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MATWETdATICAL INDUCTION AND RECURSIVE DEFERITIONS 


R. C. BUCK, University of Wisconsin and Institute of Defense Analyses 

Many students first encounter mathematical induction during a beginning 
course in algebra, either in secondary school or in college. For some of these 
students, this can become their first introduction to mathematical ideas, turn- 
ing their attention away from computational exercises to notions of structure 
and proof. Their initial distrust is gradually replaced by an appreciation for its 
power; with reference to dominoes or inductive sets, they will usually become 
convinced of its reasonableness. Some students will retain a cautious attitude 
toward certain types of applications of induction; in this paper, I wish to in- 
crease the number of these students by discussing some of these problems. 

Suppose tha t  we have agreed upon a workable definition of the notion of 
function. We will deal only with the set I =  (0 ,  1, 2, . . } of nonnegative 
integers, or with the set IX I  of pairs of integers, or more generally, with the set 
Ik=I X I X  . X I  for some specific k. A function will always be defined on a 
subset of such a set, and will take its values in I .  If we identify a function f with 
its graph, then a function f on I to I will become a specific set of pairs (n, f(n)) 
for all n E I .  More generally, we would say tha t  any nonempty subset S of IX  I 
that  is univalent is a function; its domain will be the projection of S into the 
first coordinate space. 

We now present a student with the following definition of a function f on 
I to  I :  

f ( n  + 1) = f(n) +J(PL - 1) a l l n  = 1, 2, 3 , .  .. 
I think that  it will be quite convincing to the student that  there is such a func- 
tion f , and tha t  i t  is uniquely defined by formula (1). He has no difficulty seeing 
that  f (2) =3, f (3) =5, f (4) =8, and so on. In short, he believes in the existence 
of f. However, there often remains a certain unhappiness in the mind of the 
student; he may say that  he wants a formula for t .  If he is pressed to explain, i t  
will be found that  he feels that  functions ought to  be described by means of 
certain allowed operations such as  addition and composition, and ought to  be 
built up from simpler functions. Students are constructivists a t  heart. 

In  the present example, of course, a formula can be given and should be 
given. He  will express astonishment that  so much complexity is needed for such 
a simple appearing function. 
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Of course, you can convince him that  this is correct, first by computing several 
values to  check it ,  and then by using mathematical induction. We observe tha t  

and that  

We have verified the correctness of (2) for n =0 and n = 1. Suppose that  we have 
verified i t  for n= 0, 1, 2, . . , k, can we be sure tha t  it holds for n= k+1? For 
simplicity, set A = (5 + 39/5)/10, B = (5 - 32/5)/10, a = (1 + 1/5)/2 and 
@ =  (1- .\/5)/2. Then, formula (2) can be written as  

By ( I ) ,  we have the right to  express f (k+1) as  f (k)+f (k  - I ) ,  so tha t  the induc- 
tive hypothesis gives us 

Observing that  a2= 1+a, and P 2= 1+@,we obtain 

verifying (3) and thus (2). Or, if the instructor has been more formal in his 
presentation, he can point out tha t  this argument has shown tha t  the set 
ECI of those integers n for which (2) holds is an inductive set;  since i t  contains 
0, i t  must, perhaps by an axiom rather than a theorem, be the whole set I. 

At this point, the line of development is sure to  be interrupted by a clamor 
to  know "where fcrmula (2) came from." This is handled either by suppressive 
measures, or by embarking upon a brief discussion of difference equations with 
constant coefficients. 

But  all of this has, to a certain extent, detoured the real and valid question 
which was in the student's minds. Is it in fact legitimate to define a function 
by a dodge like that  of formula (I)?  This certainly does not describe f either as 
a mapping or as a class of pairs. In this particular example, we were lucky enough 
to have folund a formula. Is this always the case? NIoreover, an alert and cau- 
tious student may also raise the general problem of how one can tell whether a 
relation similar to  (1) admits a solution. For example, is there a function f which 
satisfies this relation? 
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[Ans. No; t ry  computing f (13) ; then, replace n2-n+1 by 4n+1 and see what 
happens. ] 

Perhaps the following example, which deserves to  be better known, will 
bring the matter more clearly to a head. Suppose we wish to  define a function 
F on the set I X I ,  which we can for convenience picture as  the first quadrant. 
Suppose we write down the relation: 

Suppose tha t  we assign the values of F on the edges of the quadrant. Then, a 
little experimentation leads us to believe that  there is such a function, tha t  i t  is 
uniquely determined, and tha t  we can calculate any desired value of F. 

First, by assumption, we have available a complete knowledge of F(0, n) 
for each n ,  and of F(m, 0) for each rn; we can calculate their values for any  
specific choice of m or n. Set n= 0 in (S) ,  obtaining a simple recursion akin t o  
formula (1) : 

From this, and the knowledge of the boundary values of the supposed F, we 
can generate the value of F(x, 1) for any desired x ;  for example, F ( l ,  1) 
=F(F(0, I ) ,  0) which is computable since we know the number F(0, I ) ,  and can 
compute the specific value of F(x, 0) which results from setting x =  F(0, 1). 
Proceeding, we next have 

F(2, 1) = F(F(1, 11, 0) 

which is now computable since we know F( l ,  I ) ,  and so on. 
We can thus regard F(x, 1) as  known for any specific integer x. Now, put 

n =1 in (4), obtaining 

Since we know the initial value F(0, 2), we could proceed in the same fashion to  
compute F ( l ,  2), F(2, 2), and any later value of F(x, 2). Notice in particular 
that  a t  any  stage, we have needed to  know only a finite number of the values 
of F a t  earlier points; we did not need to  know all the values of F(x, 1) in order 
to  compute F(2, 2). In Figure 1,we have attempted to  make this point clear by 
shading the region tha t  might be needed in order to compute F(4, 3). 

We have thus reached the same spot with this example that  we encountered 
with equations (1). Apparently, we can compute any desired value of F; in-
tuitively, we are therefore convinced that  relation (4) admits a solution which 
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is a function defined on the entire set IX I.However, the behavior illustrated by 
formula (4) may lead a student to seek assurance tha t  the process outlined above 
leads to a consistent answer, tha t  the value ascribed to  F(4, 3) does not depend 
upon his mode of procedure; again, he would be much happier if we were to 
exhibit F as an explicit class of ordered pairs, constructed from the relation (5) 
by standard set operations, for this would demonstrate existence in a much 
more satisfying way. We shall in fact do this a t  the end of this paper, and a t  the 
same time show tha t  (5) cannot have two different solutions with the same as- 
signed boundary values; the situation is analogous to the study of the Dirichlet 
problem in partial differential equations. 

Known Voluer 

Before doing this, however, we can gain some appreciation for the latent 
strength of the scheme (5) by examining the results of a specific choice of bound- 
ary values: 

F(m, 0) = m + 1 m = 0 , 1 , . . .  . 

Formula (6) becomes 
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With the initial value F(0, 1) =2 from (8), this is easily seen to  have the solution 

(9) 	 F(m, 1) = 2 + m  m = O , l , . . .  . 
In  the same manner, (7) becomes 

F(m + 1, 2) = F(F(m, 2), 1) 

= 2 + F(?n, 2) m = 0 , 1 , 2 , . . .  

with the initial condition F(0, 2) = O .  From this, we obtain 

F(1, 2) = 2 + 0 = 2 

F(2, 2) = 2 + 2 = 2(2) 

F(3, 2) = 2 + (2)(2) = 2(3) 

and in general, 

(10) 	 F(m, 2) = 21%. 

Continuing in the same way, we have 

F(0, 3) = 1 

F(m + 1, 3) = 2F(nz, 3) 

from which we deduce that  F ( l ,  3) =2, F(2, 3) =22, F(3, 3) =23, and in general 

F(m, 3) = 2m. 

What  happens when we go to  the next stage? Our simple recursion becomes 

with F(0, 4) = 1. We are able to compute the values of F as before: 

and by using dots, we can fake a general formula 
2 

F(w, 4) = 22' [with m two's]. 

Let us t ry  the next case; we have the simple recursion 

F ( 0 ,  5) = 1 

F(m + 1, 5) = F(F(m, 5), 4) m = 0 , 1 , 2 , . . .  
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and using our value for F(x, 4), we write this as  

F(m + 1, 5) = 22  
2 ' 

[with F(m, 5) two's]. 

Tliis will suffice to  compute some of the early values of F, so tha t  we have for 
example 

F ( l ,  5) = 2 

F(2, 5) = 2 2  = 4 

F(4, 5) = 22'  with 65536 two's 
2 2 

F(5, 5) = 2 2 '  [with 22'  [with 65536 two's] two's]. 

However, I think that  i t  is quite clear that  we do not have a suitable way to 
write down any  nonbogus general formula for F(m, 5) within the notational 
schemes of the standard terminology. 

Still less, then, will this be true for F(m, 6), and manifestly more so for the 
function I) of one variable which is now definable by the equation 

$(x) = F(x, x) for x = 0, 1, 2, . . . 
However, it is also clear tha t  rl,(x) can be computed for any specific value of x ,  
granting the necessary time and paper-which undoubtedly exceeds both the 
estimated size of the universe and its duration, Indeed, $(0) = 1, rl,(l) = 3 ,  
$(2) =4, $(3) =8, $(4) =65536, and $(5) = F ( 5 , 5), which we have written down 
just above. 

The  existence of functions such as  rl, yields an unexpected dividend. The 
following personal illustration may be amusing. I have found tha t  most begin- 
ning analysis students seem to  accept as  plausible the conjecture that ,  given 
any increasing sequence of integers {c,),  one could find an entire function f 
such that  f(n) >c ,  for n =  1, 2, . . . If you suggest c,= Zn, they counter with 
f (z) =exp(z). I f  you suggest c,, =n!, they suggest f(z) =exp(exp(2)). However, 
once they have been shown the construction of the special function rl,, and have 
come to  appreciate its stupendous sate of growth, and the obvious possibility 
of creating functions which grow even more rapidly, their confidence in the con- 
jecture seems to  fade; analyticity is too delicate a phenomenon to match such 
catastrophic growth. Indeed, in one instance, the only student in the class who 
was able to overcome this feeling and find the simple general proof was one who 
had been absent the day before, and did not know about the function $. (Proof: 
Put  f(z) = ~ ~ , ( z / n ) ~ ~ . ,convergent for all z.) 
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The  power of recursive definitions is now plain to the student; he will not 
find i t  hard to  modify (5) for a function of three variables, generalizing Peano's 
recursion, so tha t :  

F(x, Y, 1) = x + Y 

F(x, Y, 2) = XY 

F(x, y, 3) = xY 

thus obtaining all the usual arithmetic operations a t  once. (This and the pre- 
ceding example are slightly modified versions of examples given origiilally by 
Ackermann; see [3] or [4].) At this point, the student is also prepared to  see the 
point of general theorems which deal with the more subtle aspects of existence, 
definability, and con~putability of functions. 

As an illustration, let us re-examine the recursion schemes we have used, 
and prove that  the solution of (5) is unique and can be exhibited as  a set of 
ordered pairs. Let us s tar t  from the simple recursion relation: 

where a is an integer, and g is a previously defined function on I to I. Introduce 
a special mapping S of I X  I into itself defined by: 

if p = (zs, v), then S(p) = (u + 1, g(v)). 

Let us say that  a subset A CIXI is admissible if i t  obeys the pair of conditions 

(0, a) E A 

if p E A ,  then S(p) E A .  


There are admissible sets, for example I X I .  More to  the point, if there is a 
function f that  obeys ( l l ) ,  then its graph is an admissible set. 

Let A0 be the smallest admissible set, e.g. the intersection of all the admis- 
sible sets. We show tha t  A0 is the graph of a function. Observe first tha t  if A 
is any admissible set, and q is any  point in A other than (0, a) ,  and if q is not of 
the form S(p) for any P E A ,  then we can remove q from A and still have an 
admissible set, since neither condition of (12) will be violated. Consequently, 
since A0 is minimal, every point in it ,  except (0, a) ,  is of the form S(p) for some 
P E A o .  Let T be the projection of I X I  onto the first factor, sending (u, v)  into 
u ;  it is then immediate that  w maps A0 onto I one-to-one, so tha t  A0 is a func- 
tion with domain I,and the desired solution of the recursion (11). 

We have therefore produced a new functioil @ of two variables, one an 
integer and the other a function, whose values are functions, and which is 
described by saying tha t  @(a,g) =f, where f is the (unique) solution of (11). 
If we let 5 denote the class of all functions on I to  I, then @ is a mapping on 
I X 5  to 5.  Suppose now that  a and P are in 5, and let us attempt to  define a 
sequence of functions F,E5 by the format 
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The  first line means that  Fo(m) =cr(m) for m =0, 1, . . . . The second line is 
harder to  interpret; if we set f =@(P(n), F,) then, by (11) which describes a, 

Since (13) identifies f with Fn+l,these conditions amount to  asking that  

If we now write F(x, y) for F,(x), we see that  all together, we have recaptured 
the form of the double recursion (5) exactly: 

Thus, we have shown that  a multiple recursion of the complicated type 
which we used to  create the function F, and then 11/, can in fact be reduced to a 
primitive recursion format, provided we allow function valued functions. Does 
(13) have a solution? If so, i t  will be a sequence of functions Fn,that  is, a func- 
tion F on I to  5 ;can we show its existence by exhibiting i t  as  a subset of I X S ?  
The pattern used earlier can be repeated exactly. Introduce a special mapping 
S of I X S  into itself by:  

if p = ( 2 1 ,  y), then S(p) = (u + 1, @(P(zh) ,  y)). 

Again, say that  A C I > ( S is admissible if A contains the point (0, a) and is 
mapped into itself by S. Then, in exactly the same fashion, the unique minimal 
admissible set turns out to be the graph of the sought-for function F. 

I t  is clear how this can be continued, basing the study of multiple recursions 
on tha t  of primitive recursions with more elaborate function valued functions. 
At this point, we are within range of the concept of a general recursive function 
and the related notions of computability and constructability. The  reader is 
herewith referred to  the bibliography. 
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