
■ Vast information from the neurosciences may en-
able bottom-up understanding of human intelli-
gence; that is, derivation of function from mecha-
nism. This article describes such a research
program: simulation and analysis of the circuits of
the brain has led to derivation of a detailed set of
elemental and composed operations emerging
from individual and combined circuits. The specif-
ic hypothesis is forwarded that these operations
constitute the “instruction set” of the brain, that is,
the basic mental operations from which all com-
plex behavioral and cognitive abilities are con-
structed, establishing a unified formalism for de-
scription of human faculties ranging from
perception and learning to reasoning and lan-
guage, and representing a novel and potentially
fruitful research path for the construction of hu-
man-level intelligence. 

There are no instances of human-level in-
telligence other than ourselves. Attempts
to construct intelligent systems are

strongly impeded by the lack of formal specifi-
cations of natural intelligence, which is defined
solely in terms of observed and measured hu-
man (or animal) abilities, so candidate compu-
tational descriptions of human-level intelli-
gence are necessarily underconstrained. This

simple fact underlies Turing’s proposed test for
intelligence: lacking any specification to test
against, the sole measures at that time were em-
pirical observations of behavior, even though
such behaviors may be fitted by multiple differ-
ent hypotheses and simulated by many differ-
ent proposed architectures. 

Now, however, there is a large and growing
body of knowledge about the actual machinery
that solely computes the operations of human
intelligence, that is, human brain circuitry. By
studying the structural (anatomical) and func-
tional (physiological) mechanisms of particular
brain structures, the operations that emerge
from them may be identified through bottom-
up analysis. The resulting algorithms often
have unforeseen characteristics, including hier-
archical structure, embedded sequences, hash
coding, and others (see, for example, Granger
et al. 1994; Kilborn, Granger, and Lynch 1996;
Shimono et al. 2000; Rodriguez, Whitson, and
Granger 2004). Considered initially in isola-
tion, the anatomical system-level layout of
these circuits in turn establishes how the indi-
vidual operators are composed into larger rou-
tines. It is hypothesized that these operators,
comprising the “instruction set” of the brain,
constitute the basic mental procedures from
which all major behavioral and cognitive oper-
ations are assembled. The resulting constructs
give rise to unexpected, and unexpectedly
powerful, approaches to complex problems
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age to motor cortex in mice causes subtle be-
havioral motor impairments, damage to motor
cortex in humans causes complete paralysis. In
this example of “encephalization of function”
(Jackson 1925; Ferrier 1876; Karten 1991;
Aboitiz 1993; Striedter 1997) motor operations
are increasingly “taken over” by cortex as the
size of the pyramidal tract overtakes that of the
descending striatal system. In mammals with
large brain-body ratios, the role of the striatal
complex is presumably altered to reflect that
its primary inputs and outputs are now anteri-
or neocortex; in other words, it is now primar-
ily a tool or “subroutine” available for query by
anterior cortex. For computational purposes,
its operations then are most profitably ana-
lyzed in light of its dual utility as organizer of
complex motor sequences (in small-brained
mammals) and as informant to anterior cortex
(in large-brained mammals).

Striatal Complex
The striatal complex or basal ganglia, the pri-
mary brain system in reptiles and second-
largest structure in humans, is a collection of
disparate but interacting structures. Figure 2
schematically illustrates the primary compo-
nents included in the modeling efforts de-
scribed herein. Distinct components of the
basal ganglia exhibit different, apparently spe-
cialized designs. For comparative purposes,
note that S in figure 1 corresponds to all that
is labeled “matrisomes” and “striosomes” in
figure 2, and P in figure 1 corresponds to all
that is labeled “GPe” and “GPi” (pallidum, or
globus pallidus, pars interna and externa) in
figure 2. Three additional small but crucial
components of basal ganglia shown in figure
2 are subthalamic nucleus (STN), tonically ac-
tive cholinergic neurons (TANs), and substan-
tia nigra pars compacta (SNC). These modules
are connected through a set of varied neuro-
transmitter pathways including GABA, gluta-
mate (Glu), dopamine (DA), acetylcholine
(ACh), and Substance P (Sp) among others,
each affecting multiple receptor subtypes.
Neurotransmitter-receptor pathways can be
roughly classified as excitatory (that is, acti-
vating their targets), inhibitory (suppressing
activity in their targets), and modulatory (al-
tering the strength of the other two types.

The entire striatal system can be understood
in terms of four subassemblies: (1) cortex matri-
some projections (action); (2) cortex ˚ strio-
some projections (evaluation); (3) SNC
dopamine (DA) projections to both matrisomes
and striosomes (learning); and (4) TAN projec-
tions to matrisomes (exploration). 

1. Cortex ˚ Matrisomes (Action). Two sepa-

ranging from perception to higher cognition.
The following sections introduce minimal

relevant background from neuroscience, to
provide a primer for those neurobiological
components from which computational ab-
stractions will be constructed. The emphasis is
on deriving constraints that limit hypotheses
to those concordant with known biology. Con-
forming hypotheses are then presented, and
sample computational realizations of these are
introduced and characterized. 

Organization of the 
Human Brain

Figure 1 depicts primary elements of the mam-
malian forebrain (telencephalon), shared
across all mammal species and growing to be-
come far and away the dominant set of struc-
tures in human brain. In the figure, sensory in-
put is received by posterior cortex (PC),
through diencephalic (nonforebrain) thalamic
nuclei (T), whereas motor outputs are produced
through interactions between anterior cortex
(AC) and the elements of the striatal complex
or basal ganglia (S, striatum; P, pallidum).
Mammalian brains scale across several orders of
magnitude (from milligrams to kilograms; mice
to mammoths), yet overwhelmingly retain
their structural design characteristics. As the ra-
tio of brain size to body size grows, particular
allometric changes occur, defining differences
between bigger and smaller brain designs. As in
parallel computers, connections among com-
ponents are among the most expensive attrib-
utes, strongly constraining design. As the brain
grows, those structures and connection path-
ways that grow disproportionately large are
highly likely to be the most indispensable ma-
chinery, as well as developing into the key
components of human brain that may set hu-
man intelligence apart from that of other
mammals. 

Figure 1b illustrates the three largest changes
that occur: (1) connection pathways between
anterior and posterior cortex (“fasciculi”) grow
large; (2) output pathways from striatal com-
plex change relative size: the recurrent path-
way back to cortex through the thalamus in-
creases relative to the descending motor
pathway; and (3) descending output from ante-
rior cortex to brainstem motor systems (pyra-
midal tract) grows large.

These changes grow disproportionately with
increased brain-body ratio, becoming notably
outsized in humans. In relatively small-
brained mammals such as mice, the primary
motor area of neocortex is an adjunct to the
striatally driven motor system. Whereas dam-
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rate pathways from cortex through matrisomes
involve different subpopulations of cells: (1)
MSN1 neurons project to GPi ˚ thalamus ˚
cortex; (2) MSN2 neurons insert an extra step:
GPe˚ GPi˚ thalamus˚ cortex. MSN and GP
projections are inhibitory (GABAergic), such
that cortical excitatory activation of MSN1s
causes inhibition of GPi cells, which otherwise
inhibit thalamic and brainstem regions. Hence
MSN1 cells disinhibit, or enhance, cortical and
brainstem activity. In contrast, the extra in-
hibitory link intercalated in the MSN2 pathway
causes MSN2s to decrease the activity of cortex
and brainstem neurons. These two pathways
through MSN1 and MSN2 cells are thus termed
“go” and “stop” paths, respectively, for their
opposing effects on their ultimate cortical and
motor targets. Coordinated operation over
time of these pathways can yield a complex
combination of activated (go) and withheld
(stop) motor responses (for example, to stand,
walk, throw), or correspondingly complex
“thought” (cortical) responses. These action re-
sponses will be subsequently modified by cal-

culations based on action outcomes, as de-
scribed later on. 

2. Cortex˚ Striosomes (Evaluation). The cor-
tex˚ striosome path initially triggers what can
be thought of as an “evaluation” signal corre-
sponding to the “expected” reward from a giv-
en action. As with cortex ˚ matrisomes, these
expected reward responses can be initially “pre-
set” to built-in default values but will be modi-
fied by experience (for example, sensor mea-
sures). Each cortically triggered action (through
cortical-matrisome path) will activate a corre-
sponding “reward expectation” through strio-
somes. Striosomes will then inhibit SNC as a
function of that expected reward. 

3. SNC Feedback ˚ Matrisomes and Strio-
somes (Learning). In addition to input from
striosomes just described, SNC receives input
from the environment conveying “good” or
“bad” state measurement information; that is,
if the action just performed resulted in a good
outcome, SNC’s activity is increased (“reward”),
whereas if the action resulted in an undesired
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Figure 1. Telencephalic Organization in Small-Brained (A) and Large-Brained (B) Mammals.

Posterior cortex (PC) receives primary sensory input (vision, audition, touch) through the thalamus and interacts with anterior cortex (AC),
which in turn forms loops with striatum (S) and pallidum (P). Pallidum and anterior cortex both produce movement output (dotted box).
Brain growth results in differential (allometric) growth of components and interconnects. In particular, disproportionate growth occurs in
posterior-anterior connections (1); recurrent return paths form a strong AC→ S→ P→ T→ AC loop (2), and motor functions increasingly depend
on cortical input (3).



provide input to matrisomes. TANs can be
thought of as a semirandom or “X” factor af-
fecting matrisomes’ choice of action from a giv-
en cortical input. For actions that have a nega-
tive expected reward (or a relatively small
positive one), the inhibitory effect from strio-
somes onto TANs will be correspondingly
small, and TANs modulatory effect on matriso-
mal action selection will be unimpeded, lead-
ing to high variability in the matrisomal
process of selecting actions from their cortical
input. For actions that elicit a strongly positive
expected reward from striosomes, the result
will be strong striosomal inhibition of TANs, re-
ducing their “X-factor” effect on matrisomes,
lessening the variability of response (that is, in-
creasing the reliability with which an action
will be selected by cortical inputs alone, with-
out TANs’ outside influence). The resulting be-
havior should appear “exploratory,” involving
a range of different responses to a given input.
The mechanism provides a form of “sensitivity
analysis,” testing the effects of slight variations
in the process of selecting actions from input
states (see Granger 2006).

The overall system can be thought of in terms
of an adaptive controller, beginning with preset

state, SNC is decreased (“punishment”). SNC
simply compares (for example, subtracts) this
input against its input from striosomes. The re-
sultant difference between the actual reward
and the striosomal “expectation,” either a pos-
itive or negative resultant, becomes input back
to both striosomes and matrisomes. In both
cases, this calculated positive or negative resul-
tant from SNC increases or decreases the
strength of connections from cortex to MSN
units. In matrisomes, if connection strength is
increased, then the same input will tend to se-
lect the same output action, with increased
probability. If decreased, then that cortical in-
put’s tendency to select that action will dimin-
ish, and other possible actions will compete to
be the outcome from this cortical input. Simi-
larly, in striosomes, strengthening or weaken-
ing connections between active cortical inputs
and their striosomal targets will either increase
or decrease the size of the future “expectation”
produced by striosomes from this cortical in-
put. Thus the system adjusts its selection of ac-
tions based on its experience of outcomes from
those actions.

4. TANs ˚ Matrisomes (Exploration). TANs
receive inhibitory inputs from striosomes and
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Figure 2. Schematic Diagram of Components and Connection Systems of Striatal Complex (Basal Ganglia).

Medium spiny neurons (MSNs) in matrisome and striosome systems each receive cortical inputs. Striosomes form an inhibitory loop with
SNC; matrisomes output to GP and thence back to cortex through the thalamus (v.thal). Primary connections are denoted as excitatory (ar-
rows), inhibitory (blocks), or modulatory (circles).



responses to inputs, tracking the outcomes of
those responses, and altering behavior to con-
tinually improve those outcomes, as in rein-
forcement learning algorithms (Schultz, Dayan,
and Montague 1997; Schultz 2002; Dayan,
Kakade, and Montague 2000) (see table 1).

Thalamocortical System
Neurons throughout neocortex are organized
into relatively stereotypical architectures (fig-
ure 3a). Although cortical studies describe some
(subtle but potentially crucial) differences
among various cortical regions (for example,
Galuske et al. 2000; Gazzaniga 2000), the over-
whelmingly shared characteristics justify long-
standing attempts to identify common basic
functionality, which may be augmented by
special-purpose capabilities in some regions
(Lorente de No 1938; Szentagothai 1975; Keller
and White 1989; White and Peters 1993; Rock-
el, Hiorns, and Powell 1980; Castro-Alamancos
and Connors 1997; Braitenberg and Schüz
1998; Valverde 2002). 

Two parallel circuit types occur, involving
topographic projections of certain restricted
thalamic populations and broad, diffuse pro-
jections from the remaining thalamic neurons.
These two populations of thalamic cells, re-
spectively termed “core” and “matrix” (no
relation, confusingly enough, with “matrix” in
striatum), are distinguishable by their targets,
topography, and chemistries (Jones 1998). 

These two loops are activated as follows: pe-
ripheral inputs activate thalamic core cells,
which in turn participate in topographic acti-
vation of middle cortical layers; for example,
ear ̊  cochlea ̊  auditory brainstem nuclei ̊
ventral subdivision of medial geniculate (MGv)
˚ primary auditory cortex (A1) (see Freund,
Martin, and Whitteridge 1985; Freund et al.
1989; Peters and Payne 1993). Other cortical
layers are then activated in a stereotypical ver-
tically organized pattern: middle layers ˚ su-
perficial ̊  deep layers. Finally, deep layer (lay-
er VI) projections return topographically to the
originating core thalamic nucleus, both direct-
ly and through an inhibitory intermediary (the
nucleus reticularis). This overall “core” loop
pathway is depicted in figure 3b. 

In contrast, matrix nuclei receive little or no
peripheral sensory input and are instead most
strongly driven only by corticothalamic feed-
back (Diamond, Armstrong-James, and Ebner
1992). Thus, once sensory inputs activate the
core loop, then feedback from deep layers acti-
vates both core and matrix thalamic nuclei
through these corticothalamic projections
(Mountcastle 1957; Hubel and Wiesel 1977; Di,
Baumgartner, and Barth 1990); the matrix thal-

amus then provides further inputs to cortex
(figure 3c). Unlike core thalamic input, both
feedforward and feedback pathways between
cortex and matrix thalamus are broad and dif-
fuse rather than strongly topographic (Killack-
ey and Ebner 1972, 1973; Herkenham 1986;
Jones 1998). 

Three primary modes of operating activity
have typically been reported for thalamic neu-
rons in these corticothalamic loops: tonic,
rhythmic, and arrhythmic bursting. The latter
appears predominantly during nonrapid eye
movement (non-REM) sleep whereas the first
two appear during waking behavior (McCarley,
Winkelman, and Duffy 1983; Steriade and Lli-
nas 1988; McCormick and Bal 1994). There is
strong evidence for ascending influences from
ancient conserved brain components (for ex-
ample, basal forebrain) affecting the probabili-
ty of neuronal response during the peaks and
troughs of such “clocked” cycles. The most ex-
citable cells will tend to fire in response even to
slight afferent activity whereas less excitable
neurons will only be added in response to
stronger input; this excitability gradient selec-
tively determines the order in which neurons
will be recruited to respond to inputs of any
given intensity (see, for example, Anton,
Lynch, and Granger 1991) during any particu-
lar active cycle during this clocked or synchro-
nous behavior. 

Axons of inhibitory interneurons densely
terminate preferentially on the bodies, initial
axon segments, and proximal apical dendrites
of excitatory pyramidal cells in cortex, and
thus are well situated to exert powerful control
over the activity of target excitatory neurons.
When a field of excitatory neurons receives af-
ferent stimulation, those that are most respon-

Articles

SUMMER 2006   19

1 Choose action A. Set reward_estimate ← 0
Set max_randomness ← R > 0

2 randomness ← max_randomness – reward_estimate

3 reward ← Eval( A + randomness )

4 If reward > reward_estimate then

A ← A + randomness

reward_estimate ← reward

5 goto step 2

Table 1. Simplified Basal Ganglia Algorithm.



are placed into a single category or cluster. This
can yield useful generalization properties, but
somewhat counterintuitively, it prevents the
system from making fine distinctions among
members of a cluster. For instance, four similar
inputs may initially elicit four slightly different
patterns of cell firing activity in layer II-III cells
but after repeated learning/synaptic potentia-
tion episodes, all four inputs may elicit identi-
cal cortical activation patterns. Results of this
kind have been obtained in a number of differ-
ent models with related characteristics (von der
Malsburg 1973; Grossberg 1976; Rumelhart
and Zipser 1985; Coultrip, Granger, and Lynch
1992; Kilborn, Granger, and Lynch 1996). 

Superficial layer responses activate deep lay-
ers (V and VI). Output from layer VI initiates
feedback activation of nucleus reticularis
(N.Ret) (Liu and Jones 1999), which in turn in-
hibits the core thalamic nucleus (figure 3b).
Since, as described, topography is preserved
through this sequence of projections, the por-
tions of the core nucleus that become inhibited
will correspond topographically to those por-
tions of L.II-III that were active. On the next cy-
cle of thalamocortical activity, the input will ar-
rive at the core against the background of the
inhibitory feedback from N.Ret, which has
been shown to last for hundreds of millisec-
onds (Cox, Huguenard, and Prince 1997;
Zhang, Huguenard, and Prince 1997). Thus it is
hypothesized that the predominant compo-
nent of the next input to cortex is only the un-
inhibited remainder of the input, whereupon

sive will activate the local inhibitory cells in
their neighborhood, which will in turn inhibit
local excitatory cells. The typical time course of
an excitatory (depolarizing) postsynaptic po-
tential (PSP) at normal resting potential, in vi-
vo, is brief (15–20 msec), whereas correspond-
ing GABAergic inhibitory PSPs can last roughly
an order of magnitude longer (80–150 msec)
(Castro-Alamancos and Connors 1997). Thus
excitation tends to be brief, sparse, and cur-
tailed by longer and stronger feedback lateral
inhibition (Coultrip, Granger, and Lynch
1992).

Based on the biological regularities specified,
a greatly simplified set of operations has been
posited (Rodriguez, Whitson, and Granger
2004). Distinct algorithms arise from simula-
tion and analysis of core versus matrix loops
(see tables 2 and 3).

Thalamocortical “Core” Circuits. In the core
loop, simulated superficial cells that initially re-
spond to a particular input pattern become in-
creasingly responsive not only to that input
but also to a range of similar inputs (those that
share many active lines; that is, small Ham-
ming distances from each other), such that
similar but distinguishable inputs will come to
elicit identical patterns of layer II-III cell out-
put, even though these inputs would have giv-
en rise to slightly different output patterns be-
fore synaptic potentiation. These effects can be
described in terms of the formal operation of
clustering, in which sufficiently similar inputs
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for input X

for C ∈ win( X,W )

Wj ⇐ Wj + k ( X – C)

end_ for

X ⇐ X – mean(win( X,W ) )

end_ for

where

X = input activity pattern (vector); W = layer I synaptic weight matrix;

C = responding superficial layer cells (col vector); k = learning rate parameter;

win(X,W) = column vector in W most responsive to X before lateral inhibition [∀j, max(X · Wj) ]

Table 2. Simplified Thalamocortical Core Algorithm.



the same operations as before are performed.
Thus the second cortical response will consist
of a quite distinct set of neurons from the ini-
tial response, since many of the input compo-
nents giving rise to that first response are now
inhibited. Analysis of the second (and ensuing)
responses in computational models has shown
successive subclustering of an input: the first
cycle of response identifies the input’s member-
ship in a general category of similar objects (for
example, flowers), the next response (a fraction
of a second later) identifies its membership in a
particular subcluster (for example, thin flowers;
flowers missing a petal), then subsubcluster,
and so on. Thus the system repetitively samples
across time, differentially activating specific

target neurons at successive time points, to dis-
criminate among inputs. An initial version of
this derived algorithm arose from studies of
feedforward excitation and feedback inhibition
in the olfactory paleocortex and bulb (Ambros-
Ingerson, Granger, and Lynch 1990; Gluck and
Granger 1993), and was readily generalized to
nonolfactory modalities (vision, audition)
whose superficial layers are closely related to
those of olfactory cortex, evolutionarily and
structurally (Kilborn, Granger, and Lynch 1996;
Granger 2002). The method can be character-
ized as an algorithm (table 2).

Analysis reveals the algorithm’s time and
space costs. The three time costs for processing
of a given input X are: (1) summation of inputs
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Figure 3. Thalamocortical Loops.

Complex circuitry (A) can be thought of in terms of two embedded loops: one (B) largely topographic, and incorporating negative feedback
(–); the other (C) largely nontopographic, and driven by positive feedback.
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mus and cortex, the diffuse projections from
layer V to matrix nuclei, and from matrix nu-
clei back to cortex (figure 3c) are modeled as
sparsifying and orthogonalizing their inputs,
such that any structural relationships that
may obtain among inputs are not retained in
the resulting projections. Thus input patterns
in matrix or in layer V that are similar may re-
sult in very different output patterns, and vice
versa. As has been shown in previously pub-
lished studies, due to the nontopographic na-
ture of layer V and matrix thalamus, synapses
in layer V are very sparsely selected to poten-
tiate, that is, relatively few storage locations
(synapses) are used per storage/learning event
(Granger et al. 1994; Aleksandrovsky et al.
1996; Rodriguez, Whitson, and Granger
2004). For purposes of analysis, synapses are
assumed to be binary (that is, assume the low-
est possible precision: synapses that are either
naïve or potentiated). A sequence of length L
elicits a pattern of response according to the
algorithm given previously for superficial lay-
er cells. Each activated superficial cell C in
turn activates deep layer cells. Feedforward
activity from the matrix thalamic nucleus al-
so activates layer V. Synapses on cells activat-
ed by both sources (the intersection of the
two inputs) become potentiated, and the ac-
tivity pattern in layer V is fed back to matrix.
The loop repeats for each of the L items in the
sequence, with the input activity from each
item interacting with the activity in matrix

on dendrites; (2) computation of “winning”
(responding) cells C; (3) synaptic weight mod-
ification. For n learned inputs of dimensionali-
ty N, in a serial processor, summation is per-
formed in O(nN) time, computation of winners
takes O(n) time, and weight modification is
O(N log n). With appropriate parallel hard-
ware, these three times reduce to O(log N),
O(log n), and constant time, respectively, that
is, better than linear time. Space costs are simi-
larly calculated: given a weight matrix W, to
achieve complete separability of n cues, the
bottom of the constructed hierarchy will con-
tain at least n units, as the leaves of a tree with
log Bn hierarchical layers, where B is the aver-
age branching factor at each level. Thus the
complete hierarchy will contain ~ n[B/(B–1)]
units, that is, requiring linear space to learn n
cues (Rodriguez, Whitson, and Granger 2004).

These costs compare favorably with those in
the (extensive) literature on such methods (Ro-
driguez, Whitson, and Granger 2004). Elabora-
tion of the algorithm has given rise to families
of computational signal processing methods
whose performance on complex signal classifi-
cation tasks has consistently equaled or outper-
formed those of comparable methods (Coultrip
and Granger 1994; Kowtha et al. 1994; Granger
et al. 1997; Benvenuto et al. 2002; Rodriguez,
Whitson, and Granger 2004).

Thalamocortical “Matrix” Circuits. In con-
trast to the topography-preserving projec-
tions in the “core” loop between core thala-
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for input sequence X(L)

for C ∈ TopographicSuperficialResponse( X (L ) )

for V(s) ∈ C ∩ NNtResponse( X (L– 1) )

Potentiate( V(s) )

NN t (L ) ⇐ NontopographicDeepResponse(V)

end_for

end_for

end_for

where L = length of input sequence;

C = columnar modules activated at step X(L);

V(s) = synaptic vector of responding layer V cell,

NN t (L )= response of nonspecific thalamic nucleus to feedback from layer V.

Table 3. Simplified Thalamocortical Matrix Algorithm.



from the previous step (see Rodriguez, Whit-
son, and Granger 2004). 

Activation of layer V in rapid sequence
through superficial layers (in response to an ele-
ment of a sequence) and through matrix thala-
mus (corresponding to feedback from a previous
element in a sequence) selects responding cells
sparsely from the most activated cells in the lay-
er (Coultrip, Granger, and Lynch 1992) and se-
lects synapses on those cells sparsely as a func-
tion of the sequential pattern of inputs arriving
at the cells. Thus the synapses potentiated at a
given step in layer V correspond both to the in-
put occurring at that time step together with or-
thogonalized feedback arising from the input
just prior to that time step. The overall effect is
“chaining” of elements in the input sequence
through the “links” created due to coincident
layer V activity corresponding to current and
prior input elements. The sparse synaptic poten-
tiation enables layer V cells to act as a novelty
detector, selectively responding to those sequen-
tial strings that have previously been presented
(Granger et al. 1994). The implicit data struc-
tures created are trees in which initial sequence
elements branch to their multiple possible con-
tinuations (“tries,” Knuth [1997]). Sufficient in-
formation therefore exists in the stored memo-
ries to permit completion of arbitrarily long
sequences from just prefixes that uniquely iden-
tify the sequence. Thus the sequence “Once up-
on a time” may elicit (or “prime”) many possible
continuations whereas “Four score and seven”
elicits a specific continuation. 

The resulting algorithm (see table 3) can be
characterized in terms of computational storage
methods that are used when the number of
actual items that occur are far fewer than those
that in principle could occur. The number of
possible eight-letter sequences in English is 268

� 200,000,000,000, yet the eight-letter words
that actually occur in English number fewer
than 10,000, that is, less than one ten-millionth
of the possible words. The method belongs to
the family of widely used and well-studied data
storage techniques of “scatter storage” or
“hash” functions, known for the ability to store
large amounts of data with great efficiency.
Both analytical results and empirical studies
have found that the derived matrix loop
method requires an average of less than two bits
(for example, just two low-precision synapses)
per complex item of information stored. The
method exhibits storage and successful retrieval
of very large amounts of information at this rate
of storage requirement, leading to extremely
high estimates of the storage capacity of even
small regions of cortex. Moreover, the space
complexity of the algorithm is linear, or O(nN)

for n input strings of dimensionality N; that is,
the required storage grows linearly with the
number of strings to be stored (Granger et al.
1994; Aleksandrovsky et al. 1996; Rodriguez,
Whitson, and Granger 2004). 

Combined Telencephalic Algorithm Opera-
tion and the Emergence of Complex Special-
izations. In combination with time dilation
and compression algorithms arising from
amygdala and hippocampal models (Granger
and Lynch 1991; Granger et al. 1994; Kilborn,
Granger, and Lynch 1996), a rich range of op-
erations is available for composition into com-
plex behaviors. From the operation of thalam-
ocortical loops arises the learning of
similarity-based clusters (table 2) and brief se-
quences (table 3), yielding the primary data
structure of thalamocortical circuitry: se-
quences of clusters. These are embedded into
thalamo-cortico-striatal (TCS) loops that en-
able reinforcement-based learning of these se-
quences of clusters. The output of any given
cortical area becomes input (divergent and
convergent) to other cortical areas, as well as re-
ceiving feedback from those cortical areas. Each
such region in the thalamo-cortico-striatal ar-
chitecture performs the same processing on its
inputs, generating learned nested sequences of
clusters of sequences of clusters. 

Auditory cue processing. Figure 4a illustrates a
spectrogram (simplified cochleogram) of a
voice stream (the spoken word “blue”), as
might be processed by presumed auditory
“front-end” input structures. Proceeding left to
right (that is, in temporal order) and identify-
ing “edges” that are readily detected (by simple
thresholding) leads to creation of brief se-
quences/segments corresponding to these
edges as in figure 4b.

The learned cortical sequences (characterized
as line segments) correspond to constituents of
the signal. As multiple instances of the signal
are learned, some features will be strengthened
more than others, corresponding to a statistical
average of the signal rather than of any specific
instance. Outputs from cortical areas are input
to other cortical areas, combining individual
pairwise sequences into sequences of sequences
(actually sequences of clusters of sequences of
clusters, and so on), and statistics are accreted
for these by the same mechanisms. The result is
a widely distributed set of synaptic weights that
arise as a result of training on instances of this
kind. (There is contention in the literature as to
whether such learned internal patterns of
synaptic weights are “representations,” a term
that has baggage from other fields. Without en-
gaging this controversy, the expression is used
as a term of convenience for these patterns of
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overlapping) may overrule one segmentation
in favor of an alternative. 

The figure illustrates the nested nature of the
operation of the thalamo-cortico-striatal loops.
Initial processing of input (a) involves special-
purpose “front ends” that in the model are car-
ried out by (well-studied) Gabor filters and
edge-detection methods, producing a first in-
ternal representation of sequences as seen in
figure 4. Each successive stage of processing
takes as input some combination of the out-
puts of prior stages. Thus the brief sequences in
figure 4b become input to a copy of the same
mechanism, which identifies sequences of the
sequences (5b). Downstream regions then
identify sequences of those sequences, and so
on (5c, d). With learning, the resulting set of
relative feature positions comes to share sub-
stantial commonalities that are partial-
matched, as in the two different utterances of
the word “blue” in the top and bottom frames
of figure 5.

Visual Image Processing. Once past the initial,
specialized “primary” cortical sensory regions,
thalamocortical circuits are remarkably similar
(though, as mentioned, differences have been
found, with unknown implications). Moreover,
the vast majority of cortical areas appear to re-
ceive inputs not originating just from a single
sensory modality but from conjunctions of two
or more, begging the question of whether dif-
ferent internal “representations” can possibly
be used for different modalities.

Auditory cortical regions arise relatively early
in mammalian evolution (consistent with the
utility of nonvisual distance senses for nocturnal

weights.) These differ from many other types of
representations, in that they are not strict im-
ages of their inputs but rather are statistical “fil-
ters” that note their sequence of features (or se-
quence of sequences) in a novel input, and
compete against other feature filters to identify
a “best partial match” to the input. It is notable
that since each sequence pair simply defines
relative positions between the pair, they are in-
dependent of particular frequencies or exact
time durations.

Figure 5 illustrates two different instances of
the utterance “blue” that, after learning, can be
recognized by the algorithm as members of the
same category, since they contain many of the
same organization of relational elements (se-
quences of clusters, and sequences of clusters of
sequences of clusters), whereas other utter-
ances contain distinguishing differences. These
representations, arising simply from distrib-
uted patterns of synaptic strengthening in the
described brain circuit networks, have desirable
properties for recognition tasks. 

The “best partial match” process can pick
out candidate matches from a stream of inputs.
Thus the detector for “blue” and that for “bird”
identify their respective targets in a continuous
utterance (for example, “the blue bird”). Recog-
nition systems traditionally have difficulty
with segmentation, that is, division of a stream
into parts. In the proposed recognition scheme,
recognition and segmentation are iteratively
interleaved: identification of the sequence
components of a candidate word in the stream
gives rise to a candidate segmentation of the
stream. Competing segmentations (for exam-
ple, from sequence components of other words
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Figure 4. Spectrogram and Sample Illustration of Learned Cortical Sequences.
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animals) and may serve as prototypes for further
cortical elaboration, including downstream
(nonprimary) visual areas. It is here hypothe-
sized that, although primary cortical regions
perform specialized processing, subsequent cor-
tical regions treat all inputs the same, regardless
of modality of origin. The physiological litera-
ture suggests particular visual front-end process-
ing (arising from retina, LGN, early cortical ar-
eas) resulting in oriented line and curve
segments comprising an image. From there on,
images may be processed as sounds, though due
to recruitment of front-end visual processing, ar-
bitrary covert “movements” through an image
are assumed to occur, rather than processing be-
ing limited to an arbitrary “left to right” corre-
sponding to the flow of time in an auditory im-
age. that is, it is as though auditory processing
were a callable subroutine of visual processing.
Thus, after initial processing of an image (such
as part of figure 6a) (performed in this case
through oriented Gabor filters (6b) at different
frequency parameter settings, to roughly ap-
proximate what has been reported for visual
front-end processing from many sources over
many years), the resulting segments (pairwise
sequences) are composed into sequences of se-
quences (6c), and so on, until, over training tri-

als, they become hierarchical statistical repre-
sentations of the objects (for example, letters)
on which they have been trained (6d).

As with auditory data, this method leads to
representations that iteratively alternate recog-
nition and segmentation; that is, there exists
no separate segmentation step but rather can-
didate segments emerge, as recognizers com-
pete to identify best partial matches in an im-
age. Further characteristics shared with
auditory processing include a number of in-
variances: translation, scaling, and distortion,
as well as resistance to partial occlusion. Again,
these invariances are not add-on processing
routines but rather emerge as a result of the
processing. Since the sequences, and sequences
of sequences, record relative relationships as
opposed to absolute locations, and since the
front-end filtering occurs across multiple size
and frequency scales, recognition of a small A
in a corner proceeds just like that of a large cen-
tered A. And since the result is merely a best
partial match (figure 7a), a partially distorted
(figure 7b) or occluded (figure 7c) image may
match to within threshold.

Navigation. Presentation of locations con-
taining a hard-coded artificial desirable “goal”
state, and sequential reinforcement training
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Figure 5. Two Utterances and Illustration of Learned Nested Sequences.

Spectrogram input (a) is processed by an auditory front end (primarily Gabor filters) for edge detection (figure 4b); the resulting edges are
treated as short sequences (b); subsequently, sequences of those sequences, and sequences of sequences of sequences, and so on (b, c, d)
are successively identified. The resulting learned downstream data structures are used for partial matching in recognition.
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ordered sequences of “proto-grammatical” ele-
ments, such that each element represents ei-
ther a category (in this case a cluster), or ex-
pands to another such element (nesting), just
as rewrite rules establish new relations among
grammatical elements. 

The incremental nature of the data structure
(nested sequences of clusters) enables it to grow
simply by adding new copies of thalamo-corti-
co-striatal (TCS) loops, corresponding to the in-
cremental addition of “rules” acquired by the
grammar, adding to the power of the resulting
behavior that the data structure can give rise to.
As more telencephalic “real estate” is added,
the data structures that are constructed corre-
spond to both longer and more abstract se-
quences, due to iterative nesting. In the model,
though all “regions” are identical in structure,
they receive somewhat different (though over-
lapping) inputs (for example, certain visual fea-
tures; certain combinations of visual and audi-
tory features). After exposure to multiple
inputs, regional specializations of function (for

from various starting locations, causes the sys-
tem to improve its approaches to the goal from
arbitrary starting points. Figure 8 shows the in-
ternal representations (a, c) constructed in the
striatal complex as a result of training trials,
and illustrates sample trajectories (b, d) to the
goal from five starting points, both before (a, b)
and after (c, d) this training. The representa-
tions correspond to the learned positive and
negative “strengths” of four candidate move-
ment directions (N, S, E, W), along with a resul-
tant vector, at each location in the grid. Figures
8e–f show the corresponding internal represen-
tation (e) from photographs (f), enabling a ro-
bot navigating a simple visual environment to
learn from initial reinforced trials (g) to im-
prove its traversals from different starting loca-
tions (h). 

Hierarchical Grammatical Structure. It is no-
table that the emergent data structure of the
thalamo-cortico-striatal model, nested se-
quences of clusters, is a superset of the struc-
tures that constitute formal grammars, that is,
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Figure 6. Nested Sequences of Clusters Identified in Images.

As in audition, inputs (a) scanned by filters (b) give rise to edges that are stored as sequences (c) and constructed
into nested sequence structures (d).



example, human voices versus other sounds;
round objects versus angular objects) arise due
to lateral competition among areas, giving rise
to “downstream” regions that, although per-
forming the same computational function, are
selectively performing that function on differ-
ent aspects of their “upstream” inputs, thus be-
coming increasingly dedicated to the process-
ing of particular types of inputs. Within each
such area, data structures become increasingly
abstract, each one matching any of a number
of different inputs depending not on their raw
perceptual features but on the relations among
them. 

As these nested structures are built up incre-
mentally, successively more complicated be-
haviors arise from their use. This is specifically
seen in the preceding examples. For example,
in figure 5, successive processing of the input,
carried out by increasingly downstream com-
ponents of the model, identifies first a simple
set of features and relations among those fea-
tures; then successively more complex nested
relations among relations. Thus small-brained
mammals may acquire relatively small internal
grammars, enabling learning of comparatively
simple mental constructs, whereas larger-
brained mammals may learn increasingly com-
plex internal representations. That is, changing
nothing of the structure of thalamocortical
loops, only the number of them, can in this
way give rise to new function. 

The extensible (generative) nature of human
language has typically been explained in terms
of grammars of this kind: from a given gram-
mar, a potentially infinite number of outputs
(strings in the language) can be produced. Hu-

mans uniquely exhibit rapidly acquired, com-
plex grammatical linguistic behavior, prompt-
ing the search for uniquely human brain re-
gions that could explain the presence of this
faculty in humans and its absence in other pri-
mates (see, for example, Hauser, Chomsky, and
Fitch 2002; Fitch and Hauser 2004; O’Donnell,
Hauser, and Fitch 2005; Preuss 1995, 2000;
Galuske et al. 2000). The modeling described
herein leads to a specific hypothesis: that hu-
man language arises in the brain as a function
of the number of thalamo-cortico-striatal
loops. With the addition of TCS modules, some
become increasingly dedicated to communica-
tion due to their inputs, just as some other ar-
eas become increasingly dedicated to particular
subsets of visual inputs. Rather than wholly
new brain modules that differentially process
language, the evolutionary addition of TCS
modules leads to the incremental acquisition
of linguistic abilities. This growth need not be
linear; grammars have the property of exhibit-
ing apparently new behaviors due to the addi-
tion of just a few rules. There is a fourfold dif-
ference in overall brain size between humans
and our closest primate relations (chimps,
bonobos), and a far greater size difference if just
the anterior cortical areas underlying language
abilities are considered. There are no living
apes or hominids with brain sizes between
those of humans and other primates. If human
language arises directly from increased TCS
loops, then the present “computational allom-
etry” argument suggests that intermediate
prelinguistic or protolinguistic abilities may
have been present in early hominids, even
though not in extant primates. The conjecture
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Figure 7. Emergent Invariances from the Derived Methods.

The nested (hierarchical) structure of the internal representations enables partial best-matching of distorted (a), scaled (b) or partially oc-
cluded (c) versions of the input.



we know that our current engineering systems
for vision and language can be outperformed is
that natural systems outperform them. 

Human brains arose through a series of inter-
mediaries and under a range of different condi-
tions, without any set of computational plans
or top-down principles. Thus brains and their
constituent circuits are not “optimized” for any
particular task but represent earlier circuits co-
opted to perform new jobs, as well as compro-
mises across multiple tasks that a given circuit
may have to participate in under different cir-
cumstances. Bottom-up analysis of circuits,
without targeting any “intended” or “opti-
mized” functions, leads to a set of computa-
tional units that may comprise the complete
“instruction set” of the brain, from which all
other operations are composed. The over-
whelming regularity of cortical structures, and
of large loops through cortical and striatal te-
lencephalon, suggests the universality of the
resulting composite operations. 

The basic algorithms that have been derived
include many that are not typically included in
proposed “primitive” or low-level sets: se-

is consistent with a broad range of constraints
that are argued to rule out alternative hypothe-
ses (see, for example, Pinker 1999; Pinker and
Jackendoff 2005). 

The processing of linguistic input, then,
need not be a different function from that of
other brain processing, but rather the same
computational faculties present in smaller
brains, now applied in far larger numbers. With
an understanding of the specific nature of these
computations, it is possible to see how they
operate on simpler (for example, perceptual)
inputs as well as complex (linguistic) inputs,
differing enormously in the depth of process-
ing and thus the size of the constructed gram-
mars.

Conclusions
Procedures that seem easy and natural to hu-
mans (for example, language) and even to oth-
er animals (image recognition, sound recogni-
tion, tracking), have been notoriously difficult
for artificial systems to perform. Many of these
tasks are ill-specified, and the only reason that
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Figure 8. Learned Internal Representations and Trajectories.

Simulated cortico-striatal loops learn through trial and error to traverse a maze; shown are internal representations of learned reward and
punishment information before (a, b) and after (c, d) ten thousand trials traversing the space from various starting points.  A robot learns
a similar internal map (e) of an environment with colored visual cues (f), shortening from initial random (g) to efficient (h) traversals.

a b c d

e g h

f



quence completion, hierarchical clustering, re-
trieval trees, hash coding, compression, time
dilation, reinforcement learning. Analysis indi-
cates the algorithms’ computational efficiency,
showing that they scale well as brain size in-
creases (Rodriguez, Whitson, and Granger
2004). Application of these derived primitives
gives rise to a set of unusual approaches to well-
studied tasks ranging from perception to navi-
gation, and illustrates how the same processes,
successively reapplied, enable learning of data
structures that account for generative human
language capabilities. 

Persistent questions of brain organization are
addressed. For instance: How can replication of
roughly the same (neocortical) circuit structure
give rise to differences in kind rather than just
in number? Thalamocortical and corticostriatal
algorithms must be constituted such that mak-
ing more of them enables interactions that
confer more power to larger assemblies. This
property is certainly not universal (for exam-
ple, backpropagation costs scale as the square
of network size, and do not solve new kinds of
problems simply by growing larger). As dis-
cussed, it is the nature of the particular data
structures formed by the telencephalic algo-
rithms, nested sequences of clusters, and their
relation to grammars, that enables simple
growth to generate new capabilities. 

What relationships, if any, exist between ear-
ly sensory operations and complex cognitive
operations? The specific hypothesis is forward-
ed here that, beyond initial modality-specific
“front-end” processing, all telencephalic pro-
cessing shares the same operations arising from
successive thalamo-cortico-striatal loops. Com-
plex “representations” (objects, spaces, gram-
mars, relational dictionaries) are composed
from simpler ones; “cognitive” operations on
these complex objects are the same as the per-
ceptual operations on simpler representations;
and grammatical linguistic ability is construct-
ed directly from iterative application of these
same operators. 

Many systems that learn statistically and in-
crementally have been shown to be inadequate
to the task of learning rulelike cognitive abili-
ties (Pinker 1999). It has been illustrated here
that unusual data structures of grammatical
form arise directly from models that contain
the anatomical architectures and physiological
operations of actual brain circuits, demonstrat-
ing how this class of circuit architecture can
avoid the problems of extant models and give
rise to computational constructs of a power ap-
propriate to the tasks of human cognition. On-
going bottom-up analyses of brain circuit oper-
ation may continue to provide novel engi-

neering approaches applicable to the seemingly
intractable problems of cognition. 
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AAAI-06 / IAAI-06: 
A Landmark Event!

We hope you are planning to join us

for AAAI-06 and IAAI-06 in Boston

Massachusetts, July 16–20, 2006.

The response has been overwhelming, as

AAAI celebrates 50 years of AI in the United

States. 

A host of new programs will be showcased at

the conference, including special tracks on AI

and the Web and Integrated Intelligent Capa-

bilities, Senior Member Papers, Nectar Papers,

Member Abstracts and Posters, and a Poker

Competition. 

A record 257 technical papers will be present-

ed at AAAI-06 and IAAI-06, and eight out-

standing invited talks will be presented by

Tim Berners-Lee, Bruce Buchanan, Sebastian

Thrun, Pedro Domingos, Neil Jacobstein, Ken

Koedinger, Karen Myers, and Dan Roth. 

For more details about the conference,

please see www.aaai.org/Conferences/

AAAI/aaai06.php
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2006 AAAI Fall 

Symposium Series

The 2006 AAAI Fall Symposium Series will be held Fri-

day through Sunday, October 13–15, at the Hyatt Re-

gency Crystal City in Washington, DC. The titles of

the eight symposia are:

Aurally Informed Performance: Integrating Machine 

Listening and Auditory Presentation in Robotic Systems

Derek Brock (brock@aic.nrl.navy.mil)

Capturing and Using Patterns for Evidence Detection

Ken Murray (murray@ai.sri.com)

Developmental Systems

Sanjeev Kumar (sk525@cornell.edu)

Image Comprehension

Walt Truszkowski (Walt.Truszkowski@nasa.gov)

Integrating Logical Reasoning into 

Everyday Applications

Mike Kassoff (mkassoff@stanford.edu)

Interaction and Emergence in Societies of Agents

Goran Trajkovski (gtrajkovski@towson.edu)

Knowledge Acquisition from Autonomous, 

Semantically Disparate, Distributed Information Sources

Vasant Honavar (honavar@cs.iastate.edu)

Spacecraft Autonomy: Using AI to 

Expand Human Space Exploration

David Kortenkamp (korten@traclabs.com)

Please Join Us! 

For additiional information, please refer to the 

www.aaai.org/Symposia/Fall/fss06.php.




