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Abstract. The paper deals with the question whether logical truth carry information. On the one
hand it seems that we gain new information by drawing inferences or arriving at some theorems. On
the other hand the formal accounts of information and information content which are most widely
known today say that logical truth carry no information at all. The latter is shown by considering
these accounts. Then several ways to deal with the dilemma are distinguished, especially syntactic
and ontological solutions. A version of a syntactical solution is favoured.
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This paper deals with a special problem within the field of explicating the/a concept
of information: the problem of the information content of logical truth. Getting to
know some logical truth seems to involve acquiring some information. This applies
especially to drawing consequences. In drawing a consequence we get information
about what was entailed or implied by what we already believed. Getting to know a
consequence relation between some beliefs or sentences seems to get information.

Nevertheless the standard explications of information content are not able to
deal with the problem of the information content of logical truth. I will highlight
this problem in the different approaches. I then distinguish several strategies to deal
with the problem, i.e., strategies to assign logical truth either information content
or some other quality accounting for the gain in knowledge upon acquiring them.
Some ways to look for a solution to the problem are hinted at, but none has been
fully developed so far.

1. The Problem in the Syntactic Approach

Rational students should engage only in courses where they can learn something.
Now, unfortunately, it seems that you can learn nothing in a logic course, if learn-
ing something means acquiring some information, since the information content
of logical truths — seen in the light of the standard approaches to measuring or
defining information content — is: nothing! Let us consider the mathematical the-
ory of communication as developed by Claude Shannon (1949) first. The average
information of a source is defined given some measure of the probability that some
symbol out of a set of symbols occurs and the uncertainty with which that sym-
bol occurs given the possible strings of symbols made out of the symbols in that
set. Starting from some requirements on the notion of information content (like
information being additive and that information decreases uncertainty) Shannon
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uses a logarithmic measure of the uncertainty of a symbol, a binary coding and a
probability measure to derive his famous formula:

H = −�i=1(Pi log Pi) (1)

This refers to the source as a whole. Applied to a single signal we can say:

I (α) = log(1/p(α)) (2)

The amount of information in a single symbol α (whether letters in a word or
sentences taken as the single units in talking) is the logarithm of the reverse of its
probability. Logical truths are not random. They can be completely expected, there
are no alternatives to them. Their probability is 1. This means that, in the syntactic
approach, given the definition of information content “I(x)”, we get for a logical
truth α:

I (α) = log(1/p(α)) = log (1/1) = log 1 = 0 (3)

Logical truth carry no information at all. You learn nothing from them.

2. The Problem in the Semantic Approach

Carnap and Bar-Hillel (1952) developed a semantic theory of information content
within the possible worlds framework. Their analysis from the very beginning con-
cerns sentences not individual letters or symbols. As usual, one might identify what
a sentence says with the set of possible worlds in which the sentence is true. The
information content of a sentence might be taken as the set of worlds excluded by
this sentence being true, since in this way we keep the intuition that information
content is related to surprise that what a symbol says is the case. So Carnap and
Bar-Hillel develop two explications of semantic content. The one starts with the
idea just mentioned and gives a more semantic measure of information content,
since the range of worlds excluded by a sentence is statically associated with that
sentence. It does not change with our knowledge which world is the actual world.
A measure cont can be gained by counting the excluded worlds or by employing
an a priori probability measure which assigns all worlds the same probability. Let
m be such a measure, m(α) is the probability of a sentence α. Then we can define
cont:

cont(α) = 1 − m(α) (4)

Logical truths are true in all possible worlds. The set of the worlds excluded by
their truth is �, i.e., given the explication “cont( )” of information content in the
possible worlds approach:

cont(α) = � (collecting the excluded worlds) (5)
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or

cont(α) = 1 − m(α) = 1 − 1 = 0 (6)

Given a probability measure on worlds the information content of a logical truth
α is the number of (the sum of the probability of) the worlds in �, i.e., 0, or the
reverse of the probability of α, i.e., once again 0. Given cont a logical truth carries
no semantic information at all although logical truth are, given Carnap’s semantic
model, true because of their meaning. Considering that we have quite different
intuitions with respect to information content Carnap and Bar-Hillel provide a
second explication of semantic content in terms of probability (given any prob-
ability distribution on the set of possible worlds) and a logarithmic measure. This
second measure is more epistemic than semantic, since the probability distribution
we choose might reflect our world knowledge. With this measure they derive a
semantic analogue to Shannon’s formula:

inf(α) = −log(m(α)) (7)

Repeating the calculation from the last paragraph we get:

inf(α) = − log(m(α)) = − log 1 = 0 (8)

Once again you learn nothing from logical truth.
Luciano Floridi (forthcoming) developed the semantic approach into a theory

of “strongly semantic information”. His starting point stresses one of the contra-
intuitive consequence of the original semantic approach: that contradictions have
the maximum information value. This holds true in the Carnap/Bar-Hillel frame-
work since contradictions exclude all possible worlds; their range being � means
that the reverse of their range is the totality of possible worlds. Their probabil-
ity is zero. And the reverse of their probability is therefore maximal. If α is a
contradiction:

cont(α) = 1 − m(α) = 1 − 0 = 1 (9)

inf(α) = log(1/m(α)) = log(1/0) ≈ log ∞ = ∞ (10)

Floridi calls this, “the Bar-Hillel/Carnap paradox”, since, intuitively, we would say
that somebody who utters a contradiction has said nothing at all, has conveyed
no information at all. He develops a theory in which we not only consider the
truth value of a sentence but also the amount of its deviation (in degrees) from
the actual world (like “there are eight dogs” deviates more from a situation with
two dogs than “there are six dogs”, although both sentences are false). Given his
account of discrepancy of a sentence from the actual world, he can derive that
the discrepancy of contradictions is maximal, which means that their information
content is zero. So he can in fact solve the problem of the supposedly informative
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contradictions. As one condition in the development of the appropriate informa-
tion content function, however, he explicitly lays down the condition that if α is a
tautology it is assigned the maximum degree of discrepancy. That makes it a part
of his framework that logical truths carry no information. So even this elaborated
semantic approach refuses to give us information from logical truths.

3. The Problem in Dretske’s Approach

Fred Dretske (1981) developed an account of information that preserves the main
ideas of the syntactic approach and tries to combine it with an externalist account of
semantic information content. It takes information as being out there in the world.
Meanings might be partly in the head but information is not. Information flows
because of the causal connections between some object s being F and another
object b is G. Dretske does not consider average amounts of information associated
with some symbol but an absolute content given a framework of natural laws and
the circumstances of the situation. So s being F carries the information that b is G
if the conditional probability of b being G given s being F is 1. (A conditional
probability of less than 1 will not do, because of some criteria on information flow
like his famous “Xerox-Principle”.) Knowledge is defined as the belief that s is F
caused by the information that s is F, given some natural laws. The natural laws and
so, of course, the laws of logic belong to the framework within information flow is
recognised. What belongs to the framework cannot carry information itself. Even
natural laws, as given in all relevant contexts, “have an informational measure of
zero” (ibid, p. 264). Logical truth do not cause anyway. So in Dretske’s externalist
approach to information the problem of non-contingent (logical) truth is even more
pressing. Since you have the framework already you can learn nothing from a
logical truth.

4. How To Solve the Problem?

There might be different types of solution:
(a) logical truths carry no information in the sense explained, but are nevertheless

of interest because of some other quality.
This type of solution would leave information theory at it is but supplements it with
a theory of what happens in recognising logical truths besides information flow as
explained by the standard accounts.
(b) information is analysed so as to be able to distinguish between some logical

truths.
A kind of syntactic approach can be of type (a), an ontological approach of type
(b).
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4.1. A SYNTACTIC SOLUTION

Within a semantic approach some syntactic features can be given a role: The logical
truths

p ⊃ p (11)

and

∀(x)(x = x) (12)

differ syntactically. Carnap’s concept of intensional isomorphy (Carnap, 1955) in-
troduces some syntactic features into an account of meaning. Two sentences are
intensional isomorphic if one can be transformed into the other substituting step
by step expressions of the same syntactic category for each other. Since (12) con-
tains expression of the syntactic type individual (variable) it cannot be transformed
into (11). We can introduce a concept of meaning that not only requires logical
equivalence but also requires that two logical true sentences can only have the
same meaning if at their deepest level of logical form they share one logical form
(Bremer, 1993, pp. 295–296). So (11) and (12) differ in meaning. We care about
differences in meaning so that would be an account why we care about different lo-
gical truth. Each logical truth tells us that some individual sentence (i.e., a sentence
with a meaning that distinguishes it from all other sentences) is a logical truth. In
recognising a consequence relation we see a connection between meanings that we
did not see before.

Another version of such a syntactic solution could be developed within a com-
putational theory of mind which refers to mental representations (maybe some
language of thought symbols). Within such a computational theory of mind men-
tal representations have their semantic features and their (psychological) role be-
cause of their syntactic features, since only these configurations enter into causal
connections (cf. Fodor, 1987, 1994).

The (mental) representations “water” and “H2O” have different functional roles
because of their syntax (cf. Dretske 1981, pp. 214-219). We care about that. So an
analytic truth like

Water is H2O (13)

although carrying no information, given Dretske’s explanation of information, is
interesting since it connects two mental representations with a strong link which
had not had that link before, if you did not know (13) before. A similar explan-
ation applies to recognising consequences. These ideas on logical truths commit
themselves to the representationalist/computationalist theory of the mind and await
further elaboration.
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4.2. AN ONTOLOGICAL SOLUTION

Even given intensional isomorphy in a semantic approach incorporating syntactic
features, there are logical truths getting the same meaning although being distinct:

(∀x) Raven(x) ⊃ (∃x) Raven(x); (14)

and

(∀x) Dog(x) ⊃ (∃x) Dog(x) (15)

would be an example. According to the first syntactic approach mentioned, (14)
and (15) would have the same meaning. That could be acceptable, since what you
learn in terms of logic from (14) you can learn from (15) as well. If you want
to make a distinction between even these sentences you need more than logical
form. To solve these cases an ontological solution might be needed which refers
to the constituents (resp. the referents of the constituents). Such an ontological
solution would incorporate a more finely grained carving up of sentences or their
referents. If you do not care about ontological plenty, you can distinguish (14) and
(15) since the one contains the property of being a dog while the other contains
the property being a raven. Situation semantics (Barwise and Perry, 1983; Devlin,
1991) is such a finely grained approach. For example the infon «dog, fido, 1»
(Fido is a dog) and the infon «dog, hasso, 1» (Hasso is a dog) are different infons,
since the first involves the object Fido while the latter involves the object Hasso.
An analysis of compound infons and a consequence relation can then establish
the difference between (14) and (15). This kind of solution would involve heavy
ontological commitment.

5. Hintikka’s Approach

Consider now Hintikka’s approach (Hintikka, 1970, 1973). He was one of the first
to address the problem as a problem of the information content of logical truths.
He considered the problem in the light of epistemic modal logic, asking for the
correctness of two principles of epistemic modal closure. Epistemic modal logics
(i.e., epistemic logics of the early kind, modelled after alethic modal logic) should
be normal modal logics if there should be any logic of the epistemic operators at
all.

Normal modal logics contain a rule of necessitation:

� α →� �α (16)

and the K-Axiom:

� �(α ⊃ β) ⊃ (�α ⊃ �β) (17)
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i.e., the derived rule: � (α ⊃ β) →� (�α � �β). The counterparts in epistemic
modal logic are then:

� α →� Kα [all logical truth are known]
� (α⊃β)→⊃(Kα⊃Kβ) [all consequences of known premises are known]

(18)

which are considered highly contra-intuitive.
Hintikka tries to avoid these contra-intuitive consequences by distinguishing

kinds of information: surface vs. depth information. But he also restricts the closure
principles. Hintikka believes that there is a sense of information in which logical
inference can add to our information, i.e., our knowledge. His explication relates
our problems in recognising a logical truth (i.e., in getting additional information)
to the increasing depth of a procedure of checking quantificational consistency (in
First Order Logic). Surface and depth information are defined relative to a nesting
of quantifiers. Closure (under K) does hold only if α ⊃ β is a surface tautology
at the depth of α (i.e., at the depth of what is already known). That is, we look at
the depth of quantification in α and the depth of quantification in β; if the depth
of β is not greater than that of α, Hintikka sees no problem and closure under K
should apply. If the depth of β is greater than that of α, closure under K cannot
be applied automatically. When we learn α ⊃ β, we gain information (vis. the
difference between surface and depth information). Increasing the depth and then
detaching (in a conditional) can add to our knowledge. But closure (under K) does
not apply here. An account of epistemic closure, therefore, depends on an account
of logical depth information (in a first order possible worlds semantics).

Although it is difficult to explain Hintikka’s approach in detail, let us look at
some of its features. We need some measure of surface and depth information
to compare them. The degree of a formula is obtained as sum of the number of
free singular terms and the maximal number of quantifiers whose scopes have a
common part in the formula (i.e., its depth). Quantifiers are pushed inwards. Depth
depends on quantifier changes like “∃x∀y∃w∀v(...)” (depth 4, say), since “∃x∃y”
could be simplified into a single quantifier (on a pair). Checking for consistency is
done depth by depth, looking for trivial inconsistency at the subordinate clausesï
depth (the subordinate clauses being one within the scope of another quantifier)
by instantiating the variables bound by “∃”. Like constituents logical truths get
assigned a corresponding depth in the procedure. If you formulate these logical
truths as conditionals you see which of them are information increasing.

This procedure is, of course (since First Order Logic is not decidable), not
effective when applied to the non-finite case — which makes so checking the
applicability of closure under K non-effective. Given that we know that α is a
logical truth, counting its quantificational depth is effective. So determining the
logical truth of a formula should be distinguished from determining whether it has
an information increasing structure.
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What can we say about Hintikka’s approach then? There seem to be quite a
few open questions. Is this a psychological theory? Where from? It seems nobody
employs these procedures or the corresponding measures. So let us assume it is a
model for some unspecified process going on in assessing and recognising logical
truths. The model may explain why information is gained by consequence, but it
does not say which information we get if it were to be expressed in words. Why are
just quantifiers the problem? Even though PC is decidable we might not be able to
discover that some α is a tautology. So even closure within propositional epistemic
logic is a problem. Why not simply say we do not know all the consequences of our
beliefs, since this surpasses our capacities because of computational complexity
(we have not enough time and storage) or — in some cases — undecidability?
Although Hintikka employs the machinery of the semantic approach, the procedure
looks cumbersome and non-effective. That might invite one to look for another
approach (within situation semantics or some version of a syntactic approach).

6. Algorithmic Information Theory to the Rescue?

Algorithmic Information Theory (Chaitin, 1997a, b) is a theory of information con-
tent, not of information flow. It deals with word strings. The basic measure is still
bits, but Algorithmic Information Theory focuses not simply on the coding scheme
but on matters of generating a word string by a program. A string has some measure
in bits. The information content of a string is the length of the shortest program (in
bits) which is needed to generate the string. The length of the shortest program
for a string is also its complexity. A finite string of length n can be “programmed”
by having it simply printed, with length n+k, k being the length in bits of the
minimal code to print it. (The real problem are infinite strings, but since there are
no infinite sentences this is no problem here.) A string is random if the size of the
shortest program for it, if there is any, is not shorter than the string itself. Most
strings are random, since there are more strings than well-formed programs. So the
great majority of strings of length n are of complexity very close to n. So the basic
definitions of interest here are:
(1) The complexity IC(s) of a binary string is defined to be the length of the

shortest program p that makes the computer C output s, i.e., IC(s) =min [lg(p)|
C(p)=s]

(2) A random binary string s is one having the property that I(s)≈lg(s).
The complexity IC(s) mentioned in (1) defines also the information content of a
string. If you know its complexity you know the amount of information present
in it. Algorithmic Information Theory could be a syntactic solution at least to the
problem why different logical truths have different information content. Logical
truth — at least those which are theorems within a logical system — are not
random, as one would expect, since by their very definition there are programs
for them: one could assume that one program capable to generate a string that is a
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logical truth is its proof. So logical truth would have definite information content,
and different logical truth could have different ones. (Given that we single out that
program.) And given that we have found the shortest proofs of them we have the
length of the proof available, so that we can see whether much or not so much
information is gained in a logic course.

7. Conclusion

Algorithmic Information Theory is another attempt for a syntactic solution. Its
only shortcoming is that even though each logical truths has a proof, given the
completeness of the system, we have not always a constructive procedure to de-
liver this proof, even if we know that the formula is a logical truths. I, therefore,
prefer the approach hinted at in §4.1. Given some syntactic categories sentences
are analysed in, it is a mechanically solvable problem to assign each sentence
its most finely grained syntactical form. This applies also to logical truths and
distinguishes them from each other. The presupposition of this approach, however,
was that we not only have a general (truth conditional) account of meaning, but can
also integrate a notion like intensional isomorphy within it. That is, to say the least,
quite controversial, and cannot be argued for here. Even if this is to heavy a burden
to shoulder, given some syntactic approach or even retreating to an ontological
solution we have to save the phenomenon. We learn something by doing logic.
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