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Abstract The view that the brain is a sort of computer has functioned as a theo-
retical guideline both in cognitive science and, more recently, in neuroscience. But
since we can view every physical system as a computer, it has been less than clear
what this view amounts to. By considering in some detail a seminal study in com-
putational neuroscience, I first suggest that neuroscientists invoke the computational
outlook to explain regularities that are formulated in terms of the information con-
tent of electrical signals. I then indicate why computational theories have explanatory
force with respect to these regularities: in a nutshell, they underscore correspon-
dence relations between formal/mathematical properties of the electrical signals and
formal/mathematical properties of the represented objects. I finally link my pro-
posal to the philosophical thesis that content plays an essential role in computational
taxonomy.

Keywords Computation · Content · Information · Explanation

A central working hypothesis in cognitive and brain sciences is that the brain is a sort
of a computer. But what, exactly, does it mean to say that an organ or a system such as
the brain is a computer? And why do scientists take a computational approach to brain
and cognitive function? In addressing these questions, I will put forward a revisionary
account of computation that makes two radical claims. First, that everything can be
conceived as a computer, and that to be a computer is not a matter of fact or discov-
ery, but a matter of perspective. And second, that representational content plays an
essential role in the individuation of states and processes into computational types.

As a friend of brain and cognitive science, and a proponent of the computational
approach, one of my objectives is to show that there is no conflict between the view
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I advance here and the foundations of computational cognitive and brain science. If
anything, it helps explain why the computational approach has been fruitful.

The paper is organized as follows. In Sect. 1 I review the notorious problem of
physical computation, that is, the problem of distinguishing computing physical sys-
tems, such as desktops and brains, from physical systems, such as planetary systems,
digestive systems, and washing machines, that do not compute. After enumerating the
conditions for being a computer that have been adduced in the literature, I conclude
that some of the distinguishing features have to do with the way we conceive the
systems in question. In this sense, being a computer is, at least in part, a matter of
perspective.

Why do we assume the computational outlook when we study the brain, but not
when we study other systems? In seeking an answer to this question I examine
(in Sect. 2) a study in computational neuroscience (Shadmehr & Wise, 2005). I observe
that we apply computational theories when we want to explain how the brain performs
a semantic task, i.e., a task specified in terms of representational content, and the (com-
putational) explanation consists in postulating an information-processing mechanism.
From this I conclude that we adopt the computational approach because we seek to
explain how a semantic task can be carried out, and computational explanations are
able to do this. But what is the source of this explanatory force? Why are computing
mechanisms able to explain semantic tasks? I suggest (in Sect. 3) that the explanatory
force of a computing mechanism derives from its correspondence to mathematical
relations between the represented objects and states. In the last section (Sect. 4), I
discuss several objections to my account, and argue that the individuation of a com-
puting mechanism makes an essential reference to these mathematical relations, and,
hence, to certain aspects of representational content.

1 The problem of physical computation: what does distinguish computers
from other physical systems?

Computer models are often used to study, simulate, and predict the behavior of
dynamical systems. In most cases, we do not view the modeled system, e.g., the solar
system, as a computer. When studying the brain, however, our approach is different.
In this case, in addition to using a computer model to simulate the system under inves-
tigation, i.e., the brain, we also take the modeled system itself to compute, viewing
its dynamical processes as computing processes. Why is this so? What is it about the
brain that makes us consider it, along with desktops and pocket calculators, a species
of computer, when it doesn’t even occur to us to accord that status to solar systems,
stomachs and washing machines?

When we talk about computation in the context of mind and brain, we have to dis-
tinguish between two categories of computing. One is associated with certain everyday
activities, e.g., multiplying 345 by 872. This sort of calculation is done “in-the-head,”
often with the aid of a pencil and paper. I call it mental calculation to signify that the
computing agent is largely aware of the process and “controls” it. In characterizing
mental calculation, we take the contrast class to be other mental processes, such as
dreaming, mental imagery, deliberating, falling in love, and so forth, and demarcating
calculation here does not raise any particular problem. The other category is that of
cerebral computation. When we say that the brain is a computer, we are assuming that
the processes underlying many mental phenomena—mental calculation, dreaming,
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and so on—are themselves computations. In characterizing cerebral computation, the
contrast class is different. Since we take brain processes to be electrical, chemical and
biological, the question we should be asking is what makes them computational. What
distinguishes these processes from all the other physical, chemical and biological pro-
cesses, e.g., planetary movements, digestive processes and wash cycles, which are not
conceived as computations? And, more generally, what is it that makes some physical
processes, but not others, computations?

It should be emphasized that I do not seek a precise and definitive answer to the
question of what it is that makes us deem a physical process computation. There are,
undeniably, fuzzy cases such as look-up tables and infinite-time machines. The puzzle
about physical computation does not arise merely because we do not have a precise
definition of physical computation, but because we have a hard time coming up with
a definition that distinguishes even the most obvious cases of computation from non-
computation. There are conditions deemed—correctly, in my opinion—necessary for
something to be considered a computer. But astonishingly, these conditions, individ-
ually and jointly, fail to differentiate even a single clear-cut case of a computer from
a clear-cut case of a non-computer.

Two conditions are often invoked in characterizing computation. The first is that
computation is a species of information-processing, or as the saying goes, “no com-
putation without representation” (Fodor, 1981, p. 122; Pylyshyn, 1984, p. 62). What is
meant by ‘information’ or ‘representation’ here? Our first reaction is that the notion
of representation assumed by computation must be restricted. After all, every phys-
ical system can be interpreted as representing something. We can, for instance, take
planetary systems, stomachs and washing machines to compute the solutions of the
mathematical equations that describe their operations; that is, we can construe their
states as representing certain numerical values. The question, then, is whether there
is a kind of representation that unequivocally distinguishes computing systems from
at least some non-computing systems.

One proposal is that suitable representations are those whose content is observer-
independent. On this criterion, representations whose content is “derived” are ex-
cluded from the computational domain.1 Our cognitive states are usually classified as
representations of the former sort: whether I believe that Bush is a good president
is said to be independent of what others think or what they take me to believe.2

By contrast, the aforementioned construal of states of washing machines as repre-
senting numbers does not seem to satisfy the criterion, since this interpretation is
observer-dependent: it is we who ascribe to them this representational force.

But this proposal draws the line in the wrong place. On the one hand, it is by
no means implausible that planetary systems, stomachs and washing machines have
observer-independent representational powers. Planetary systems might carry infor-
mation about the Big Bang, stomachs about what one has eaten recently, and washing
machines about what one has worn recently.3 On the other hand, digital electronic
systems, e.g., desktops, the paradigm cases of computing systems, operate on symbols
whose content is, indisputably, observer-dependent. That the states of Deep Junior

1 The distinction is suggested, e.g., by Dretske (1988), who uses the terms ‘natural’ and ‘conventional,’
and Searle (1992), who speaks of the ‘intrinsic’ and ‘non-intrinsic.’
2 But see Davidson (1990) and Dennett (1971) for a different view.
3 See Dretske (1988, Chapter 3). Dretske further distinguishes information from (natural) represen-
tation, which might improve things somewhat, but cannot account for computing systems that operate
on conventional signs.
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represent possible states of chessboards is an interpretation we have ascribed to them;
we could just as well have ascribed to them very different content.

Another proposal starts from the premise that a computation operates solely on
a symbol system, i.e., a system of representations with combinatorial syntax and
semantics.4 Hence, representations that can differentiate computations from non-
computations are those that constitute such systems. This criterion seems more
plausible than the preceding one, since it appears applicable to all digital electronics,
and, arguably, to mental representations as well. But it is far too strict. First, there are
all sorts of analog computers that range over representations that are not symbolic.
Second, the current trend in brain and cognitive science is to view the brain as a
computer whose computational processes operate on representations that have no
combinatorial structure. This approach is now widespread in the fields of connection-
ism, neural computation, and computational neuroscience.5 Whether it is empirically
adequate is not at issue here: we are not inquiring into whether the computational
architecture of the brain is “classical” or “connectionist.” We are, rather, inquiring
into whether we can describe the brain as a computer even if it turns out that it does
not operate on a combinatorial system of representations.

Thus the no-computation-without-representation condition does not advance our
investigation at this point. Every system can be seen as representing something.
Attempting to distinguish between different sorts of representations turns out to
be irrelevant in the computational context. Some computations range over repre-
sentations whose content is observer-independent, some over representations whose
content is observer-dependent. Some computations range over representations whose
structure is combinatorial, some over other sorts of representations.

An oft-invoked constraint is what Fodor (1980) calls the “formality condition”: a
process is computational only if it is formal. But what does formality entail? It has been
associated with a number of features, particularly mechanicalness, abstractness, and
algorithmicity. Mechanicalness is generally understood in one of two ways. The sense
more common in the philosophy of science is that of a mechanism, namely, a causal
process underlying a certain phenomenon or behavior: “Mechanisms are entities and
activities organized such that they realize of regular changes from start or setup condi-
tions to finish or termination conditions” (Craver, 2002, p. 68). Physical computation
is surely mechanical in this sense: it is a causal process that involves changes in entities
from initial conditions (inputs) to termination conditions (outputs). But so are the
other physical processes, such as planetary movements, digestive processes and wash
cycles, which are non-computing.

Another sense of mechanicalness is the logical sense. A process is mechanical in
this sense if it is blind to the specific content of the symbols over which it operates.
The way the rules of inference function in axiomatic systems is, perhaps, the paradigm
case, “the outstanding feature of the rules of inference being that they are purely
formal, i.e., refer only to the outward structure of the formulas, not to their meaning,
so that they could be applied by someone who knew nothing about mathematics, or by

4 See, e.g., Newell and Simon (1976), Chomsky (1980), and Fodor and Pylyshyn (1988).
5 See, e.g., Rumelhart, McLelland, and PDP Research Group (1986), Smolensky (1988), Churchland
and Sejnowski (1992), and Churchland and Grush (1999). A specific example is considered in the next
section, a propos discussion of the work of Shadmehr and Wise.



Synthese (2006) 153:393–416 397

a machine” (Gödel, 1933, p. 45).6 Mechanicalness in this sense is often associated with
mental calculation, and is indeed central to the definition of a formal system.7 But in
the context of physical computation, the condition, though satisfied, is not helpful: it
does not distinguish computing from non-computing systems. Almost every physical
process is mechanical in this sense. Planetary movements, digestive processes and
wash cycles proceed regardless of the content one might ascribe to their intermediate
states.

A second feature of formality is abstractness. This feature refers to a description
of the system, that is formulated in terms of an abstract—i.e., mathematical, logi-
cal, or “syntactical”—language, and often called a “program.”8 It is often further
required that the physical system implement this abstract description, which means,
roughly, that its physical states and operations “mirror” the states and operations of
the abstract description.9 Now I agree that the computational description of a sys-
tem is formulated in terms of some logical or mathematical language, and I have no
quarrel with the fact that we can view the system as implementing this program. The
problem is that this condition does not advance our goal of distinguishing computing
from non-computing systems. After all, planetary movements, digestive processes,
and wash cycles are also described by a set of mathematical equations, known as the
laws of nature. And, much like digital computers, they can be seen as “implementing”
these equations, in the sense that their physical states mirror or otherwise correspond
to the states of the describing equations.

A third feature of formality is algorithmicity. This feature can be understood as
amounting to no more than the combination of the features of mechanicalness and
abstractness.10 But it can also be understood in a stronger sense, as a structural
constraint on computing. So understood, a physical computing system is formal in
that it does not implement just any abstract structure, for instance, a set of differ-
ential equations, but rather, the implemented structure must be of a special sort: a
Turing machine, a finite-state automaton, or perhaps some other kind of “digital” or
“discrete” process.11

6 This sense of being mechanical is stressed by Fodor: “Formal operations are the ones that are speci-
fied without reference to such semantic properties of representations as, for example, truth, reference
and meaning” (1980, p. 309).
7 Cf. Gödel: “Turing’s work gives an analysis of the concept of ‘mechanical procedure’ (alias ‘algo-
rithm’ or ‘computation procedure’ or ‘finite combinatorial procedure’). This concept is shown to be
equivalent with that of a ‘Turing machine’. A formal system can simply be defined to be any mechan-
ical procedure for producing formulas, called provable formulas” (in his Postscript to Gödel, 1934,
Collected Works, vol. 1, pp. 369–370).
8 The appeal to abstraction is hinted at in Gödel’s reference to the “outward structure of the formu-
las.” It is made more explicit by Fodor, who defines computation as “mappings from symbols under
syntactic description to symbols under syntactic description” (1994, p. 8).
9 The notion of implementation is controversial. Roughly, a physical system implements an abstract
structure if its physical states “mirror” the operations of the abstract structure in the sense that there
is some correspondence between the physical states and the abstract states. For example, if a physical
state P corresponds to an abstract state A, and a physical state Q corresponds to an abstract state B,
and if P always brings about Q, i.e., the conditional is counterfactual supportive, then A always brings
about B. For refinements of this idea see Chalmers (1996) and Scheutz (2001).
10 In my opinion, computational neuroscientists, e.g., Shadmehr and Wise (see next section), tend to
take algorithmicity in this weaker sense.
11 This feature of formality is stressed in Haugeland (1981). The claim that algorithms are captured
by Turing machines is also made in Gödel’s comment (note 7 above), and is generally referred to as the
Church–Turing thesis. Note, however, that what I am calling “algorithmicity” is close to Gödel’s notion
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But the algorithmicity condition faces two major difficulties. For one thing,
appearances to the contrary, it is satisfied by any physical system. At some level
of description, everything is algorithmic: every physical process can be seen as a dis-
crete state-transition process. This point is argued for compellingly by Putnam (1988)
and Searle (1992), who further maintain that any physical system implements any
“algorithm” whatsoever.12 It may well be that Putnam and Searle rely on an exces-
sively liberal notion of implementation.13 But even if they do, their point is well
taken. As I have suggested elsewhere (Shagrir, 2001), even under the stricter under-
standings of implementation, very simple physical devices simultaneously implement
very different automata. This indicates, at the very least, that every physical system
simultaneously implements several algorithms, even if not every algorithm.

A more serious difficulty is that the algorithmicity condition seems to be inade-
quate: it draws the line between computing and non-computing descriptions in the
wrong place. As we noted, there are analog computers whose processes are considered
to be non-algorithmic.14 It is also possible to conceive of ideal physical systems that
are in some sense “digital,” yet compute non-recursive functions, i.e., functions that
cannot be computed by means of an algorithm.15 And thirdly, there is the important
class of neural networks, artificial and biological, that can be viewed as computing,
even though their dynamics are not “digital” in any obvious sense. These dynamics
are described by “energy” equations, of the sort that describe many other dynamical
systems, including spin glass systems whose particles align in the same direction.16 Of
course, we can count these neural computations as algorithmic, but then, the other
such systems must also be deemed algorithmic.

We find ourselves in a conundrum: any physical system computes something, or
even many things, and every physical process can be seen as computation. The familiar
constraints fail to differentiate computing processes from non-computing processes.
While computing is information-processing, and is mechanical and abstract, these
features can just as well be said to characterize any physical process. And while some
computing processes are algorithmic, in the structural sense outlined above, some
computing processes are non-algorithmic.

What are we to make of this? Churchland, Koch, and Sejnowski (1990) state,
correctly I think, that “whether something is a computer has an interest-relative

Footnote 11 continued
of a finite procedure. On the relationship between the notions of “finite procedure” and “mechanical
procedure,” see my “Gödel on Turing on Computability” (2006).
12 Putnam provides a proof for the claim that every physical system that satisfies certain minimal
conditions implements every finite state automaton. Searle claims that every physical process can be
seen as executing any computer program.
13 See Chalmers (1996) and Scheutz (2001).
14 These machines are algorithmic in the sense that their processes can be approximated by a Turing
machine. The problem with this sense of algorithmicity is that it encompasses every physical system,
including planetary systems, stomachs and washing machines. But see also the well-known exception
presented in Pour-El and Richards (1981).
15 See Hogarth (1992, 1994). Shagrir and Pitowsky (2003) argue that while the postulated computing
machine is digital, in that it consists of two communicating Turing machines, it is not “finite,” since it can
carry out infinitely many steps in a finite time span. Hence, it does not refute the Church–Turing thesis.
16 For an extensive discussion of this point, see my “Two Dogmas of Computationalism” (Shagrir,
1997). An artificial network whose dynamics are given by “energy equations” is described in Shagrir
(1992). On network models of the brain, see the next section. For a detailed discussion of the relations
between the theory of neural networks and statistical mechanics, see Amit (1989).
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component, in the sense that it depends on whether someone has an interest in the
device’s abstract properties and in interpreting its states as representing states of
something else” (p. 48). But I wouldn’t go as far as Searle (1992) who argues that
“computation is not discovered in the physics” (p. 225), that “syntax is not intrinsic
to physics” (p. 208), and that “there is no way that computational cognitive science
could ever be a natural science, because computation is not an intrinsic feature of
the world. It is assigned relative to observers” (p. 212). True, we do not discover
that the brain is a computer, but decide to so describe it.17 But it does not follow,
without additional assumptions, that there is nothing here to discover. First, the claim
that computation is observer-relative does not imply that what the mind/brain repre-
sents is observer-relative. All we have said is that some computations, e.g., desktops,
are defined over representations whose content is observer-relative—not that all are.
Second, the claim that computing is observer-relative does not entail that the truth-
value of the syntactic descriptions is observer-relative. Syntactic descriptions are true
(or false) abstract descriptions of what the system does; in this sense, the physical sys-
tem really implements these abstract structures. The “interest-relative component” is
our decision to describe a system in these terms.

Searle’s conclusion is, therefore, premature. That being a computer is a matter
of perspective does not entail that computational cognitive science (neuroscience)
has no empirical content. In particular, it is consistent with their discovering (a) the
representational contents of the brain—which entities it represents, and (b) the oper-
ations that are performed over these representations. It might well be, therefore, that
cognitive (and brain) science seeks to discover “the computational structure of the
brain”: the implemented abstract structure that is defined over the mental (or cere-
bral) representations.18

Searle arrives at his daring conclusion because he thinks that if being a computer
is a matter of perspective, then the claim that the brain is a computer “does not get
up to the level of falsehood. It does not have a clear sense” (p. 225). Indeed, we have
described the brain as a computer without a clear sense of what we are talking about.
But it does not follow that our talk is meaningless, just that we still have to unpack
the notion of cerebral computation. Given that applying the computational outlook
involves some interest-relative component, our task is to clarify what motivates us to
apply the computational approach when studying brain and cognitive functions. We
have to figure out why we apply it to some systems, e.g., the brain, and not others,
e.g., planets or washing machines. The next step in our investigation is to consider this
question in the context of a seminal study of computation.

2 Why to apply the computational approach: a case study

The Computational Neurobiology of Reaching and Pointing, by Shadmehr and Wise,
offers a comprehensive treatment of the motor-control problem.19 I will focus on part
II (Chapters 9–14), where Shadmehr and Wise theorize about how the brain might

17 See also Smith (Smith, 1996, 75 ff.).
18 Whether computational cognitive science/neuroscience is a natural science in the “naturalistic”
sense that computational types make no essential reference to “mental” or “semantic” items is
discussed in length in Sect. 4.
19 I learned about Shadmehr’s work at the 2004 Washington University Computational Model-
ing and Explanation in Neuroscience workshop, both from Frances Egan, who discussed it from a



400 Synthese (2006) 153:393–416

compute the vector difference between the location of the end-effector (i.e., the hand
and objects it controls) and the target location. The discussion is divided into three
parts: computing the end-effector location (Chapters 9–10), computing the target
location (Chapter 11), and computing the difference vector between the end-effector
and target locations (Chapters 12–14). I will not go into the empirical content of the
theory in any detail; my aim is to see what we can learn about the philosophical issues
at hand from this scientific study.

Like many scientists, Shadmehr and Wise do not provide a comprehensive account
of what they mean by “computation.” In a section of the introductory chapter entitled
“Why a Computational Theory?,” they rely mainly on Marr’s framework:20

In his often-quoted work on vision, David Marr described three levels of under-
standing CNS [central nervous system] functions: the level of a computational
theory, which clarifies the problem to be solved as well as the constraints that
physics imposes on the solution; the level of an algorithm, which describes a
systematic procedure that solves the problem; and the level of implementation,
which involves the physical realization of the algorithm by a neural network. A
computational-level theory thus explains some of what a complex system does
and how it might work. (pp. 3–4)

There are, however, striking differences between the approach advocated by Marr
and the approach taken by Shadmehr and Wise, both with respect to the methodology
of investigation and to the characterization of the three levels. Marr’s methodology,
famously, is top-down, moving from the computational level to the algorithmic, and
ultimately, implementation. Computational theory “clarifies the problem” by identi-
fying “the constraints that physics imposes on the solution”, where “physics” denotes
the physical environment. Shadmehr and Wise, on the other hand, rarely appeal to
constraints from the physical environment.21 In imposing constraints on the prob-
lem and its solution, they appeal, more often, to data from evolutionary biology,
experimental psychology, robotics, and most of all, neuroscience.22 Let me bring two
examples to illustrate the role played by neurobiological constraints in computational
theories.

Shadmehr and Wise’s theory about the computation of the target location relies on
the three-layer neural net model presented in Zipser and Andersen (1988). The inputs
in the model are two sets of cells, one encoding information about eye position (ori-
entation) relative to the head, another encoding the location of the stimulus (target)
on the retina, i.e., its retinotopic location. The output is the location of the target in

Footnote 19 continued
philosophical viewpoint, and from Shadmehr’s former student, Kurt Thoroughman, who discussed it
from an empirical viewpoint.
20 See Marr (1982), Chapter 1.
21 It should be noted, however, that Marr’s focus on the physical environment is not exclusive, and
he also invokes neurobiological data as a constraint on solutions, and that Shadmehr and Wise do, to
some extent, take the agent’s environment into account. But there is a significant difference in the
weight they give these factors.
22 Evolutionary constraints are addressed in the first part of the book; see also the discussion of
the evolutionary advantages of fixation-centered coordinates (p. 185). For behavioral data, see, e.g.,
Sect. 10.1.2 (pp. 160–162), where the results from behavioral experiments are taken to suggest that
the CNS aligns visual and proprioceptive cues to produce an estimate of hand location. For cues from
virtual robotics, e.g., in computing the forward kinematics problem, see Sect. 9.6 (pp. 148–151).
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a head-centered set of coordinates.23 The model rests on earlier electrophysiological
results by Andersen, Essick, and Siegel (1985), who found three classes of cells in the
PPC (in area 7a) of the monkey: (1) cells that respond to eye position only (15% of the
sampled cells); (2) cells that are not sensitive to eye orientation (21%), but have an
activity field in retinotopic coordinates; and (3) cells that combine information from
retinotopic coordinates with information about eye orientation (57%).24 Based on
these constraints, Zipser and Andersen constructed the aforementioned three-layer
model so as to have the two sets of inputs in the model correspond to the first two
classes of PPC cells, and the hidden layer of the (trained) network correspond to the
third class of PPC cells.

The second example pertains to the coordinate system relative to which the com-
putation is carried out: it can be either body-centered, e.g., relative to the head or
shoulder, or fixation-centered. These different systems become relevant with respect
to the coordinate system in which the CNS represents the end-effector location.25

The assumption underlying the Zipser and Andersen model is that the CNS uses a
head-centered coordinate system. However, more recent data collected by Buneo,
Jarvis, Batista, and Andersen (2002) suggests that in area 5d of the PPC, neuronal
activity encodes target and hand locations in fixation-centered coordinates.26 Based
on this data, Shadmehr and Wise adjusted their computational theory, adopting visual
coordinates, with the fovea as the point of origin.

It is also notable that Shadmehr and Wise differ from Marr in the way they char-
acterize and distinguish between the three levels. Consider the distinction between
the computational and algorithmic levels. For Marr, the computational theory “clari-
fies the problem to be solved,” whereas the algorithmic level “describes a systematic
procedure that solves the problem.” For Shadmehr and Wise, the objective of the
computational theory is to explain how the system might solve the problem, which,
they say, amounts to ascertaining the “systematic procedure that solves the problem,”
namely, the “the process of computing” (p. 147). This is, of course, precisely what Marr
sees as the objective of the algorithmic level. It would thus seem that Shadmehr and
Wise do not recognize any significant difference between the levels. As far as they are
concerned, to theorize at the computational level is to conjecture, on the basis of all
available data, as to how the problem might be solved, whereas the ‘algorithmic level’
refers to way it is solved.27

Or consider the distinction between the algorithmic and implementation levels.
Marr reserves the terms ‘computation’ and ‘algorithm’ for a cognitive, e.g., visual,
system, and the term ‘implementation’ for their realization in the brain. Shadmehr
and Wise draw no such distinction. On the one hand, it is clear that Shadmehr and
Wise take the brain itself to be a computer. Indeed, the phrase “the CNS computes”
occurs dozens, if not hundreds, of times throughout the book, for example, in the
general thesis that “according to the model presented in this book, in order to control

23 Shadmehr and Wise, pp. 193–197. Shadmehr and Wise diverge from Zipser and Andersen mainly
in locating the outputs in a fixation-centered coordinate system, i.e., a visual frame with the fovea as
its point of origin (see below).
24 Shadmehr and Wise, pp. 188–192.
25 See Shadmehr and Wise, pp. 209–212.
26 See Shadmehr and Wise, pp. 212–216.
27 Shadmehr and Wise thus conclude the section “Why a Computational Theory?” with the state-
ment that the book “presents one plausible, if incomplete, framework for understanding reaching and
pointing movements” (p. 4).
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a reaching movement, the CNS computes the difference between the location of a
target and the current location of the end effector” (p. 143). On the other hand, by
“algorithm,” Shadmehr and Wise do not refer to a sequential, digital, discrete, or
controlled process, but to something altogether different. They almost always refer
to a multi-directional, parallel, spontaneous, and often analog process, and always
describe it by means of a neural network model.28

Keeping these differences in mind, let us focus on the objectives of computational
theories. According to Shadmehr and Wise, the aim of a computational theory is to
explain “some of what a complex system does and how it might work.” This statement
raises two questions: (a) What exactly is the explanandum of a computational theory:
what are the computational problems that the brain solves? And (b) What exactly
is a computational explanation: how does a computational theory explain how these
problems are—or might be—solved? I address them in turn.

Two observations about the nature of computational problems come to mind imme-
diately. First, the problem is formulated in terms of regularities: what is being com-
puted is an input–output function. Thus in Chapter 9 Shadmehr and Wise consider “the
problem of computing end-effector location from sensors that measure muscle lengths
or joint angles, a computation called forward kinematics” (p. 143). In Chapter 11 they
advance a theory, based on the Zipser–Andersen model, that seeks to explain how the
CNS computes the target location from information about eye orientation and the
target’s retinotopic location. And in Chapter 12 they consider the problem of com-
puting the vector difference from information about the locations of the end-effector
and the target.

The second observation I want to make is that these regularities are specified in
semantic terms. By this I mean more than that the inputs and outputs are represen-
tational states. I mean, in addition, that the function being computed is specified in
terms of the content of these representations: information about joint angles, hand
and target location, eye orientation and so forth. For example, information about the
“end-effector location” is computed from information about “muscle lengths or joint
angles”: “the CNS computes the difference between the location of a target and the
current location of the end effector” (p. 143). However, in calling these terms semantic
I do not imply that they are intentional. In computational neuroscience, it is far from
clear that the semantic concepts that scientists invoke, e.g., representation, informa-
tion and encoding, refer to much more than stimuli–response causal relations, i.e., a
way to interpret neural activity in cells as a response to certain environmental stimuli.
The point is simply that regularities in the brain are formulated in these semantic
terms.

I also do not suggest that the semantic terms are introduced once we apply the
computational approach. To the contrary, assigning content and information to brain/
mental states is often prior to taking the computational outlook. This is perhaps obvi-
ous in the case of computational models of “higher-level” cognitive phenomena. But
it is also the case in computational neuroscience. To see this, let us take a closer look
at the electrophysiological studies of Andersen et al. (1985). In these experiments

28 Shadmehr and Wise also advocate a “non-classical,” neural network approach in robotics. They
write, e.g., that “rather than a symbolic computer program to align “proprioception” with “vision,”
the imaginary engineer might use one neural network based on feedforwarded connections to map
proprioception to vision (forward kinematics) and another network to map vision to proprioception
(inverse kinematics). Both of these networks would perform what is called a function-approximation
computation” (p. 150).
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Andersen and his colleagues record PPC neuronal activity from awake monkeys
trained in various visuospatial tasks, e.g., fixating on a small point at different eye
positions. They then label one group of neurons as “eye-position cells” interpreting
their activity as “coding” a range of horizontal or vertical eye positions. They state,
more generally, that the “brain receives visual information” and that “at least nine
visual cortical fields . . . contain orderly representations of the contralateral visual
field” (p. 456). Undertaking their computational model, Zipser and Andersen (1988)
do not introduce new semantic concepts but build on the interpretation and terminol-
ogy of the prior electrophysiological studies.29

Taken together, we can say that the problems the brain computes are certain regu-
larities or functions that are specified in terms of the representational content of the
arguments (inputs) and values (outputs). I call these problems semantic tasks. The
assertion that it is semantic tasks that are being computed is consistent with other
computational studies of the brain.30 It is also consistent with the computing tech-
nology tradition that calculators compute mathematical functions such as addition
and multiplication, chess machines compute the next move on the chess-board, and
robots compute motor-commands.31 And it is consistent with much of the philosoph-
ical tradition.32

Let us now turn to the explanation itself. Perusal of Shadmehr and Wise suggests
two features that are associated with computational explanations. First, explanation of
a semantic task consists in revealing the (computing) process that mediates between
the “initial conditions” (e.g., states that represent the joint angles) and the “termi-
nation conditions” (e.g., states that represent the hand location). In this sense, a
computational explanation is a sort of mechanistic explanation: it explains how the
computational problem is solved by revealing the mechanism, or at least a potential
mechanism, that solves the problem. The second feature is that the computing process
invoked by the explanation satisfies the conditions on computation mentioned in the
first section: it is both information-processing and formal, whether the latter is taken
to connote mechanicalness or abstractness.

The information-processing character of the process is evident throughout the
book. On a single page, we find several statements to this effect: “the process of com-
puting motor commands depends crucially on information provided by sensory sys-
tems”; “the coordinate frame used by the CNS for representing hand location reflects
this dominance” ; “the idea that your CNS encodes hand location in a vision-based
coordinates intuitive enough” (p. 147, emphasis added). The mechanical character of
computing processes is also abundantly evident in the book, particularly in descrip-
tions of computing processes in engineered robots. And the abstractness of computing

29 I am grateful to an anonymous referee who encouraged me to add these comments.
30 See, e.g., Marr (1982), and Lehky and Sejnowski (1988), whose computational theories seek to
explain, e.g., how the brain extracts information about an object’s shape from information about
shading.
31 E.g., Shadmehr and Wise’s discussion of how to approach the problem of forward kinematics
in robotics engineering (pp. 148–151): “the engineer’s computer program can be said to align the
mappings of gripper location in visual and proprioceptive coordinates” (pp. 148–149).
32 E.g., Fodor (1994, Chapter 1) states that computational mechanisms are invoked to explain
intentional regularities.
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processes is manifest in the fact that mathematical language and neural net models
are used to describe them.33

To gain insight into computational explanation, let us examine a real computational
theory, the computational theory at the center of part II of Shadmehr and Wise, which
seeks to explain how the brain computes the difference between the target and the
current location of the hand. The first step is to divide the problem into sub-problems,
each of which is also a semantic task that calls for explanation.34 Shadmehr and Wise
divide the problem into three parts: computing hand location from information about
joint-angles; computing target location from information about eye-orientation and
the retinotopic location of the target, and computing the difference vector from the
locations of the hand and target.

The second step is to characterize the sub-tasks in abstract terms, that is, to describe
input–output relations by means of, say, mathematical equations. I will focus on the
computational problem of the second phase—computing target location from infor-
mation about eye-orientation and the retinotopic location of the target. This problem
is described by the vectorial transformation [R] + [xR] → [Cr], where [R] is a vector
of the numerical activation values of cells that encode the stimulus (target) location
in terms of a retinotopic coordinate system, [xR] stands for the values of electrical
discharges that encode eye-location in head-centered coordinates, and [Cr] stands for
those that encode the target location in head-centered coordinates.35

The third step is to clarify the relations between the abstract inputs, in our case, [R]
and [xR], and the output [Cr]. To do this, Shadmehr and Wise appeal to the Zipser–
Andersen model, which is a three-layer neural network trained to accomplish the task.
The network consists of 64 input units that stand for the visual input [R] and another
32 input units that stand for the eye-position [xR]. Two output representations were
used, both of which are meant to represent the stimulus location in head-centered
position [Cr]. The number of units in the hidden layer is not specified. The discharge pj

of each cell j in the second and third layers, is a logistic function 1/(1 + e−net).36 After

33 In the “Why a Computational Theory?” section, Shadmehr and Wise repeatedly associate com-
putational theories with mathematical terms and entities, declaring, e.g., that numbers “enable
computations and, therefore, computational theories” (p. 3).
34 Obviously, the “steps” here serve to highlight the logical structure of the explanation; I am not
claiming that the explanation actually proceeds by means of these “steps.”
35 Shadmehr and Wise, p. 194. Two points should be noted. First, this vectorial transformation fits the
Zipser–Andersen model, and does not reflect Shadmehr and Wise’s preference for fixation-centered
coordinates. Second, [R] + [xR] signifies a vectorial combination that is, in fact, non-linear.

As to the computational problems tackled in the other phases, the forward kinematic problem is
described in terms of a vector that represents the trigonometric relations between the joint angles
and the end-effector location in a shoulder-based coordinate system; see pp. 151–157, and the sup-
plementary information on Shadmehr’s website: http://www.bme.jhu.edu/∼reza/book/kinematics.pdf.
The computational problem tackled in the last phase, computing the difference vector, is described
by the equation Xdv = Xt − Xee, where Xdv is the difference vector (target location with respect to
end-effector), Xt is the vector representing the target location in fixation-centered coordinates, and
Xee is the vector representing the end-effector location in fixation-centered coordinates.
36 Net = �wij · pi, where pi is the discharge of cell i, and wij is the weight from i to j. Since the network
is feed-forward, for each cell, j, wij is defined only for (all) cells in the preceding layer. The initial
weights are arbitrary: Zipser and Andersen train the net to find the exact mathematical relations
between the input [R] + [xR] and the output [Cr] “by itself.”
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a training period, in which the weights are modified by means of back-propagation,
the network exhibits the behavior [R] + [xR] → [Cr].37

The fourth and crucial step is to make use of the model to explain the semantic task.
The Zipser–Andersen model is meant to explain two semantic features. It explains,
first, the pattern of behavior in area 7a, i.e., how cells of the “third group” combine
information from retinotopic coordinates with information about eye orientation.
These cells are represented in the model by the units in the hidden layer. Analyzing
the behavior of the hidden units, Zipser and Andersen found that these cells com-
bine information about the inputs, much like the cells in area 7a. In particular, they
behave in accordance with the equation pi = (kT

i e + bi) exp(−(r − ri)
T(r − ri)/2σ 2),

where e stands for eye-orientation with respect to two angular components, ki and
bi represent the cell’s gain and bias parameters, ri is the center of the activity field
in retinotopic coordinates, and σ describes the width of the Gaussian.38 A second
explanatory goal of the model is to show that there can be, at least in principle, cells
coding eye-position-independent location of the stimulus. This goal is achieved by
demonstrating that the output units extract from the information in the hidden units
a coding of the target location in head-centered coordinates. The existence of such
“output” cells in the brain, however, is debatable and has not been unequivocally
demonstrated.

The last stage in the explanation is to combine the three “local” computational
theories into an “integrated” computational theory that explains how the more gen-
eral problem is solved. This is done via a neural net model that combines the three
networks that describe how the sub-tasks are carried out.39

We are now in a better position to say why we apply the computational approach
to some systems, e.g., brains, but not others, e.g., planetary systems, stomachs and
washing machines. One reason is that computational theories seek to explain seman-
tic tasks. We apply the computational approach when our goal is to explain a semantic
pattern manifested by the system in question: to explain how the CNS produces cer-
tain motor commands, how the visual system extracts information about shape from
information about shading, and how Deep Junior generates the command “move
the queen to D-5.” We do not view planetary systems, stomachs and washing mac-
hines as computers because the tasks they perform—moving in orbits, digesting and
cleaning—are not defined in terms of representational content. Again, we could view
them as computing semantic tasks, in which case we might have applied the compu-
tational approach. But we don’t: we aim to explain the semantic tasks that desktops,
robots and brains perform, but not the semantic tasks that planetary systems, stomachs
and washing machines might have performed.40

37 For Zipser and Andersen’s presentation of the model, see Zipser and Andersen (1988), Fig. 4,
p. 681. For a sketch of a model for forward kinematics, see see Shadmehr and Wise (2005) Fig. 9.3 on
p. 149. For a sketch of a model for the third phase (computing the difference vector), see Fig. 12.5
on p. 212. For a detailed mathematical description, see Sect. 12.4 (p. 216 ff.) and Shadmehr’s website:
http://www.bme.jhu.edu/∼reza/book/recurrent_networks.pdf
38 For further details, see Shadmehr and Wise, pp. 193–197.
39 A sketch of the network is provided by Shadmehr and Wise in Fig. 12.11 on p. 223.
40 There is the question of why we view the mind/brain as performing semantic tasks. Answering this
question is beyond the analysis of computation: assigning semantic tasks is not part of the computa-
tional explanation, but is made prior to taking the computational approach (though the computational
study might reveal that the semantic task being solved is not the one we initially attributed to the
mind/brain).
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A second reason is that computational theories do explain the pertinent semantic
tasks that these systems perform. When we look at the Zipser–Andersen model, we
understand, at least in principle, how the semantic task is carried out. We understand
how the CNS might solve the semantic task of converting information about eye-
orientation and the target’s retinotopic location into information about the target’s
location in body-centered coordinates. This is not a trivial achievement. It is far from
clear that other sorts of explanation, e.g., physical, chemical or biological, have this
or any explanatory force with respect to semantic tasks.

So we have made some progress, but our analysis is not yet complete. To better
understand why we apply the computational approach we should clarify what is the
source of its explanatory force with respect to semantic tasks: we have to better under-
stand the contribution of computational theories in explaining how semantic tasks are
carried out.

3 On the explanatory force of computational theories

Where do we stand? We noted in the first section that to view something as a com-
puter is to describe its processes as operating on representations, and as being formal,
understood as both mechanistic and abstract. But since everything can be described
this way, we concluded that computation is a matter of perspective, at least in part.
We then asked why we adopt the computational attitude to some systems and not
others. Why do we take brains and desktops, but not planetary systems, stomachs
and washing machines, to be computers? Surveying the work of Shadmehr and Wise
has provided at least a partial answer. The computational approach is an explanatory
strategy that seeks to explain a system’s execution of semantic tasks. Computational
theories in neuroscience explain how the CNS accomplishes tasks such as solving the
forward kinematics problem of extracting the end-effector location from information
about muscle lengths and joint angles.

We now need to account for the fact that the computational approach gives us
what we want, that is, they can explain how semantic tasks are carried out. Let me
sharpen the point in need of clarification a bit more. Consider a semantic task of the
type F → G, e.g., converting information about eye-orientation and the retinotopic
location of the target (F) into information about the target location in body-centered
coordinates (G).

Let [R] + [xR] → [Cr] signify the computing mechanism described in the Zipser–
Andersen model, where [R] + [xR] is the computational description of the state
F, and [Cr] that of G. Let us also assume that N0 → Nn is a “low-level” neural
mechanism underlying the semantic task, where N0 is, e.g., the electric discharge
of certain cells in area 7a correlated with F, and Nn that which is correlated
with G.

Now, when we look at the electrophysiological studies of Andersen et al. (1985) we
see that they not only point to the pertinent neurological properties, Ni. They already
formulate, at least partly, the semantic task F → G that is being performed: “many of
the neurons can be largely described by the product of a gain factor that is a function
of the eye position and the response profile of the visual receptive field. This operation
produces an eye position-dependent tuning for locations in head-centered coordinate
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space” (p. 456).41 Nevertheless, Andersen et al. (1985) do not provide an explanation
for how this semantic operation is produced. A possible explanation is provided only
later on by Zipser and Andersen (1988), and, following them, by Shadmehr and Wise
(2005), in terms of the computational model.

So what is it about computational models that makes them explanatory with respect
to semantic tasks? And what is the explanatory force of the computational mechanism
above and beyond its neurobiological counterpart? Before I present my own answers,
let me address, very briefly, some answers that have been suggested by others.

One answer cites multiple realization. The claim here is that a semantic task can be
implemented in different physical mechanisms, some of which are non-biological.42

But this answer is not satisfying. First, it is far from obvious that with respect to multiple
realization there is any difference between the computational and the neurological.
On the one hand, it might well be that different species apply different computational
mechanisms in performing a given semantic task. On the other, there is no evidence
that the semantic tasks we seek to explain are multiply-realizable in creatures of the
same species, e.g., humans.43 Second, multiple realization does not seem to account
for the explanatory force of computational models, e.g., the Zipser–Andersen model,
in neuroscience. The explanatory force of the model does not stem from the possibility
of being applied to other remote creatures. Its force is in explaining even particular
cases of semantic regularities, e.g., how my CNS comes to represent the location of a
target—that keyboard, say.

Fodor has argued that computational processes, which he views as “mappings from
symbols under syntactic description to symbols under syntactic description” (1994,
p. 8), are truth-preserving: “It is characteristic of mental processes they [psychological
laws] govern that they tend to preserve semantic properties like truth. Roughly, if
you start out with a true thought, and you proceed to do some thinking, it is very
often the case that the thoughts that the thinking leads you to will also be true” (1994,
p. 9). I agree with Fodor that computational processes “preserve semantic proper-
ties,” but I do not think that he correctly accounts for the explanatory import of
this feature. First, if the syntactic processes are truth-preserving, their neural imple-
mentations must be truth-preserving too. But this leaves open the question of why
these processes, under neural descriptions, do not suffice for explanatory purposes,
even though they are truth-preserving. Second, Fodor’s account is confined to “classi-
cal” processes, whereas we are interested in the explanatory power of computational
models in general. For the question we seek to answer is not that of the empirical
adequacy of the classical model of mind.44 Rather, we are trying to understand why
computational models, classical or non-classical, have explanatory power with respect
to semantic tasks.

41 I note again that the task described by Andersen et al. (1985) parallels the transformation between
the input and hidden units in Zipser and Andersen (1988).
42 See, e.g., Fodor (1974) and Putnam (1975). For a version of this argument that highlights complex-
ity considerations see Putnam (1973); in particular, the peg-hole example. For a response, see Sober
(1999).
43 For a detailed discussion of these points with reference to Zipser and Andersen (1988), see Shagrir
(1998).
44 This is, however, the question Fodor addresses. He thus writes: “This emphasis upon the syntac-
tical character of thought suggests a view of cognitive processes in general—including, for example,
perception, memory and learning—as occurring in a languagelike medium, a sort of ‘language of
thought’ ” (p. 9).
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According to Sejnowski, Koch, and Churchland, “mechanical and causal explana-
tions of chemical and electrical signals in the brain are different from computational
explanations. The chief difference is that a computational explanation refers to the
information content of the physical signals and how they are used to accomplish a
task” (1988, p. 1300). Indeed, Zipser and Andersen explain the semantic task F → G
by referring to F, that is, they explain how cells in state Nn encode information,
G, about the target location in head-centered coordinates, by referring to the infor-
mation content, F, of cells in state N0 in area 7a, i.e., that the electrical signals of
some of these cells encode information about stimulus retinotopic-location and that
the electrical signals of other cells encode information about eye-orientation. Thus
referring to the information content of electrical signals is a central ingredient of com-
putational explanations. The question, still, is why invoke, in addition, the computing
mechanism to explain the semantic transformation. Why describing the mediating
mechanism between N0 and Nn in terms of the computational model, and not in
terms of chemical and electrical signals in the brain?

Shadmehr and Wise suggest that a computational theory is an incomplete frame-
work for how the brain “might solve these and other problems”. A computational
theory simply “helps to understand–in some detail—at least one way that a system
could solve the same problem” (p. 4). In doing this, they serve to bridge between
neuroscientists, who study brain function, and engineers, who design and construct
mechanical devices,45 and they promote further research, e.g., additional electrophysi-
ological experiments, by pointing to a set of alternative hypotheses as to how the brain
might accomplish the task.46 On this picture, the explanatory advantage of computa-
tional theories is similar to that of mathematical models in other sciences: being more
abstract, they underscore regularities that neurological, not to mention molecular,
descriptions obscure.47 But this does not mean that computational descriptions have
extra explanatory qualities with respect to semantic tasks that strict neurobiological
descriptions lack.

I do not underestimate the role of mathematical models in science in general, and
in neuroscience in particular. But I want to insist that computational models have
additional and unique explanatory role with respect to semantic tasks. Let me sketch
what I take this explanatory role to be. A computational theory in neuroscience aims
to explain how the brain extracts information content G from another, F. We know
from electrophysiological experiments that G is encoded in the electrical signals of a
neural state Nn, and F in those of N0. Let us also assume that we can track chemical
and electrical processes that mediate between N0 and Nn. What we still want to know
is why the information content of the electrical signals of Nn is G, e.g., target location
in head-centered coordinates, and not, say, the target’s color. The question arises since
the encoded information G are not “directly” related to the target, but is mediated
through a representational state that encodes F. The question, in other words, is why
a chemical and electrical process that starts in a brain state N0 that encodes F, and
terminates in another brain state, Nn, yields the information content G. After all, this
causal process N0 → Nn is not sensitive to what is being represented, but to chemical
and electrical properties in the brain.

45 Shadmehr and Wise, pp. 2–3.
46 This was suggested by a referee of this article.
47 A more sophisticated version of this picture, in terms of levels of organization in the nervous
system, is presented in Churchland and Sejnowski (1992).
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A computational theory explains why it is G that is extracted from F by pointing
to correspondence relations between mathematical or formal properties of the rep-
resenting states—what we call computational structure—and mathematical or formal
properties of the represented states. The idea is that by showing that N0 encodes F,
and that the mathematical relations between N0 and Nn correspond to those of the
“worldly” represented states that are encoded as F and G, we have shown that Nn
encodes G.

Let me explicate this point by means of three examples. The first is fictional. The
brown–cow cell transforms information about brown things and about cow things
into information about brown–cow things. The cell receives electrical inputs from
two channels: it receives 50–100 mV from the “brown-channel” just in case there is a
brown thing in the visual field and 0–50 mV otherwise, and it receives 50–100 mV from
the “cow-channel” just in case there is a cow thing out there and 0–50 mV otherwise
(I assume that the information is about the same object). The cell emits 50–100 mV
whenever there is a brown cow in the visual field, and 0–50 mV otherwise. How does
this cell encode information about brown cows: how does it extract information about
brown cows from information about brown things and information about cow things?

The computational explanation is obvious enough. First, we describe the cell as an
AND-gate that receives and emits 1’s and 0’s; these abstracts from emission/reception
of 50–100 mV and 0–50 mV. This is the computational structure of the cell. Second,
we refer to the information content of the inputs, which are brown things and cow
things. And, third, we note that the AND-gate corresponds to a mathematical relation
between the represented objects, that is, it corresponds to the intersection of the set
of brown things and the set of cow things. Taken together, we understand why the
information content of emission 50–100 mV is brown-cows: emitting 50–100 mV is an
AND result of receiving 50–100 mV, and the AND-operation corresponds to the inter-
section of the sets of represented objects. Thus given that receiving 50–100 mV from
each output channel represents brown things and cow things, emitting 50–100 mV
must represent brown–cow things.

Marr’s computational theory of early visual processes explains how cells extract
information about object-boundaries from retinal photoreceptors that measure light
intensities.48 Marr and Hildreth suggest that the activity of the former cells, known
as edge-detectors, can be described in terms of zero crossings in the mathematical
formula (∇2G) ∗ I(x, y), where I(x, y) is the array of light intensities (retinal image), ∗
is a convolution operator, G is a Gaussian that blurs the image, and ∇2 the Laplacian
operator (∂2/∂x2 + ∂2/∂y2) that is sensitive to sudden intensity changes in the image.
Thus at one level, this formula describes a certain mathematical relation between the
electrical signals of the edge-detectors and those of the photoreceptors that consti-
tute the retinal image, I(x, y). But this alone does not explain why the activity of the
edge-detectors corresponds to object boundaries and other discontinuities in surface
properties.49 The explanation is completed when we note that these mathematical
properties correspond to certain mathematical properties of the represented states,
for example, of sudden changes in light reflection along boundaries of objects. Had
the reflection laws been very different, the mathematical formula would still have

48 Marr (1982, Chapter 2).
49 Thus Marr (1982, p. 68) states that, at this point, it is better not to use the word ‘edge’, since it
“has a partly physical meaning—it makes us think of a real physical boundary, for example—and all
we have discussed so far are the zero values of a set of roughly band-pass second-derivative filters”
(p. 68).
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described the same cellular activity, but the cells would no longer carry information
about object boundaries.50

Let us return to the Zipser–Andersen model. Analyzing the activity of the units in
the intermediate layer, Zipser and Andersen found that these units behave like cells
in area 7a that combine information about the target’s retinotopic location with infor-
mation about eye-orientation. It was then found that the mathematical description of
the activity is (kT

i e + bi) exp(−(r − ri)
T(r − ri)/2σ 2), which might explain how these

cells encode the combined information. The explanation refers to the content of the
first two groups of cells in area 7a, and, in particular, that the parameter e stands for
eye-orientation with respect to two angular components, and ri is the center of the
activity field in retinotopic coordinates. But it also establishes the findings of the ear-
lier electrophysiological studies: that the described mathematical relations between
the electrical signals correspond to certain mathematical relations between the repre-
sented states: for example, that the described mathematical relation (r− ri) of cellular
activity (in the second group) corresponds (roughly) to the distance (“in numbers”)
of the retinotopic location of the stimulus from the receptive field.51 Without this
and the other correspondence relations between mathematical properties, we could
have not explained why the cellular activity described by the mathematical formula
conveys combined information about eye-orientation and the retinotopic location of
the target.

The gist of my account, then, is as follows. When we describe something as a com-
puter we apply a certain explanatory strategy. We apply this strategy when we seek to
explain how a complex system performs a semantic task. The explanatory force of this
strategy arises from identifying correspondence relation between the computational
structure of the system and certain mathematical properties of the states and objects
that are being represented.

4 Discussion

The following discussion, in the form of objections and replies, will further elaborate
on my position, and situate it in the context of the philosophical discussion about
computation and content.

Objection #1: It seems that you uphold some version of a “semantic” view of
computation, but it is not clear what it amounts to.

Reply: Piccinini (2004) has recently characterized the semantic view of compu-
tation in terms of the no computation without representation condition. My view
is certainly “semantic” in this sense, and as I said, this condition has been widely
adopted.52 But I think that there is another, more significant distinction to be made.

50 As Marr (p. 68) puts it, if we want to use the word ‘edges’, we have to say why we have the right
to do so. The computational theory justifies this use since it underscores the relations between the
structure of the image and the structure of the real world outside.
51 See also Grush (2001, pp. 160–162) who highlights, in his analysis of Zipser and Andersen (1988)
the relations between what he calls the algorithm-semantic interpretation (which I take to be the
mathematical properties of the cells) and the environmental-semantic interpretation (which I take to
be the objects/states/properties that are being represented).
52 Thus Piccinini rightly says that “the received view” is that there is no computation without repre-
sentation. A notable exception is Stich (1983). I discuss Piccinini’s objection to the no-computation-
without representation condition in objection 6.
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Because some—many, in fact—of those who accept that there is no computation
without representation also hold computation to be “non-semantic” in the sense that
the specification of states and processes as computational types makes no essential
reference to semantic properties, including representational content. Indeed, this is, I
would say, a more accurate statement of the received view about computation. That is,
on the received view, computation is formal, in virtue of which it is—notwithstanding
the no computation without representation constraint—non-semantic.53 There are,
however, those who maintain that computation is “semantic” in the sense that com-
putational individuation does make essential reference to representational content.
This view has been advanced by Burge (1986) and others with respect to computa-
tional theories in cognitive science.54 I belong to this latter “semantic” camp, though
my view is distinctive in crucial respects (see below).

Objection #2: You seem to be contradicting yourself. On the one hand, you say
that computation is “semantic” in the stronger, individuative, sense. On the other,
you uphold the view that computational structure is formal. You thus have to clarify
how computational individuation that makes essential reference to content can be
compatible with the formality condition.

Reply: I accept the idea that computation is formal, in the senses of mechanicalness
and abstractness. A computational description is formulated in abstract terms, and
what it describes is a causal process that is insensitive to representational content.
However, it does not follow from these features that computation is non-semantic.
It is consistent with mechanicalness and abstractness that semantic elements play an
essential role in the individuation of the system’s processes and states into computa-
tional types. They play an essential role in picking out “the” computational structure
from the set of the abstract structures that a mechanism implements.

To better understand how content constrains computational identity, consider again
the brown–cow cell. Assume that receiving/emitting 0–50 mV can be further analyzed:
the cell emits 50–100 mV when it receives over 50 mV from each input channel, but it
turns out that it emits 0–25 mV when it receives under 25 mV from each input chan-
nel, and 25–50 mV otherwise. Now assign “1” to receiving/emitting 25–100 mV and
“0” to receiving/emitting 0–25 mV. Under this assignment the cell is an OR-gate. This
means that the brown–cow cell simultaneously implements, at the very same time,
and by means of the very same electrical activity, two different formal structures. One
structure is given by the AND-gate and another by the OR-gate.55

Now, each of these abstract structures is, potentially, computational. But only the
AND-gate is the computational structure of the system with respect to its being
a brown-cow cell, namely, performing the semantic task of converting information
about brown things and cow things into information about brown cow things. What
determines this, that is, picks out this AND-structure as the system’s computational
structure, given that OR-structure abstract from the very same discharge? I have

53 Fodor is the most explicit advocate of this view: “I take it that computational processes are
both symbolic and formal. They are symbolic because they are defined over representations, and
they are formal because they apply to representations, in virtue of (roughly) the syntax of the
representations. . . . Formal operations are the ones that are specified without reference to such
semantic properties of representations as, for example, truth, reference and meaning” (1980, p. 64).
54 See also Kitcher (1988), Segal (1989, 1991), Davies (1991), Morton (1993), Peacocke (1994, 1999),
Shagrir (2001). I have also argued for this “semantic” view in the context of computer science (Shagrir,
1999).
55 A more complex example is presented in detail in Shagrir (2001).
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suggested that it is content that makes the difference: discharges that are greater
than 50mV correspond to certain types of content (of cows, browns, and brown cows)
and the discharges that are less than 50 mV corresponds to another (their absence).
Thus the identity conditions of the process, when conceived as computational, are
determined, at least partly, by the content of the states over which it is defined.

Objection #3: This semantic account of computation cannot be correct. We know
that we can assign many different interpretations to the same computational (abstract)
structure, e.g., a computer program. This demonstrates that differences in content do
not determine computational identity, for the computational identity can be the same
even where there is a difference in content.

Reply: I am not saying that computational taxonomy takes every aspect of content
into account; in fact, I do not think it takes specific content into account at all. Rather,
it takes into account only mathematical properties of the represented objects; these
features of content that have been called ‘mathematical content’ by Egan (1995) and
‘formal content’ by Sher (1996).56 Take the brown–cow cell whose computational
structure is given by the AND-gate. It is apparent that the computational identity
of the cell would have been the same had the ‘1’ and ‘0’ has been given a different
interpretation, e.g., that it is a black-dog cell. Still, these interpretations do have some-
thing in common. Their mathematical content is the same: the AND-gate corresponds
to the same set-theoretic property in the visual field, i.e., that of the intersection of
two sets.

Objection #4: But why should we care about how the computational structure is
picked out? What matters is that we can identify this formal structure without appeal-
ing to semantic properties at all, i.e., identify it as an abstraction from the physical
properties of the system.

Reply: I agree that the computational structure of a physical system is an abstrac-
tion from its physical or neurological properties, and as such, is “non-semantic.” It is
evident that the AND-operation describing the behavior of the brown–cow cell is an
abstraction from the cell’s electrical activity, viz., that its discharge is 50–100 mV if the
stimulus in each input channel exceeds 50 mV, and 0–50 mV otherwise. I also agree
that we can arrive at this very same formal description by abstracting from physi-
cal properties. I have emphasized, moreover, that Shadmehr and Wise often arrive
at computational structure via constraints from the neurobiological level. My point
about computation being semantic, therefore, is not methodological or epistemic; it
is not about the way we arrive at the computational structure, about top-down versus
bottom-up.

I am claiming, rather, that (a) we take an abstract (formal) structure to be com-
putational when it plays a role in explaining how a system carries out a pertinent
semantic task, and that (b) the explanatory role of this abstract structure consists
in its being identified by reference to certain semantic features, i.e., mathematical
content. We may find out, one way or another, that a certain mathematical descrip-
tion of a cell’s behavior is an AND-operation, which is an abstraction from the cell’s
electrical activity. However, this mathematical description, on its own, is not compu-
tational. Physicists often describe systems in mathematical terms, but no one takes

56 Sher presents the notion of formal content in her analysis of logical consequence. She argues that
it is the formal, e.g., set-theoretic, features of the objects they denote, that make certain relations
“logical” ; for a full account, see Sher (1991). Egan introduces the notion of mathematical content in
the context of computational theories of vision. I follow her in this regard, but emphasize, like Sher,
that formal properties are higher-order mathematical structures.



Synthese (2006) 153:393–416 413

such descriptions to be computational. We take the description to be computational
only in the context of explaining a semantic task, in this case, explaining the behav-
ior of the cell as a brown–cow cell. The explanatory power of the AND-operation
is due to its satisfying certain semantic constraints, viz., that it correlates with the
intersection of two sets. And having satisfied these constraints is essential for its being
identified as the computational structure of this cell. The OR-operation, which is
simultaneously implemented by the cell, is not identified as the computational struc-
ture of the brown–cow cell; for, unlike the AND-operation, the OR-operation does
not satisfy the relevant semantic constraints, and thus cannot serve to explain the
behavior of the cell as a brown–cows detector.

Objection #5: Your semantic account cannot be correct simply because there can be
computation without representation. In his “Computation without Representation”
(forthcoming), Piccinini argues that “although for practical purposes the internal
states of computers are usually ascribed content by an external semantics, this need
not be the case and is unnecessary to individuate their computational states and
explain their behavior.”

Reply: In this paper I have focused on the computational approach in neurosci-
ence and cognitive science. In these disciplines, even a glimpse at ongoing research
suffices to make apparent the intimate connection between computation and repre-
sentation. In other contexts, the connection may be less obvious, but I believe that
careful scrutiny of any process described as computation will reveal the centrality of
representations. I agree with Piccinini’s assertion that the “mathematical theory of
computation can be formulated without assigning any interpretation to the strings
of symbols being computed.” But while this means that the mathematical properties
of computations can be studied without reference to semantic values, it does not entail
that the processes themselves, qua computations, are not identified by their semantic
values.

Objection #6: A semantic view of computation undermines the whole objective
of computational theories of cognition, which is to explain content in non-seman-
tic terms. As Piccinini puts it, an important motivation for many supporters of the
computational theory of mind [CTM] is that “it offers (a step towards) a naturalis-
tic explanation of mental content” (2004: 376). This objective is incompatible with a
semantic view of computation, for “one problem with naturalistic theories of content
that appeal to computational properties of mechanisms is that, when conjoined with
the semantic view of computational individuation, they become circular” (Piccinini,
forthcoming). By adopting the semantic view of computation, in other words, “we
are back to explaining contents, which is what we were hoping to explain in the first
place” (2004, p. 377).

Reply: I agree that CTM is entrenched in our philosophical landscape: many phi-
losophers maintain that computational theories explain in non-semantic terms phe-
nomena that are formulated in semantic terms. But in my opinion this philosophical
outlook is flawed. Computational explanations are “semantic” in two ways: they refer
to the specific content of the initial states, and they invoke a computing mechanism
(structure) which is individuated by reference to (mathematical) content. I thus also
agree that “naturalistic theories of content that appeal to computational properties
of mechanisms . . . become circular.” But I also note that a semantic view of compu-
tation is consistent with a naturalistic approach to content. A theory of content that
does not appeal to computation, namely, a causal or teleological theory, might well
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“naturalize” computation-in-the-brain, e.g., by accounting for the pertinent contents
in non-semantic terms.57

Objection #7: Your semantic notion is only one way of accounting for computation.
But there could be others that do not appeal to semantic features. You considered only
non-semantic accounts, according to which computations are abstractions from inter-
nal physical properties. But there could be other, broader accounts, which take into
consideration not only internal physical properties, but distal stimuli and responses as
well.58

Reply: I have provided an analysis of the concept of computation as it is applied to
physical systems, and as it functions in neuroscience. The analysis, if correct, reveals
that when we apply the computational strategy, we individuate states and processes
by taking certain aspects of content into account. This insight helps to explain why
we apply the computational strategy to brains but not to washing machines, and why
we apply the computational strategy, rather than other strategies, in studying how
the brain functions. Other accounts of computation did not suggest themselves in the
course of the analysis, certainly not broader accounts: Shadmehr and Wise construe
computations as processes that take place within the brain, and explicate the relations
between the brain and the external environment via the notion of representation.
As I just mentioned, I do not rule out the possibility that the pertinent semantic
relations can be reduced, e.g., to certain causal relations involving distal stimuli and
responses. And, admittedly, I cannot rule out the possibility that this reduction might
give rise to a broader, non-semantic, account of computation. I doubt such an account
will be forthcoming, but my reasons for this pessimism will have to wait for another
occasion.
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