
,, , '.

;-

PROCEEDINGS of the
, ,. ,t

, . ."", ---"-

~

l'
"

it'
1."

" Im~WI()NAL
,- dIJINT C:()N~EN(]E UN
: (AImFIOIAL INTELU~EN(}E)

...;c

£.f .,..,.
:' ~"
.;,

A: A IJCAI-69
~:

~~ 7-9 May 1969

Washington, D.C. t

,

Sponsored by
, The International Joint Conference

- on Artificial Intelligence

Edited by Donald E. Walker and Lewis M. Norton

i

- -

..

~ I

~---

"

--
. -. .. -

. - -. - -

.. '
Copyright @ 1969, International Joint Conference on Artificial Intelligence.

'" I:: .", All rights reserved. ..-

.,. .
-. - -"~. .. -

Distributed by

William Kaufmann, Inc.
-=~. 95 First Street

... ."..
Lo~ Altos, California 94022

.

ISBN 0-86576-053-5
Printed in the United States of America

..

PLANNER: A LANGUAGE FOR PROVING THEOREMS IN ROOOTS

Carl Hewitt
Project MAC - Massachusetts Institute of Technology

Summary retrieval system that is more powerful than a
retrieval system based directly on association

P~R is a language for proving theorems lists. The language permits us to set up
and manipulating models in a robot. The procedures which will make assertions and
language is built out of a number of problem automatically draw conclusions from other
solving primitives together with a hierarchical assertions. Procedures can make recommendations
control structure. Statements can be asserted as to which theorems should be used in trying
and perhaps later withdrawn as the state of the to draw conclusions from an assertion, and
world changes. Conclusions can be drawn from they can recommend the order in which the
these various changes in state. Goals can be theorems should be applied. Goals can be
established and dismissed when they are. created and automatically dismissed when they
satisfied. The deductive system of PLANNER is are satisfied. Objects can be found from
subordinate to the hierarchical control schematic or partial descriptions. Properly
structure in order to make the language formulated descriptions have their own
efficient. The use of a general purpose matching imperative uses for the language. Provision
language makes the deductive system more powerful. is made for the fact that statements that were

once true in a model may no longer be true at
some later time and that consequences must be

Preface drawn from the fact that the state of the model
has changed. Assertions and goals created

PLANNER is a language for proving theorems within a procedure can be dynamically protected
and manipulating models in a robot. Although against interference from other procedures.
we say that PLANNER is a programming language, Procedures written in the language ar'e extendable
we do not mean to imply that it is a purely in that they can make use of new knowledge
procedural language like the lambda calculus in whether it be primarily declarative or imperative
pure-LISP. PLANNER is different from pure LISP in nature. The logical deductive system used
in that function calls can be made indirectly by PLANNER is subordinate to the hierarchical
through recommendations specifying the form of control structure of the language. PLANNER has
the data on which the function is supposed to a sophisticated deductive system in order to
work. In such a call the actual name of the give us greater power over the direction of
called function is usually unknown. Many of the computation. In several respects the
the primitives in PLANNER are concerned with deductive system is more powerful than the
manipulating a data base. The language will quantificational calculus of order omega. Our
be explained by giving an over-simplified pic- criteria for an ideal deductive system contrast
ture and then attempting to correct any with those that are used to justify resolution
misapprehensions that the reader might have based systems. Having only a single rule of
gath~red from the rough outline. The basic inference, resolution provides a very
idea behind the language is a duality that we parsimoniou~ logical system. Workers who build
find between certain imperative and declarative resolution systems hope that their systems can
sentences. For example consider the statement be made efficient through acute mathematical
(implies a b). As it stands the statement is analysis of the simple structure of their
a perfectly good declarative statement. It deductive system. We have tried to design a
also has certain imperative uses for PLANNER. sophisticated deductive system together with
For example it says that we should set up a an elaborate control structure so that lengthy
procedure which will note whether a is ever computations can be carried out without blowing
asserted and if so to consider whether b should up. Of course the control structure can still
then be asserted. Furthermore it says that be used when we limit ourselves to using reso-
we should set up a procedure that will watch lution as the sole rule of inference. Indeed,
to see if it ever is our goal to try to deduce R. Burstall has suggested that ~e might try to
b and if so whether it is wise to make a subgoal implement some of the well known resolution
to deduce a. Similar observations can be made strategies in PLANNER. Because of its extreme
about the contrapositive of the statement hierarchical control and its ability to make use
(implies a b). Statements with universal of new imperative as well as declarative
quantifiers, conjunctions, disjunctions, etc. knowledge, it is feasible to carry out very long
also have both declarative and imperative uses. chains of inference in PLANNER.

Of course if what we have described thus far
were all there was to the language, then there
would be no point. From the above observations,
we have constructed a language that permits
both the imperative and declarative aspects of

statements to be easily manipulated.
PLANNER uses a pattern directed information

-295-

I
i
!

...J

~i
,c,

C,i,~~ HATCffi.ESS.'l
;;
:' MATCffi.ESS is a pattern directed programming An expression that consists of the prefix

language that is used in the implementation of operator $? followed by a variable will match l;

PLANNER. MATCffi.ESS is used both in the internal the value of the variable if it has one, other- ~:
workings of PLANNER and as a tool in the wise the variable is assigned a value. We shall
deductive system itself. The most important use the pseudo atom NO VALUE to indicate that a
function in MATCffi.ESS is assign? which matches variable does not have a value.
its first argument which is treated as a pattern
to its second argument. The reason why the [prog «a ptr»
assignment function in MATCffi.ESS is called [assign? $?a 3}}
assign? will be explained later when we discuss a gets the value 3
functions that have values. The prefix
operator $- indicates that the variable which [prog «(a 5) ptr»
follows it is to be assigned a value. The [assign? $?a 4}}
various types for variables and their abbre- a is initialized to 5 on entrance to the
viations are: ptr for pointer, atom for atom, pro~. Consequently the assignment statement
seg for segment, fix for fixed point number, fails.
float for floating point number, and expr for
s-expression. A segment variable is always [prog «a seg»
assigned the smallest possible leftmost seg- [assign? ($ a$?a) (1 2 3 2 I)}} fails

-,ment. Below we give some examples of the because once a is assigned a value, a can only
values of pattern variables after assignment match a segment that is equal to the value of
statements have been executed. We use the a. If a pattern in an assignment statement
character - to delimit segments. The characters cannot match the value of the second argument
[and} are used to delimit function calls. of the assignment statement then the assignment

statement returns the value (), otherwise the
[prog «a ptr) (h atom) (c seg» value t.

[assign? ($_a k $_h $_c) «1) k b 1 a)}}
a gets the value (1) Examples of pattern functions are dlsj for
h gets the value b disjunction, neg for negation, conj for
c gets the value -1 a- conjunction, and star for Kleene star in

general regular expressions. We use the[prog «c seg) (h atom) (a ptr» characters < and'> to delimit pattern
[assign? ($_c $_h k $_a) (a 1 b k q)}} expressions that are to be interpreted as .
c gets the value -a 1- segments.
h gets the value b
a gets the value q [prog «a ptr (b ptr) (c ptr»

[assign? (a<Conj $ BJ b>$ c) (aJ+~)}}[prog«first ptr) (middle seg) (last ptr» a gets the value -1 2~ -
[assign? ($_first$_middle$_last) (~4)}} b gets the value -1 2-
first gets the value 1 c gets the value -3-
middle gets the value -2 3-

last gets the value 4 [prog «x seg) (c seg»

[assign? ($ x<disj(3) (2»$ c) (aJf))}[prog «a ptr) (b ptr» x gets the value -a 1- -
[assign? ($_a,$_b) (d»)} fails because there c gets the value -3- ---

is only one element in (d).

[prog «x ptr»[prog «a atom» [assign? «star a> $ x) (a a a a)})
[assign? $_a (1 2»)} fails because (1 2) x gets the value a -

is not an atom.

Pattern functions do not produce values. ItAn expression that consists of the prefix does not make any sense to evaluate
operator $$ followed by a variable will only [assign? <disj (3) (2) > (2)} since a segment
match an object equal to the value of the like <disj (3) (2) > is never allowed to stand
variable. alone. There is a library of pattern functions

already defined in the language. For example[prog «a seg» II is quote. Thus ["p$a} will only match $$a.
[assign? ($_a$$a) (1;,J,l,2,J)}) a palindrome is defined to be a list that reads
a gets the value -1 2 3- the same backwards and forwards. Thus

(a (b) (b) a), (), and «a b) (a b» are[prog «a seg) (b seg» palindromes. More formally in MATCffi.ESS, a
[assign? ($_a x $$a $-b)(abxdxabxdq»)} palindrome can be defined as a pattern function
a gets the value -a b x d- of no arguments:
b gets the value -q-

-296-

r :~::;:::.

, (def palindrome The following three forms are the ones

(kappa «» which are presently defined in the language for
(disj satisfying requests made in the body of

() procedures:

(block «x ptr» ($_x<palindrome>$$x)}}»
(consequent $_declaration $_consequent

The form kappa is like the lambda of LISP except $_expression) declares that $$consequent is
that it is used in pattern functions. The above the consequent of the theorem. The theorem can
definition reads I'a palindrome is a list such be used to try to establish goals that match the
that it is () or it is a list which begins and pattern $$consequent. Whether or not the
ends with x with a palindrome in between. II The theorem will actually succeed in establishing
pattern function block causes the variable x the goal depends on $$expression. However, no
to rebound to the pseudo-atom NOVALUE every theorem can be activated for a goal which is
time that palindrome is called. The function already currently activated for that goal. The
reverse is defined to be such that (assign? only way that a theorem that begins with the
(reverse $$x} $$y} is true only if the value of atom consequent can be called is by the function
x is the reverse of the value of y. The goal.
definition of reverse is

(antecedent $ declaration $ antecedent
(def reverse $_expression) declares that $$antecedent is the

(kappa «(x ptr») antecedent of the theorem. The theorem can be
(i 1 used to try to deduce consequences from the fact

(atomic}$$x) that a statement that matches $$antecedent has
(?} been asserted. The only way that a theorem
(block «first-of-x ptr) (rest-of-x seg» that begins with the atom antecedent can be

(assign? ($_first-of-x~_rest-of-x)$$x} called is by the functions assert and conclude-
«reverse ($$rest-of-x»$$first-of-x)})}» from.

The above definition says that an expression y is (erasing $_declaration $_statement $ expres-
the reverse of x if whenever y is an atom then it sion) can be used to try to deduce conseq-;:;-ences
is equal to x, otherwise let first-of-x by the from the fact that a statement that matches
first member of x and rest-of-x be the rest of $$statement has been erased. The only way that
x and the pattern «reverse ($$rest-o£-x) > a theorem that begins with the atom erasing can
$$first-of-x) must match y. Essentially all the be called is by the function erase.

ideas for the pattern functions come from Post
productions, general regular expressions, Some of the functions in PLANNER are listed
CONVERT, and LISP. below together with brief explanations of their

function. Examples of their use will be given
PLANNER immediately after the definition of the primit-

ives below. The primitives probably cannot be
Now that we have described MATCHLESS, we are understood without trying to understand the

in a position to begin a detailed description of examples since the language is highly recursive.
PLANNER. Consider a statement that will match In general PLANNER will try to remember every-
the pattern (implies $ a $ b). The statement has thing that it is doing on all levels unless there
several imperative use;. - is some reason to forget some part of this

. information. In the implementation of the
xl. If we can deduce $$a, then we can deduce $$b. language special measures must be taken to

In PLANNER the statement xl would be expressed as ensure that variables receive their correct
(antecedent«» $$a {assert $$b}) which means bindings. The most efficient way to implement
that $$a is declared to be the antecedent of a the language is to put pointers on the stack
theorem such that if $$a is ever asserted in such back to the place where the correct bindings are.
a way as to allow the theorem to become activated Value cells do not provide an efficient means
then $$b will be asserted. of implementing the language. The default

x2: If we want to deduce $$b, then establish :;:~~:s~so~ot~:c~a~;~:~et:h~~ alsi~p~e ~a~lure
a sub goal to first deduce $$a. that it made and try to fix i~ u:~ ec s on

In PLANNER the statement x2 would be expressed as
(consequent «» $$b {thprog () {goal $$a} {{'~thval}$_expression $_bindings $state}
{assert-consequent}}) which means that $$b is will evaluate the value of $$expression with
declared to be the consequent of a theorem such bindings which are the'valu~ of $$bindings and
that if the subgoal $$a can be established using local state which is the va'.ue of $$state. At
any theorem then the consequent $$b will be any given time PLANNER expressions are being
asserted. We obtain two more PLANNER statements evaluated in a local state. This local state
analogous to the above by considering the determines what changes have been made to the
contrapositive of (implies $$a $$b) which is data base i.e., what erasures and assertions
(implies (not $$b) (not $$a». have been made.

-297-

r
I function proveable will not converge. the one immediately after the call to finalize-

from.
{{'I goal} $_statement {goal-recommendation}}

where {{" thfinalize}} causes all actions that
have been taken in the current theorem to be

(def goal-recommendation (kappa «» finalized.
{block «theoremlist seg»

{disj {{II blkfinalize}} causes all actions that
(first $_theoremlist) have been taken in the current block to be
(only $_theoremlist)}}» finalized.

A goal-recommendation of (first $_theoremlist) {{'I defth} $_theorem-name $_theorem}
means that the theorems on $$theoremlist are the defines $$theorem-name to be the name of the
first to be used to try to achieve the goal which theorem $$theorem.
is the value of $$statement. On the other hand
a goal recolmnendation of (only $_theoremlist) {{" thcond} $_clauselist} where clauselist
means that the theorems on $$theoremlist in the if of type seg is like the LISP function cond
order given are the only ones to be used to try except that it treats a simple failure in the
to achieve the goal. The first thing that the first element of a clause like a ().

function goal does is to evaluate {proved?
$$statement}. If the evaluation produces a {{" thprog} $_variablelist $Jrogbody}
failure then the goal recommendation is followed where progbody is of type seg is like the LISP
to try to find a theorem that can establish function prog except that it can handle the
$$statement~ mechanism of failure.

{{" goals} $Jattern} returns as its value {{" thand} $ conjuncts} where conjucts is
a list of the currently active goals. of type seg is like the LISP function and.

{{" genfail}} causes a simple failure to be {{" thor} $ disjuncts} where disjuncts is
reported above. of type seg is like the LISP function or.

{{'I genfail} $_message} causes a failure {{" thrplaca} $ a $ b} is like the LISP
to be reported above with the message the value function rplaca except that the old value of
of $$message. $$a is remembered so that it can be restored

in case of failure.
{{" fail?} $ expr $ failclauses} where

failclauses is of-type s-e-g evaluates $$expr. Suppose that we know that (subset a b),
If the evaluation does not produce a failure, (subset a d), (subset b c), and (for-all (x y z)
then the value of $$expr is the value of the (implies (and (subset x y) (subset y z» (subset
function fail? If the message of the failure x z») are true. How can we get PLANNER to
matches the first element of a clause then the prove that (subset a c) holds? We would give
rest of the elements of the clause are evaluated. the system the following theorems.
Otherwise, the failure continues to propagate

upward. (subset a b)

(subset a d)
{{" failto} $_tag} causes failure to the (subset b c)

tag $$tag which must previously have been passed (defth backward
over. (consequent «(x ptr) (z ptr»)

(subset $?x $?z){{" blkfail}} causes the current block to {thprog «y ptr»
fail. {goal (subset $?x $?y) (first backward)}

{goal (subset $$y $?z) (only backward)}{{" thfail}} causes the current theorem to {assert-consequent}}»
fail.

Now we ask PLANNER to evaluate {goal (subset a c)}
{{" end}} causes the current theorem to then it looks for a theorem that it can activate

cease execution. to work on the goal. It finds backward and binds

x to a and z to c. Then it makes (subset a $?y)
{{!I goal-end}} causes execution to cease a subgoal with the recommendation that backward

on the current theorem and the current goal to be should be used first to try to achieve the sub-
dismissed without being asserted. goal. The system notices that y might be d, so

it binds y to d. Next (subset d c) is made a
{{" finalize-from} $_tag} causes all actions subgoal with the recommendation that only back-

that have been taken since the last time that the ward be used to try to achieve it. Thus back-
tag $$tag was passed over to be finalized. ward is called recursively, x is bound to d, and
Finalize statements are mainly used to save z is bound to c. The subgoal (subset d $?y) is
storage. The next statement to be executed is established causing backward to again be called

-299-

:

;
,
:

,, c c

I

recursively with x bound to d and z determined following theorem:
to be the same as what the old value of y ever (consequent «(a ptr) (c ptr»)
turns out to be. But now the system finds that (subset $?a $?c)
it is in trouble because the new subgoal {thprog «b ptr»
(subset d $?y) is the same as a subgoal on {goal (subset $?a $?b)}
which it is already working. So it decides {goal (subset $$b $?c)}
that it was a mistake to try to prove (subset {assert-consequent ?}})
d c) in the first place. Thus y is bound to The above theorem is the constructive analogue
b instead of d. Now the system sets up the for (for-all (a b c) (implies (and (subset a b)
subgoal (subset b c) which is established (subset b c» (subset a c». One way in which
immediately. We use the above example only the theorem can be established is by showing
to show how the rules of the language work tha.t the evaluation of the following expression
in a trivial case. If we were seriously will not result in a failure:

interested in proving theorems in PLANNER {thprog
about the lattice of sets, then we would «(a {arbitrar~}) ptr)
construct a finite lattice as a model and «b {arbitraryj) ptr)
use it to guide us in finding the proof. «c {arbitrary}) ptr)

Suppose we give PLANNER the following {assert (subset $$a $$b)}
theorems in addition to backward: {assert (subset $$b $$c}}
(subset d b) {goal (subset $$a $$c)}}
(subset a b) The above example shows how it is sometimes
'(deftl1 forward convenient for PLANNER to regard the statement
(antecedent of a theorem simply as an abbreviation for the

«(y ptr)(z ptr») proof of the theorem. We would like to be able
(subset $-y $_z) to prove PLANNER theorems with loops in them.
(thprog «x ptr» In order to do this it is necessary to know

{goal (subset $?x $$y)} the intentions of the internal structure of the
{assert (subset $$x $$z) (or forward ?)}}» theorem.

Now if PLANNER is asked to evaluate {assert
(subset b c) ?}, it will look around for a

theorem which will enable it to deduce conse-

quences of (subset b c). The system will bind
y to band z to c in forward, and then generate
the subgoal (subset $?x b). The subgoal (subset
a b) is easily established. Thus we assert
(subset a c) as a fact and are unable to deduce
any consequences from (subset a c).

Theorems in PLANNER can be proved in much
the same way used for ordinary theorems.
For example suppose that we has the following

two theorems:
(defth th4 (consequent

«(a ptr) (c ptr»)
(subset $?a $?c)
{thprog ()

{thprog «(x {arbitrary}) ptr»
(hypothetical (element $$x $?a)

(element $$x $?c)}}
{assert-consequent ?}}»

On entrance to the inner thprog the variable x
will be bound to a freshly created symbol. The
function hypothetical will verify that (element
$$x $?c) can be proved from (element $$x $?a).
The above theorem is the constructive analogue
of (for-all (a c) (implies (for-all (x) (implies
(element x a) (element x c») (subset a c»).
(defth th3 (consequent «(x ptr) (s ptr»)

(element $?x $?s)

(thprog «r ptr»

(goal (element $?x $?r}}

(goal (subset $?r $?s)}

(assert-consequent ?}}»
The a~ theorem is the constructive analogue
for (for-all (x s) (implies (there-exist (r)

(and (element x r) (subset r s») (element x s»).
From the above two theorems we c~n now prove the

-300-

I

,
t :' , !

;:
Conclusion Acknowledgements ; i

, ;:

j;

The most natural way to do a proof by The preceeding is a report on some of the :!
contradiction. Another type of problem that work that I have done as a graduate student .' j

PLANNER will not solve very naturally is to at Project MAC. Reproduction in full or in ; j

nonconstructively show that there is some part is permitted for any purpose of ~he
l f

object x such that (p x) is true. We shall United States government. We would l~ke to:
call the logistic system based purely on the thank the various system "hackers" that have ii

primitives of PLANNER "robot logic". Robot made this work possible: D. Eastlake, R. ~I; logic is a kind of hybrid between the classical Greenblatt, J. Holloway, T. Knight, G. Mitchell, ::

logics such as the quantificational calculus S. Nelson, and J. White. We had several :!

and intuitionism, and the recursive functions useful discussions with H. V. McIntosh and A.,
as represented by the lambda calculus and Post Guzman on the subject of pattern matching. ;,

productions. The semantical definition of S. Papert and T. Winograd made suggestions for :
1'- truth in robot logic complicated by the improving the presentuion of the material in :;

existence of the primitive erase. There are this paper. 1,;
interesting parallels between theorem proving i

,and algebraic manipulation. The two fields Bibliography ;'
face similar problems on the issues of !

simplification, equivalence of expressions, 1 Black, F. A Deductive Q~estion Answering ~,
intermediate expression bulge, and man-machine System, doctoral dissertat~on, Harvard. ~1;
interaction. In any particular case, the 2 Green, C. C. and Raphael, B. The Use of Ii
theorems need not allow PLANNER to lapse into Theorem-proving Techniques in Question-answering '[

its default conditions. It will sometimes Systems. Proceedings of 23rd National Conf. ACM. j~
happen that the heuristics for a problem are 3 Guzman, A. and McIntosh, H. V., Convert, ::

1very good and that the proof proceeds smoothly Communications of ACM, Aug. 1966. j,~
!.until almost the very end. At the point the 4 Hewitt, C., PLANNER: A Language for Proving ~,

program gets stuck and lapses into default Theorems, A. I. memo 137, July 1967. 11:

conditions to try to push through the proof. 5 McCarthy, J.; Abrahams, P. W.; Edwards D. J.; !.

On the other hand the progr~m might grope for a Hart, T. P.; and Levin, Michael I. Lisp 1.5 ,,~!

while trying to get started and then latch Programmers Manual.
onto a theorem that knows how to polish off the 6 McCarthy, J. and Hayes, P., Some Philosophical
problem in a lengthy but foolproof computation. Problems from the Standpoint of Artificial
PLANNER is designed for use where one has great Intelligence. Stanford A. I. Memo 73.
number of interrelated procedures (theorems) 7 Newell, A., Shaw, J. C., and Simon, H. A.,
that might be of use in solving some problem 1959. Report on a General Problem-solving Program,
alon~ with a general plan for the solution of Proceedings of the Interna~ional Conference i

the problem. The language helps to select on Information Processing, Paris: UNESCO House. i:
procedures to refine the plan and to sequence 8 Slagle, J. Experiments with a Deductive Ques- !!~
through these procedures in a flexible way in tion-answering Program, Communications of ACM ~

case everything doesn't go exactly according to December 1965. :':1/
plan. The fact that PLANNER is phrased in the !~
form of a language forces us to think more

systematically about the primitives needed for "
problem solving. We do not believe that i
computers will be able to prove deep mathe- i

matical theorems without the use of a
hierarchical ~ontrol structure. Nor do we ,C

" .

believe that computers can solve difficult -

problems where their domain dependent knowledge

is limited to finite-state difference tables

of connections between goals and methods.

;;
.~ .

"

"

.'

1;[,

~
~
,

,

\

-301-

I

