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. . . ,al) T. Then mati cally precise replacement of the notion of algorithm

1- was the earliest problem in the theory of algorithms.

, 0+1; X A - L /-1 Many authors have tried to capture the essence of the
- ;-1 a/x. intuitive notion of an algorithm. We give four examples.

) X has n nondependent columns, which implies that n Hermes (1965). "An algori.thm is a .general proce-

I . , . t .

lons a r e re q uired The result re q uires that the dure such that for any approprIate questIon the answer

mutlPlca. ...I .thm evaluate any polynomial, given its coefficients. can be obtained by the use of a sImple computatIon ac-

~n SJ gor~fi PO l y nomials can often be evaluated with fewer cording to a specified method. . . . [AJ general procedure
)- peCIC [ . J h . f h . h . I I . fidI .

I'
c tl .o ns Similarl y if the PO l y nomial is Sp ecified IS a process t e executIon 0 w IC IS C ear y specl e

,e mutlpl a. , . "
:e by parameters other than its coefficients, a saving in the to the. s~allest detall~,. . .

be O f multi p lications is P ossible. MInsky (1967). ... an effectIve procedure IS a set
m numr fl h . II . The one facet of problem complexity that is probably 0 ru es w Ich te s us, from moment to moment, precIsely

1t h t b h "
. the most intriguing is the lack of nontrivial lower bounds ow 0 eave.

,f~ for various problems. Almost all known lower bounds are I R~g~r~ (1967). " . ... an algorithm is ~ clerical (i.e.,

c:ither linear in the size of the problem or have been ob- de:ermlmstlc, bookkeepl?g) procedure whl~h ~an be ap-

t' 'nc:d b... restricting the classes of algorithms. The nota- plied to any of a certain class of symbolIc Inputs and

:1~ b~~ c:xceptions are lower bounds obtained by the diagon- which. will event~ally yiel~: for each such input, a corre-

Jlilation techniques of recursive function theory. One of spondlng symbolIc output.
n~ the major goals of computer scientists working in the. Hopcroft an~ Ul/ma~ (1969). "A procedure is. a fi-

to Jnaly~is of algorithms is to close the gap in our knowledge rote .sequence of instructIons that can be mechanIcally
1C of problem complexity. Hopefully, the next decade will carried ~ut, such as a ~omput.er program. . . . ~ pr~~e-

is provide powerful new tools in the area and startling im- dure whIch always terminates IS called an algorIthm.

,I- provements in the efficiency of algorithms. Note that what Hermes calles "a general procedure"

to is what Minsky calls an "effective procedure" is what

J. RERERENCES Hopcroft and Ullman call a "procedure." Other terms

ws I Qb8. 1969. 1973. Knuth. D, E. The Art of Computer Program-. are also used in the literature, and some authors use the

at "iing I. 2. 3. Reading. MA: Addison-Wesley. word "algorithm" to denote any procedure whatsoever.
.;h 1'174. Aho. Alfred V,. Hopcroft. John E. and Ullman. Jeffrey In the remainder of this article the Hopcroft and Ullman

u. D The Design and Analysis of Computer Algorithms. terminology will be used.

.te Rc:a~,ing. M~: Addison-~esley. An important fact to note is that the notion of a pro-

ns 1976. \\ Irth, Nlklaus. Algorithms + Dala Structures = Pro- cedure cannot be divorced from the environment in which
..e ,Vt/ms, Englewood Cliffs. NJ: Prentice-Hall.. . ... It operates. What may be a procedure In certain sttua.
ns J E H J E M tions, may not be considered a procedure in other situa-
I:r . . OPCROFT AND. . USINSKI t . F I h . . fIons. or examp e. t e instructIons 0 a computer pro-

, gram are not usually understood by most people.
nt Alternatively. the description of a chess game that ap-

.~- ALGORITHMS, THEORY OF pears in a newspaper is a perfectly clear algorithm for a

\1- chess player who wants to reproduce the game, but it is
.n. For articles on related subjects see ALGORITHM; AL. quite meaningless to people who do not play chess. Thus,
ity GORITHMS, ANALYSIS OF; COMPUTABILITY; COMPll. when we talk about a procedure as a finite sequence of
,)0 T.\TIONAL COMPLEXITY; DECIDABILlTY; FORMAL instructions, we assume that whoever is supposed to carry

or L.\~GUAGES; NP-COMPLETE PROBLEMS; and TURING out those instructions, be it human or machine, under-

M,\CHINE. stands them in the same way as whoever gave those

~~ instructions.
" The meaning of the word algorithm. like the mean- Another sense in which the environment influences

lr~ Ing of most other words commonly used in the English the notions of procedure and algorithm is indicated by the
Jo language. is somewhat vague. In order to have a theory following examples. If the instruction (equires us to take
~- of algorithms. we need a mathematically precise defini- the integral part of the square root of a number. such an

11S tlon of an algorithm. However. in giving such a precise instruction can be carried out if we are dealing with pos-

r.cc de,fi~ition, we run the risk of not reflecting exactly the in- itive integers only, but it cannot always be carried out if

.a- tUltlve notion behind the word. The finding of a mathe- we are dealing with both positive and negative integers.
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Thus, the same set of instructions mayor may not be a ments of a set D by nonnegative integers is referred to as
procedure, depending on the subset of integers for which "arithmetization" or "G~del numbering," after the logi-
it is intended. Alternatively, we can easily give a proce- cian K. G()del, who used it to prove the undecidability of
dure that, given an integer x, keeps subtracting I until 0 certain predicates about formal logic. From now on we
is reached and then stops. Such a procedure will be an will be exclusively concerned with functions whose do-
algorithm if we intend to use it for positive integers only, main and range are subsets of the set of nonnegative

but it will not be an algorithm if we also intend to apply integers.
it to negative integers. In order to show that a certain function is comput-

The recognition of whether or not a sequence of in- able, it is sufficient to give an algorithm that computes
structions is a procedure or an algorithm is a subjective it. But without a precise definition of an algorithm, all
affair. No precise theory can be built on the vague defi- such demonstrations are open to question. The situation
nitions given above. In trying to build a precise theory, is even more uncertain if we want to show that a given
one must examine the situations in which the notion of function is uncomputable, i.e., that no algorithm what-
algorithm is used. In the theory of computation, one is soever computes it. In order to avoid such uncertainty, we
mainly concerned with algorithms that are used either for need a mathematically precise definition of a computable

computing functions or for deciding predicates. function.
Afunctionfwith domain D and range R is a definite It is clear from the way in which algorithms are dis-

correspondence by which there is associated with each cussed above that for a proper algorithm we ought to be
element x of the domain D (referred to as the "argu- able to construct a machine that carries out the instruc-
ment") a single element fix) of the range R (called the tions of the algorithm. One possible way of making pre-
"value"). The function f is said to be "computable" (in cise the concept of a computable function is to define an
the intuitive sense) if there exists an algorithm which, for appropriate type of machine, and then define a function
any given x in D, provides us with the value fix). to be computable if and only if it can be computed by

A predicate P with domain D is a property of the such a machine. This has indeed been done. The machine
elements of D which each particular element of D either usually used for this purpose is the so-called Turing ma-
has or does not have. If x in D has the property P, we say chine (q. v.). This simple device has a tape and a read-
that P(x) is true; otherwise, we say that P(x) is false. write head, together with a control that may be in one of
The predicate P is said to be decidable (in the intuitive finitely many states. The tape is used to represent num-
sense) if there exists an algorithm which, for any given x bers. A function f is called computable if there exists a
in D, provides us with a definite answer to the question of Turing machine that, given a tape representing an argu-
whether or not P(x) is true. ment x, eventually halts with the tape representing the

The computability of functions and the decidability value fi x). Since a precise definition of a Turing machine
of predicates are very closely related notions because we can be given, the notion of a computable function has be-
can associate with each predicate P a function f with come a precise mathematical notion.
range {O.l} such that, for all x in the common domain D The question arises whether or not it is indeed the
of P and f, fix) = 0 if P(x) is true and fix) = 1 if P(x) case that a function is computable in the intuitive sense
is false. Clearly, P is decidable if and only if lis com put- if and only if it is computable by a Turing machine. The

able. For this reason we will hereafter restrict our atten- claim that this is true is usually referred to as Church's
tion to the computability of functions. thesis (sometimes as Turing's thesis). Such a claim can

A further restriction customary in the theory of al- never by "proved," since one of the two notions whose

gorithms is to consider only functions whose domain and equivalence is claimed is mathematically imprecise.
range are both the set of nonnegative integers. This is rea- However, there are many convincing arguments in sup-
sonable, since in those situations where the notion of a port of Church's thesis, and an overwhelming majority of

procedure makes any sense at all, it is usually possible to workers in the theory of algorithms accept its validity.
represent elements of the domain and the range by non- One of the strongest arguments in support of Church's
negative integers. For example, if the domain comprises thesis is the fact that all of the many diverse attempts at

pairs of nonnegative integers, as in the case with an arith- precisely defining the concept of computable function
metic function of two arguments, we can represent the have ended up with defining exactly the same set of

pair (a,b) by the number 2"3b in an effective one-to-one functions.
fashion. If the domain comprises strings of symbols over Given a precise definition of a computable function,
an alphabet of 15 letters, we can consider the letters to it is now possible to show for particular functions that

be nonzero hexadecimal digits, and assign that nonnega- they are computable. Conversely, it becomes possible to
tive integer to a string that is denoted by the string in the prove that certain functions are not computable. We will

hexadecimal notation. The device of representing ele- give two examples.
. . . ..-# .
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Example I. Consider the following problem. Give an A typical question that one may ask is the following:
algorithm that, for any Turing machine, decides whether Suppose we had a device which, for any given Turing
or not the machine eventually stops if it is started on an machine, told us whether or not the Turing machine will
cmpty tape. This problem is called the "blank-tape halt- eventually stop on the blank tape. Can we write an "al-
ing problem." The required algorithm would be consid- gorithm" that makes use of this device and solves Hil-
crcd a solution of the problem. A proof that there is no bert's tenth problem? It has been known for some time
such algorithm would be said to show the (effective) un- that such an "algorithm" exists. In this sense, Hilbert's

s()l~.ability of the problem. tenth problem is reducible to the blank-tape halting prob-
The blank-tape halting problem is in fact unsolvable. lem. It is the proof that the reverse is also true which gave

This is proved by rephrasing the problem into a problem us the unsolvability of Hilbert's tenth problem. Two prob-
aoout the computability of a function, as follows: Turing .lems that are both reducible to the other are said to be
machines can be Gudel-numbered in an effective manner; equivalent. Most of the theory of algorithms has, until
i.e., there exists an algorithm which for any Turing ma- recently, concerned itself with questions of the reducibil-
chine will give its Gudel number. Furthermore, this can ity and equivalence of various unsolvable problems.
be done in such a way that every nonnegative integer is In recent years a new trend has developed. Much of
thc Gi)del number of some Turing machine. Let f be the the activity in the theory of algorithms began to concern
function defined as follows. itself with computable functions, decidable predicates,

and solvable problems. Questions about the nature of the
{ o if n is the Gudel number of a Turing algorithms, the type of devices that can be used for the

- machine that eventually ~tops if computation, and about the difficulty or complexity of the
fi .t) - started on the blank tape, computation have been investigated and are discussed in

other articles.
1 otherwise.
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