task comes from about 20 percent of the
effort. It is an important design consideration
for applications programs. A designer can
demonstrate an early prototype with high cred-
ibility by carefully choosing which 20 percent
of the relevant knowledge to put into a system.

Herb Simon’s Nobel Prize–winning work in
economics on bounded rationality established
the fundamental axiom of AI: finding a satis-
factory solution is often a better use of
resources than searching longer for the optimal
solution. This, of course, is the principle of sat-
isficing. Don’t leave home without it!

Simon’s work with William Chase (1973)
demonstrated that expert problem solvers store
and use their knowledge in chunks. For exam-
ple, expert chess players use high-level pattern
descriptions, such as king-side attack, instead
of descriptions of the individual pieces on the
board.

Some recent contributions to our under-
standing of the concept of knowledge are
shown in table 6.

AI WORK
With the invention of digital computers, Alan
Turing began the empirical study of how much
and what kinds of intellectual work computers
can do. Insights from the early work mark the
beginning of AI and what is now known as
computational philosophy (Thagard 1988).
That is, writing programs has become a new
way to study the nature of knowledge.

There are several instances of programs using
specialized knowledge to achieve high per-
formance before 1970. Arthur Samuel’s checker
player used knowledge from experts. Geoffrey
Clarkson’s simulation of an investment trust
officer was essentially a collection of rules from
one expert. Richard Greenblatt’s mid-1960s
chess-playing program, MacHack, was based
on clearly articulated principles of good chess
play, such as the value of controlling the cen-
ter. Both Jim Slagle’s and Joel Moses’s programs

Articles

40 AI MAGAZINE

G. Frege Belief statements are intensional.

B. Russell Predicate logic works. Self-referential statements are problematic.

C. G. Hempel Explanations appeal to general laws.

Table 5. Some Contributions from the Last Hundred Years to
Our Understanding of the Concept of Knowledge.

for solving integration problems symbolically
and Tony Hearn’s program for algebraic simpli-
fication used considerable knowledge of the
tricks mathematicians use.

But Edward Feigenbaum’s 1968 address to
the International Federation for Information
Processing (IFIP) Congress was the first clear
statement of the knowledge principle in the
computer science literature (Feigenbaum
1968), describing the role of knowledge in
problem solving, Dendral’s problem in chem-
istry in particular. We believe that Dendral, and
then Mycin were the first to fully embrace the
knowledge principle. We were deliberately
seeking knowledge from experts because we
were not ourselves very knowledgeable about
the domains. We tried to be systematic about
the methods we used for eliciting knowledge
from experts (Scott, Clayton, and Gibson
1991). We tried to be disciplined about repre-
senting knowledge in simple, uniform data
structures that could be understood and edited
from the outside or used by the program to
explain their reasoning. And we separated the
parts of the program that held the knowledge
from the parts that reasoned with it.

Guidelines for implementing knowledge-
based systems have been suggested before
(Davis 1989, Buchanan and Smith 1988), and
those are still relevant to building systems.
Here I wish to focus specifically on some of the
things we have learned about knowledge
through observing and experimenting with
knowledge-based systems. Since most of these
items are familiar to most of you, I present in
table 7 the collection as reminders without
much explanation.

Existence of Knowledge
First, of course, it is essential that we choose
problems for which there is knowledge. If no
person knows how to solve a problem, then it
is dangerous to promise a computer program
that solves it. Predicting terrorist attacks with
any precision is a good research problem, for
example, but it is not a problem to solve with
a deadline.

On the other hand, if it is easy to teach
someone how to solve a problem, there is little
point in writing a program to solve it. Finding
powdered Tang in a grocery story might be
facilitated with a table of synonyms and aisle
labels, but it hardly requires much inference
unless you are in the wrong store.

Search Space
Newton had argued that it was impossible to
enumerate hypotheses for interesting problems
in science (called “induction by enumeration”)
because there can be infinite numbers of them.
Turing, however, showed that defining a search
space—even an infinite one—can provide a
conceptual starting point for implementing
heuristic search. Defining a start state and a
successor function allows a program, in princi-
ple, to generate hypotheses and test them one
by one until a solution is found or time runs
out. Heuristics allow a program to focus on
likely parts of the space.

Simon’s principle of satisficing works well
with heuristic search because it generally
broadens the definition of the goal beyond the
single-best state. Doug Lenat’s AM program
broadened the concept of the search space by
allowing the generator to be a plausible move

Articles

WINTER 2006 41

T. Kuhn Scientists work within paradigms (ontology plus assumptions
plus …).

N. Goodman Accidental predicates do not make good general laws.

G. Polya Heuristics are a powerful form of knowledge.

M. Polanyi Much of what we know is tacit.

D. Kahneman, P. Slovic, and A. Tversky Humans are not Bayesians.

V. Pareto 80 percent of the benefit often results from 20 percent of the
effort.

H. Simon Satisficing is often better than optimizing.

H. Simon and W. Chase Knowledge is chunked.

Table 6. Some Important Recent Contributions to Our Understanding of the Concept of Knowledge.

generator, as opposed to an in-principle com-
plete generator as in Dendral.

Explicit Representation
John McCarthy’s early paper “Programs with
Common Sense” (McCarthy 1958) argues for
representing knowledge explicitly in declara-
tive statements so that it can be changed easily
from the outside. Although the distinction
between declarative and procedural knowledge
is not a sharp one, users of programs are quick
to tell us when editing a knowledge base is easy
or hard.

Common Sense
Programs that solve real-world problems must
deal with numerous assumptions about the
way the world works. McCarthy has argued
that a program needs access to the deductive
consequences of a large axiom set. Lenat and
Feigenbaum have argued that common sense
can be encoded in millions of individual facts
and relations that keep a program from looking
silly. After McCarthy criticized Mycin for fail-
ing to know that amniocentesis would not be
performed on a male patient or that dead peo-
ple don’t need antibiotics, we came to realize
that we had an effective operational way of
dealing with common sense other than trying
to encode it. Namely, we assumed that users of
a knowledge-based system would themselves
have some common sense. Doctors and nurses
using Mycin, for example, could be presumed
to know when their patients are already dead.

One important class of knowledge-based sys-
tem shares the load of problem solving so that
the system assists a person as a partner but
depends on the human user to provide addi-
tional knowledge of the problem area. In addi-
tion to users providing some of the common
sense, users are likely to have important input
when it comes to values and ethical considera-
tions in choices. That is, depending on the
context of use, a program may be able to
depend on a human partner to provide com-
monsense knowledge.

Additional lessons about knowledge relevant
to AI are presented in table 8.

Solved Cases, Generalizations, and
Prototypes
Arthur Samuel’s checker-playing program
clearly demonstrated the power of rote learn-
ing. If a problem has been successfully solved,
look up the solution and keep adding to the
library of solved cases to become smarter with
experience.

Case-based reasoning (CBR) is another way
to use previously solved cases. Instead of find-
ing an exact match for a case in a library and
transferring a solution directly, as in rote learn-
ing, CBR systems find similar matches and
modify their solutions.

Marvin Minsky and Roger Schank have advo-
cated encoding frames of prototypical objects
and scripts of prototypical events. Knowledge
about prototypical members of a class helps us
fill in what we need to know, understand what
we don’t know, and make good guesses about
missing information. Knowledge about how
complex situations typically unfold in time
helps us in just the same ways. Both frames and
scripts can give a program expectations for what
to expect and default values for filling in miss-
ing information.

Items of Knowledge
Three decades of experience with knowledge
engineering has taught us that knowledge does
not come in prepackaged “nuggets.” Eliciting
knowledge from experts is not so much like
mining for gold as like coauthoring a textbook.
It is a social process whose success depends on
the personalities and interpersonal skills of
both the knowledge engineer and expert.

We also know that the chunks of knowledge
in a knowledge base are not independent, and
therefore large sets of knowledge items can
interact in ways that are not completely pre-
dictable. For this reason, it is useful to collect
items into nearly independent groups, where
the interactions within a group are easier to see
and the interactions across groups are infre-
quent (table 9).

Rules
Emil Post proved that simple conditional rules
together with modus ponens constitute a logi-
cally complete representation. However, one
lesson from work with rule-based systems is
that rules are more powerful when augmented
with additional knowledge structures, such as
definitions and class-subclass hierarchies.

Whatever the data structures that are used to
represent knowledge, however, an important
lesson learned with some pain is to use the
concepts and vocabulary of the end users.
Experts in the home office or academe do not

Articles

42 AI MAGAZINE

1 Knowledge of the task domain must exist.

2 Defining a search space is essential.

3 Explicit knowledge structures facilitate system building.

4 Common sense can be defined or assumed.

Table 7. Some Conclusions about Knowledge from Early Work in AI.

necessarily speak the same language as users in
the field. It is also critical that users provide
knowledge about the work environment. There
is a danger that the expert providing the
knowledge is unfamiliar with the constraints
and assumptions implicit in the context of the
actual work place.

Hierarchies
Aristotle’s insights on organizing knowledge
hierarchically have been implemented in
semantic networks, frames, prototypes, and
object-oriented systems in general. Knowing
the class to which an object belongs gives us
considerable information about the object.
Thus we save time and space by knowing about
classes. Moreover, we gain the ability to make
plausible inferences about an object in the
absence of details, since it is usually safe to
assume information inherited from a class is
correct unless we’re told otherwise.

Default Knowledge
Giving a program a set of defaults, or a way to
determine them, broadens the range of prob-
lems the program can deal with. Even in the
absence of specific values for some attributes, a
program can find plausible solutions if it can
make reasonable guesses about the missing val-
ues. Default values may be stored in proto-
types, hierarchies, definitions, or lists.

Uncertainty
The knowledge we use for problem solving is
frequently uncertain and incomplete. Also, the
information we have about the objects and
events named in any individual problem is
uncertain and incomplete. Yet we, and the sys-
tems we build, are expected to provide satisfac-
tory solutions with the best information avail-
able. Fabricating information to fit a
preconceived conclusion is not scientifically
acceptable. Therefore, implementing the
knowledge principle requires implementing a
means of dealing with uncertain and incom-
plete knowledge.

The simplest way to deal with this inconven-
ience is to ignore it: act as if everything known
to the program is categorically certain. For sim-
ple problems this is often sufficient. Currently,
the most popular way of dealing with uncer-
tainty is to assign probabilities to what is
known and combine them with Bayes’s Theo-
rem. Nonprobabilistic methods, like contin-
gency tables, fuzzy logic, and Mycin’s certainty
factors, have also been used successfully.

Attached Metadata
A large knowledge base needs to be constructed

incrementally. Often more than one expert
and more than one knowledge engineer are
involved in the construction and modification.
For these reasons, it is good practice to tag the
identifiable chunks of knowledge with addi-
tional information. In Mycin, for example, it
was useful to note the author of the chunk, the
date it was added, subsequent modification
dates, literature references, and reasons why
the chunk was added.

More lessons about knowledge relevant to AI
are presented in table 10.

Constraints
Many problems require synthesizing a solution
that satisfies a large number of constraints.
Scheduling problems, configuration problems,
and design problems all have this character,
each with powerful models for how to solve
them. Each constraint is a specific piece of
knowledge about the problem that can be
examined and reasoned about. For example, a
program can decide to postpone trying to sat-
isfy a constraint until more information
becomes available if the constraint is an explic-
it chunk of knowledge and not a complicated
set of program statements.

Temporal Relations
James Allen’s interval calculus, based on Rus-
sell’s interval definition of time, is a workable
set of inference rules for reasoning about the
relative times of events. It should be in every
knowledge engineer’s toolbox for problems in
which temporal relationships are important.

Articles

WINTER 2006 43

5 Knowledge of past cases is powerful.

6 Generalizations and prototypes are powerful.

7 Nearly-independent chunks can be defined.

8 Elicitation of knowledge is social.

Table 8. Additional Lessons about Knowledge Relevant to AI.

9 Rules, hierarchies, and definitions complement one another.

10 Default knowledge adds breadth and power.

11 Uncertainty and incompleteness are ubiquitous.

12 Metadata facilitates debugging and editing.

Table 9. Additional Lessons about Knowledge Relevant to AI.

Analogies
Analogical reasoning can be a powerful tool,
but we still do not understand how to tell a
good analogy from a bad one. For example, is
the Iraq war like the Vietnam war or not? There
is no question that knowledge of similar situa-
tions can be helpful, but for the moment case-
based reasoning seems to be more tightly con-
strained than broader analogical reasoning.

Diagrams
Polya advocated drawing a diagram to help us
understand a problem and see relevant interre-
lationships among objects. Unquestionably, a
diagram contains information that is useful—
as we say, a picture is worth a thousand words.
Gelernter’s geometry program did use dia-
grams, and a few others have, but tools for
using diagrams are still missing from the
knowledge engineer’s toolbox.

Table 11 lists still more lessons about knowl-
edge that are relevant to AI.

Opportunistic Use
Oliver Selfridge’s Pandemonium program and
subsequent work with the blackboard model
show that knowledge need not be used in a
fixed sequence. It makes good sense to use the
items of knowledge that have the most to con-
tribute to a problem at each moment. In sched-
uling and planning problems, for instance,
some constraints are more useful as more of
their preconditions are met—which means
either waiting until more information is avail-
able or forcing the program to chase after the
preconditions.

Redundancy
Contrary to Occam’s Razor, there are good rea-
sons to encode the same information redun-
dantly in a program. For one thing, we cannot
achieve total independence of evidence state-
ments in real-world systems because the com-
ponents are interrelated. Many things can
cause a fever, for example, and a fever can be
evidence for many conditions. Also, the actual
description of a problem is generally missing
some items of data. If there are multiple paths
for making inferences, the missing data will
not hurt as much.

Shared Knowledge
Reid Smith has suggested that the simple state-
ment of the knowledge principle be expanded
to:

Power = KnowledgeShared

where the exponent indicates the number of
people or machines whose knowledge is being
brought to the problem.10 This is an excellent
point. It fits with the common wisdom that
two heads are better than one. A community of
more or less independent problem solvers is a
powerful model, if the environment fosters
and rewards sharing. Selfridge made an early
demonstration of the power of this model in
his Pandemonium program, and it has been
generalized in the blackboard model, but only
recently has it become common in the business
world. For example, an article in The Economist
(May 8, 2003) describes a survey of knowledge
management that “found that the best-per-
forming companies were far more likely than
the worst-performing ones to use creative tech-
niques for acquiring, processing and distribut-
ing knowledge.”

The benefits of collaboration among ma -
chines have been demonstrated in a few
research projects, but collaborative problem
solving through knowledge sharing is still far
from commonplace in AI. We have a lot to
learn about implementing collaborative pro-
grams. Parallel searching in search engines like
Google enables rapid response, but it is more a
result of divide-and-conquer than it is of better
thinking through collaboration.

What Does a
Programmer Have To Do?

Every problem-solving or decision-making pro-
gram requires knowledge of the problem area.
When we write a program to calculate an area
as length times width, we are codifying a piece
of knowledge from geometry in the procedure.
However, the discipline of knowledge-based

Articles

44 AI MAGAZINE

13 Constraint-based reasoning is powerful.

14 Temporal reasoning may be required.

15 Analogies may help.

16 Diagrams aid in elicitation — and in future reasoning.

Table 10. More Lessons about Knowledge Relevant to AI.

17 Knowledge can be used opportunistically.

18 Redundancy is often helpful.

19- Knowledge sharing adds power.

Table 11. Still more Lessons about Knowledge Relevant to AI.

programming goes beyond “hard wiring” rele-
vant knowledge in procedures. Actually imple-
menting the knowledge principle in a program
requires codifying the knowledge in ways that
it can be examined and changed easily. Ideally,
the program can even explain what knowledge
it uses to solve a particular problem and why it
uses it.

In our description of the Mycin experiments,
Shortliffe and I attempted to find a one-word
summary of what made Mycin work as well as
it did (Buchanan and Shortliffe 1984). The one
word was flexibility. In the design and imple-
mentation of the program, we looked for ways
of incorporating knowledge about the domain
of medicine and the task of diagnosis in the
most flexible ways we could. In particular, we
wanted the knowledge to be represented to
allow straightforward credit assignment, easy
examination and modification, and user-
friendly explanations of why the program
believed what it did. One simple reason why
this is desirable is that complex knowledge-
based systems need to be constructed through
a process of iterative refinement (recall New-
ton’s method).

Staying flexible seems to have three compo-
nents at the implementation level that I
believe facilitate constructing and fielding suc-
cessful knowledge-based systems (table 12): (1)
explicit representation of knowledge within
the program using the vocabulary and proce-
dures of practitioners in the task domain—and
relating them under a coherent model of the
task domain; (2) explicit reasoning steps that
the program can play back (“explain”) in an
understandable fashion; and (3) modular, near-
ly independent chunks of knowledge, whether
that knowledge is codified in procedures or
data structures.

Conclusions
On the assumption that an audience will
remember only seven plus-or-minus two
things, I have three take-home lessons.

First, Bacon is right: knowledge is power.
Philosophers have given us many distinctions
in what we know about knowledge. For exam-
ple, what kinds of evidence count as justifica-
tions for a belief, what kinds of knowledge
there are, and how distinguishing metalevel
and object-level knowledge clarifies a problem.

Perhaps the most important lesson is that
real-world problems require real-world knowl-
edge. Problems are hard when relevant knowl-
edge is not neatly codified. Knowledge of
objects and processes in the real world is often
approximate, ambiguous, incomplete, and
wrong. That is one of the most important rea-
sons why human problem solvers require con-
siderable training and experience to solve real-
world problems and why assistance from
computers is welcome. It is also one of the
most important reasons why precise, logical
formulations of real-world problems are often
inaccurate. And it is the reason why satisficing
is a good strategy.

Second, Feigenbaum is right: more knowl-
edge is more power. The more kinds of things a
program knows about in a domain, the greater
the scope of its capabilities. By using class hier-
archies, there is considerable economy in
adding knowledge about new instances.

Including more knowledge of the objects
and events in a problem domain and more
knowledge of special cases will increase the
power of a program. Computer scientists have
shown how to implement many specialized
kinds of knowledge needed to solve real-world
problems. These include spatial and temporal
relationships, conceptual hierarchies, general-
izations with and without uncertainty, excep-
tions, and analogies.

Third, discipline is required to maintain flex-
ibility—implementing the knowledge principle
requires making knowledge explicit and mod-
ular. Large knowledge bases are constructed
iteratively, with an experimental cycle of test-
ing and modifying. Without the flexibility to
examine and modify a program’s knowledge,
we are unable to determine what to change.

Articles

WINTER 2006 45

1 Explicit representation of knowledge — within the users’ conceptual framework.

2 Explicit reasoning steps.

3 Modular, nearly-independent, chunks of knowledge.

Table 12. Operationalizing Flexibility.

A Primary Lesson from the Mycin Experiments (Buchanan and Shortliffe 1984).

Worse yet, without the flexibility to
examine and modify a program’s
knowledge, we are at the mercy of the
program’s power to take the program’s
advice without understanding how it
is justified. Plato said that’s a bad idea.

Let me conclude with a Native
American proverb that I hope program
designers and future AI programs will
be able to operationalize:

If we wonder often, the gift of knowl-
edge will come.

Acknowledgements
I am indebted to many colleagues who
have, over the years, given me the ben-
efit of their own knowledge of philos-
ophy and AI. Please credit them with
trying. In particular, Ed Feigenbaum
and Reid Smith provided substantial
comments on an earlier draft and,
among other things, encouraged me to
simplify. Phil Cohen provided several
comments and the reminder about
Russell’s interval definition of time.

Notes
1. This article is based on the Robert S.
Engelmore Award lecture, which I was hon-
ored to present at the Innovative Applica-
tions of Artificial Intelligence conference
held in July 2006 in Boston, Massachusetts.

2. As many of you know, Bob Engelmore
was dedicated to the clear exposition of
what we know and equally dedicated to
keeping silent when we don’t have the
facts. Many times when I began hand-wav-
ing, Bob would just give me an incredulous
look. So it was with some misgivings that I
chose the somewhat immodest title, “What
Do We Know about Knowledge?”

3. This is admittedly a whirlwind tour, with
more reminders than explanations. I hope
it not only will remind us of some of the
intellectual roots of AI but may also help us
create more robust systems in the future.

4. This was anticipated by the Greek poet
Menander, who wrote, “In many ways the
saying ‘Know thyself’ is not well said. It
were more practical to say ‘Know other
people’” (Thrasyleon Fragment).

5. There are, of course, notable exceptions
of good experimental science and clear
documentation in AI. See, for example,
Leake (2006). The case for AI as an experi-
mental science is made in Buchanan
(1994).

6. Western science owes much to the Arab
world, as acknowledged, for example, by
White (1967): “The distinctive Western tra-
dition of science, in fact, began in the late

11th century with a massive movement to
translate Arabic and Greek scientific works
into Latin.”

7. See Answers: Newton’s Method, www.
an swers.com/topic/newton-s-method
(2006).

8. See the National Center for Atmospheric
Research (http://eo.ucar.edu/rainbows/).

9. Bob Engelmore and I were once buying
food in a health food store for a backpack-
ing trip. We assumed that the powdered
drink Tang would be shelved with other
fruit drinks and asked an earnest young
clerk where to find it. It was not a legiti-
mate question in that store and we ended
up with a lecture on food additives. There-
after, the word Tang was shorthand for dis-
covering a context in which a lecture is a
proper response to a question, rather than
a simple answer.

10. See R. G. Smith, www.rgsmithassoci-
ates.com/ Power.htm.

References
Bacon, F. 1597. Religious Meditations, Of
Heresies. In Essayes. Religious Meditations.
Places of Perswasion and Disswasion. Seene
and Allowed (The Colours of Good and Evil).
London: John Windet.

Bacon, F. 1620. The New Organon. London:
Cambridge University Press, 2000.

Boorstin, D. 1985. The Discoverers. New
York: Vintage Books.

Buchanan, B. G. 1994. The Role of Experi-
mentation in Artificial Intelligence. Philo-
sophical Transactions of the Royal Society
349(1689): 153–166.

Buchanan, B. G., and Shortliffe, E. H. 1984.
Rule-Based Expert Systems: The MYCIN Exper-
iments of the Stanford Heuristic Programming
Project. New York: Addison Wesley.

Buchanan, B. G., and Smith, R. G. 1988.
Fundamentals of Expert Systems. In Annual
Review of Computer Science 3, 23–58. Palo
Alto, CA: Annual Reviews, Inc.

Cornford, F. 1935. Plato’s Theory of Knowl-
edge: The Theaetetus and the Sophist of Plato.
London: Routledge and Kegan Paul.

Davis, R. 1989. Expert Systems: How Far
Can They Go? Part One. AI Magazine 10(1):
61–67

Descartes, R. 1637. Discourse on the Method
of Rightly Conducting the Reason and Seeking
Truth in the Sciences. Translated by John
Veitch. Edinburgh: W. Blackwood and
Sons, 1870.

Feigenbaum, E. A. 1968. Artificial Intelli-
gence: Themes in the Second Decade. IFIP
Congress (2), 1008–1024. Laxenburg, Aus-
tria: International Federation for Informa-
tion Processing Congress.

Joyce, J. M. 2006. Bayes’ Theorem. Stanford

Encyclopedia of Philosophy. Stanford, CA:
CSLI, Stanford University. plato.stanford.
edu/entries/bayes-theorem/#3 (June 2006).

Kahneman, D.; Slovic, P.; and Tversky, A.,
eds. 1982. Judgment under Uncertainty:
Heuristics and Biases. Cambridge: Cam-
bridge University Press.

Kuhn, T. 1962. The Structure of Scientific Rev-
olutions. Chicago: Univ. Chicago Press.

Leake, D.; and Sorriamurthi, R. 2004. Case
Dispatching Versus Case-Based Merging:
When MCBR Matters. International Journal
of Artificial Intelligence Tools 13(1): 237–254.

McCarthy, J. 1958. Programs with Com-
mon Sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought
Processes, 77–84. London: Her Majesty’s Sta-
tionary Office.

Pledge, H. T. 1939. Science Since 1500. Lon-
don: His Majesty’s Stationery Office.

Polya, G. 1945. How To Solve It. Princeton,
NJ: Princeton University Press.

Quine, W. V. O. 1966. The Ways of Paradox
and Other Essays. Cambridge: Harvard Uni-
versity Press.

Scott, A. C.; Clayton, J.; and Gibson, E.
1991. A Practical Guide to Knowledge Acqui-
sition. Boston: Addison Wesley.

Simon, H. A., and Chase, W. G. 1973. Skill
in Chess. American Scientist 61(4): 394–403.

Steup, M. 2006. Analysis of Knowledge.
Stanford Encyclopedia of Philosophy. Stan-
ford, CA: CSLI, Stanford University.
plato.stanford.edu/entries/knowledge-
analysis/#JTB.

Thagard, P. 1988. Computational Philosophy
of Science. Cambridge, MA: The MIT Press.

White, Jr., L. 1967. The Historical Roots of
Our Ecologic Crisis. Science 155(3767), (10
March, 1967): 1203.

Bruce G. Buchanan was
a founding member of
AAAI, secretary-treasurer
from 1986–1992, and
president from 1999–
2001. He received a B.A.
in mathematics from
Ohio Wesleyan Universi-
ty (1961) and M.S. and

Ph.D. degrees in philosophy from Michi-
gan State University (1966). He is universi-
ty professor emeritus at the University of
Pittsburgh, where he held joint appoint-
ments with the Departments of Computer
Science, Philosophy, and Medicine and the
Intelligent Systems Program. He is a fellow
of the American Association for Artificial
Intelligence (AAAI), a fellow of the Ameri-
can College of Medical Informatics, and a
member of the National Academy of Sci-
ence Institute of Medicine. His e-mail
address is buchanan@cs.pitt.edu.

Articles

46 AI MAGAZINE

