READINGS - -
IN
KNOWLEDGE
REPRESENTATION

(U}wﬁTDU H%})

~ edited by
Ronald]. Brachman

Schlumberger Palo Alto Research
Currently at
AT&T Bell Laboratories

and

-Hector]. Levesque

~ - University of Toronto P
and
The Canadian Institute for Advanced Research

MORGAN KAUFMANN PUBLISHERS, INC.
SAN MATEO, CALIFORNIA

© a3y

]

8 | Patrick H. Winston

Learning Structural Descriptions

from Examples

This paper describes a form of learning involving an associative network
formalism. The idea is to present a system with a sequence of descriptions
representing examples and non-examples of a concept, and have the
system induce the properties of the concept itself. Essential to this
approach is the notion of a near-miss, that is, something that is almost an
instance of the concept. While examples allow the system to construct a
general description based on the commonalities it discovers, it has no way
of determining what features represent accidental properties of these
instances or essential properties of the concept being learned. On the other
hand, a discrepancy between a near-miss and its current model allows the
system to mark the featurg in question as an essential component of the
concept. Obviously, a system built along these lines will be very sensitive
to the order in which examples and near-misses are presented, but per-
haps this is not so unlike a student relying on the careful guidance of an
instructor. Moreover, the learning is very dependent on the language used
to describe instances, non-instances, and concepts. In particular, the
system operates by matching its current model to the current input (a
description matching operation not unlike that of KRL [Bobrow and Wino-
grad, Chapter 13]), noting the differences, and updating the model appro-
Priately based on whether the input was an example or a near-miss. The
sensitivity of this operation to the exact syntactic form of the current model

and input means that this reasoning is quite unlike logical inference over

the “obvious” translations of the networks into logic (as described in
[Hayes, Chapter 14], for example). Apparently, one would have to axioma-
tize both the form and the content of Winston's networks to understand the
Information they contain, yet another complication making the true role of
logic in Knowledge Representation such a slippery affair.

Appene
0PPeared in The Psychology of Computer Vision, 157-209, edited by P. H. Winston, New
tk: McGraw-Hill Book Company, 1975.

141

LEARNING STRUCTURAL
DESCRIPTIONS FROM EXAMPLES

Patrick Henrv Winston

5.1 KEY IDEAS

How do we recognize examples of various concepts?
How do we learn to make such recognitions?

How can machines do these things?

How important is careful teaching?

In this paper I describe a set of working computer programs that sheds some
light on these questions by demonstrating how a machine can be taught to see
and learn new visual concepts. The programs work in the domain of
three-dimensional structures made of bricks, wedges, and other simple objects.

Centrally important is the notion of the near miss. By near miss I mean
a sample in a training sequence quite like the concept to be learned but which
differs from that concept in only a small number of significant points. These
near misses prove to convey the essentials much more directly than repetitive
exposure to ordinary examples.

S (T A ROt 500

Good descriptions are equally important. 1 believe learning from
examples, learning by imitation, and learning by being told uniformly depend
on good descriptions. My system therefore necessarily has good methods for
scene description and description comparison.

I also argue the importance of good training sequences prepared by good
teachers. | think it is reasonable to believe that neither machines nor children
can be expected to learn much without them.

Fig. 5.1

5.1.1 Scene Description and Comparison

Much of the system to be described focuses on the problem of analyzing toy
block scenes. There are two very simple examples of such scenes in Fig. 5.1,

From such visual images, the system builds a very coarse description as
in Fig. 5.2. Then analysis proceeds, inserting more detail as shown in Fig. 5.3.
And finally there is the very fine detail about the surfaces, lines, vertexes, and
their relationships. ‘

Such descriptions permit one to match, compare, and contrast scenes
through programs that compare and contrast descriptions. After two scenes
are described and corresponding parts related by the matching program,
differences in the descriptions can be found, categorized, and themselves
described. Of course, one hopes that the descriptions will be similar or
dissimilar to the same degree that the scenes they represent seem similar or
dissimilar to human intuition.

The program that does this must be able to examine the descriptions of
Fig. 5.3 with the help of a matching program and deduce that the difference
between the scenes is that there is a supported-by relation in one case, while

“there is an in-front-of relation in the other. Of course the matcher must be

much more powerful than this simple example indicates in order to face more
complex pairs of scenes exhibiting the entire spectrum between the nearly
identical and the completely different.

A ONE - PART-IS A

Fig. 5.2

camipe

a4}

/

SNOLIVINISIHAIM TYNOILVIOOSSY

L\ ONE-PART-IS
SUPPORTED -BY IN-FRONT-OF
Fig. 5.3

5.1.2 Learning and ldentification

To build a machine that can analyze line drawings and build descriptions
relevant to some comparison procedure is interesting in itself. But this is just a
step toward the more ambitious goal of creating a running program that can
learn to recognize structures. I will describe a program that can use samples of
simple concepts to generate models.

Figure 5.4 and the next few following it show a sequence of samples
that enables the machine to learn what an arch is. First it gets the general idea
by studying the first sample in Fig. 5.4(a). Then it learns refinements to its
original conception by comparing its current impression of what an arch is
with successive samples. It learns that the supports of an arch cannot touch
from Fig. 5.4(b). It learns that it does not matter much what the top object is

Arch Near miss
{a) {b)
Arch Near miss
(©) ta)
Fig. 5.4

s N
gy

- t———————

from Fig. 5.4(c). And then from Fig. 5.4(d) it learns the fact that for one
object to be supported by the others is a definite requirement, not just a

coincidence applying to all of the samples.

Such new concepts can in turn help in making other, more complex
abstractions. Thus the machine uses previous learning as an aid toward further
learning and further analysis of the environment.

Identification requires additional programs that use the results of
comparison programs. There are many problems and many alternative methods
involved because identification can be done in a variety of ways. In one
simple form of identification, the machine compares the description of some
scene to be identified with a repertoire of models, or stored concepts. Then
there is a method of evaluating the comparisons between the unknown and
the models so that some match can be defined as best. But many
sophistications lie beyond this skeletal scheme. For one thing, the identifica-
tion can be either sensitive to context or prejudiced toward locating a
particular type of object. Elementary algorithms for both of these kinds of
identifications are discussed later.

5.1.3 Psychological Modeling

Simulation of human intelligence is not a primary goal of this work. Yet for
the most part 1 have designed programs that see the world in terms
conforming to human usage and taste. These programs produce descriptions
that use notions such as left-of, on-top-of, behind, big, and part-of.

There are several reasons for this. One is that if a machine is to learn
from a human teacher, then it is reasonable that the machine should
understand and use the same relations that the human does. Otherwise there
would be the sort of difference in point of view that prevents inexperienced
adult teachers from interacting smoothly with small children.

Moreover, if the machine is to understand its environment for any
reason, then understanding it in the same terms humans do helps us to
understand and improve the machine’s operation. Little is known about how
human intelligence works, but it would be foolish to ignore conjectures about
human methods and abilities if those things can help machines. Much has
already been learned from programs that use what seem like human methods.
There are already programs that prove mathematical theorems, play good
chess, work analogy problems, understand restricted forms of English, and
more. Yet in contrast, little knowledge about intelligence has come from
perceptron work and other approaches to intelligence that do not exploit the
planning and hierarchical organization that seems characteristic of human thought.

Another reason for designing programs that describe scenes in human
terms is that human judgment then serves as a standard. There will be no
contentment with machines that only do as well as humans. But until
machines become better than humans at seeing, doing as well is a reasonable
goal, and comparing the performance of the machine with that of the human
is a convenient way to measure success.

SANdNVYXT WOHS SNOILdIHOS3(] TvHNLONHLG DNINHYIT

/

evi

Fig. 5.5

52 BUILDING DESCRIPTIONS

The network seems to have the appropriate blend of flexibility and simplicity
needed to deal straightforwardly with scenes. It is the natural format. Like
words in a dictionary, each object is naturally thought of in terms of
relationships to other objects and to descriptive concepts. In Fig. 5.5, for
example, one has concepts such as OBJECT-ABC and OBJECT-DEF. These
are represented diagrammatically as circles in Fig. 5.6. Labelled arrows or
pointers define the relationships between the concepts. Other pointers indicate
membership in general classes or specify particular properties. And pointers to
circles representing the sides extend the depth of the description and allow
more detail as shown in Fig. 5.7.

Now notice that notions like SUPPORTED-BY, ABOVE, LEFT-OF,
BENEATH, and A-KIND-OF may be used not only as relations, but also as
concepts. Consider SUPPORTED-BY. The statement, “The WEDGE is

LEFT-OF ~

L
RIGHT-OF J

HAS-PROPERTY-OF

Fig. 5.6

4 ONE -PART-1IS

Fig. 5.7

SUPPORTED-BY the BLOCK,” uses SUPPORTED-BY as a relation. But the
statement, “SUPPORTED-BY is the opposite of NOT-SUPPORTED-BY,”
uses SUPPORTED-BY as a concept undergoing explication. Consequently,
SUPPORTED-BY is a node in the network as well as a pointer label, and
SUPPORTED-BY itself is defined in terms of relations to other nodes. Figure
5.8 shows some of the surrounding nodes of SUPPORTED-BY. I will
generally call such related nodes satellites.

Thus, descriptions of relationships can be stored in a homogeneous
network along with the descriptions of scenes that use those relationships.

MODIFICATION -OF
I r NEGATIVE - SATELLITE

- MUST -BE-SATELLITE

~———— MODIFICATION-OF ——

MUST-NOT-BE-
SUPPORTED-BY)

MUST-BE -
SUPPORTED-BY,

MUST-NOT-BE-SATELLITE

144"

/

SNOILVIN3S3Hd3l4 TYNOILVIOOSSY

This permits big steps toward program generality. A program to find negatives
need only know about the relation NEGATIVE-SATELLITE and have access
to the general memory net. There is no need for the program itself to contain
a distended table. This way programs can operate in many environments, both
anticipated and not anticipated. Algorithms designed to manipulate networks
at the level of scene description can work as easily with descriptions of
objects, sides, or even of functions of objects, given the appropriate network.

5.2.1 Preliminary Scene Analysis

Consider now the generation of a scene description. The starting point is a
line drawing, with or without perspective distortion, and the result is to be a
network relating and describing the various objects with pointers such as
IN-FRONT-OF, ABOVE, SUPPORTED-BY, A-KIND-OF, and HAS-
PROPERTY-OF.

My system’s first step in processing a scene is the application of a
program written by H. N. Mahabala' which classifies and labels the vertexes
of a scene according to the number of converging lines and the angles between
them. Figure 5.9 displays the available categories. Notice that Mahabala’s
program finds pairs of Ts where the crossbars lie between collinear uprights.

vk
L

Fig. 5.9

FORK W
9< PEAK

MULT!

B —

These are called matched Ts. Such pairs occur frequently when one object
partially occludes another.

Mahabala’s program creates names for all of the regions in the scene.
Various properties are calculated and stored for these regions. Among these
are a list of the vertexes surrounding each region and a list of the neighboring
regions.

These results are then supplied to descendants of a program developed
by Adolfo Guzman.? This program conjectures about which regions belong to
the same objects. Surprisingly it contains no explicit models for the objects it
expects to see. It simply examines the vertexes and uses the vertex classifica-
tions to determine which of the neighboring regions are likely to be part of
the same object. Arrows, for example, strongly suggest that the two regions
bordering the shaft belong to the same body. This sort of evidence, together
with 2 moderately sophisticated executive, can sort out the regions in most
simple scenes.

5.2.2 Selected Relation and
Property Algorithms

These programs by Guzman and Mahabala provide information required by
my own description-building programs row to be described. There are
programs which look for relations between objects and programs which look
for properties of objects. Generally these programs produce descriptions that
are in remarkable harmony with those of human observers. Sometimes,
however, they make conjectures that most humans disagree with. On these
occasions one should remember that there is no intention to precisely mimic
psychological phenomena. The goal is simply to produce reasonable descrip-
tions that are easy to work with. Right now it is important to design and
experiment with a capable set of programs and postpone the question of how
the programs might be refined to be more completely lifelike, if desired.

Above and Support

T joints are strong clues that one object partly obscures another, but then one
may ask if the obscuring occurs because one object is above the other or
because one is in front of the other. Even in the simple two brick case there
seems to be an enormous number of configurations. Figure 5.10 shows just a
few possibilities.

But in spite of this variety, there is a simple procedure that often seems
to correctly decide the ABOVE versus IN-FRONT-OF question. Consider the
lines that form the bottom border of the obscuring objects in Fig. 5.10.
Finding these lines is the first job of the program. Next the program finds
other objects whose regions share these lines. In general these other objects
are below the original, obscuring object.

SININVYXT WOHS SNOILAIHISI TIVHATINH 1O ONINIWIT

/

&1 41

= &7
==

LV

Fig. 5.10

This algorithm works on all the simple two-block situations depicted in
Fig. 5.10. It even works correctly on the much more complicated, many-
object scene in Fig. 5.11, shown with the bottom lines highlighted.

The difficult part is to find the so-called bottom lines, which correspond
roughly to one’s intuitive notion of bottom border. The process proceeds by
first noting those lines that lie between two regions of the object in question.

Fig. 5.11

5

interior line

'
1]

4
7’
-

[} ‘

~ [}
-~ 1

Fig. 5.12
Bottom llnes —~

I call these interior lines. Next the program examines the lower of each
interior line’s vertexes. This is ignored unless it is an arrow, psi, or a K. Then
information about bottom lines is gleaned from each of the arrows, psis,'and
Ks in the following way:

1. If the vertex is an arrow, then the two lines forming the largest angle
(the barbs) are bottom line candidates. (See Fig. 5.12.)

2. If the vertex is a psi, then the two non-collinear lines are bottom
line candidates. (See Fig. 5.13.)

3. If the vertex is a K, then the two adjacent lines, those forming the
smallest clockwise and the smallest counter-clockwise angles with the
interior line are bottom line candidates. (See Fig. 5.14.)

This is really a rule and two corollaries, rather than three separate rules. Psis
and Ks result primarily when arrows appear incognito, camouflaged by an
alignment of objects as illustrated by Figs. 5.13 and 14. Consequently, the
corresponding rules amount to locating the arrow-forming parts of the vertex
and then acting on that basic arrow.

Interior line

Fig. 5.13

Bottom tines -~ Fig. 5.14

ovi

/

SNOLLVINIS3HdIY TYNOILYIOOSSY

)~ Bad candid - {
— ad candidates

Fig.5.15 Fig. 5.16

One further step is necessary before a line can become an approved
bottom line. As shown by Fig.-5.15, some of the lines which qualify so far
must be eliminated. They fail because they are too vertical, or more precisely,
because they are too vertical with respect to the arrow’s shaft. The effective
way to weed out bad lines is to eliminate any bottom-line candidate which is
more vertical than the shaft of the arrow suggesting that candidate.

Of course the program extends rudimentary bottom lines through

certain vertexes. Figure 5.16 shows the obvious situations in which the
bottom line property is extended through the crossbar of a T or the shafts of
a pair of matched Ts.

Left and Right

Consider the spectrum of situations in Fig. 5.17. For the first pair of objects,
the relations LEFT-OF and RIGHT-OF are clearly appropriate. For the last,
they are clearly not appropriate. To me, the crossover point seems to be
between the situations expressed by pairs 4 and $.

Now notice that the center of area of one object is to the left of the
left-most point of the other object in those cases where LEFT-OF seems to
hold. It is not so positioned if LEFT-OF does not hold. Such a criterion
seems in reasonable agreement with intuitive pronouncements for many of the
cases 1 have studied. It also yields reasonable answers in Fig. 5.18 where in
one case A is to the left of B and in the other case it is not. Notice that the
relation is not symmetric, however, as the center of area of the much longer
brick, brick B, indicates B is to the right of A in both cases.

Extra consideration is needed if one object extends beyond the other in
both directions. No matter what the center of mass relationships, humans are
reluctant to use either LEFT-OF or RIGHT-OF in such a situation. One must
additionally specify a rule against this, leaving the following for LEFT-OF:

Say Aisleft of B&=

1. The center of area of A is left of the leftmost point of B.
2. The rightmost point of A is left of the rightmost point of B.

Fig. 5.17

QIATVAINYTY JAIALI QRIAT) JTUACDT A “IWLIA TAALT LA M 1=

!

)4

The rule for RIGHT-OF is of course parallel in form.

Deciding if one object is to the left of another stimulates far more
argument than do questions involving relations like IN-FRONT-OF and
SUPPORTED-BY. People have difficulty verbalizing how they perceive
LEFT-OF and tend to waver in their methods, but implications are that
criteria change depending on whether the objects involved are also related by
IN-FRONT-OF, ON-TOP-OF, BIGGER-THAN, and so on. The orientations
of objects involved are also a strong influence, and my procedure could
probably do better by asking basically the same questions as before, but about
lines through the left-most, right-most, and center-of-area points in the
direction of orientation instead of what amounts to vertical projection of the
points to the x axis.

Marries

The abuts and aligned-with relations arise frequently, perhaps because of
human predilection to order. As intuitively used, however, neither of these
words corresponds to the notion I want the machine to deal with. To avoid
confusion, I therefore prefer to use the term marry, which I define as follows:

An object marries another if those objects have faces that touch each other and
have at least one common edge.

Thus the objects in Fig. 5.19 are said to marry one another. Those in Fig. 5.20
do not because they have no common edge. Similarly those in Fig. 5.21 do
not because they have no touching faces. The MARRIES relation is sensed by
methods resembling those previously described.

Fig. 5.19 Fig. 5.20 Fig. 5.21

Size
Piaget has shown that at a certain age children generally associate physical size
with greatest dimension. They will, for example, adamantly maintain that a
tall thin beaker has more water in it than a short fat one even though they
have seen them filled from other beakers of equal size.

Adults do not develop as far beyond this as might be expected. 1 do not
think we really use the notion of volume naturally. Apparent area seems much
more closely related to adult size judgment. Notice that beaker A in Fig. 5.22

appears to have about the same amount of water in it as does beaker B, even

though it must contain twice as much. Unless a subject consciously exercises a
formula for volume, he is likely to report that object B in Fig. 5.23 is
approximately ten times larger than object A, even if told both objects are
cubes. The true factor of 27 times seems large when the trouble is taken to
calculate it.

Fig. 5.22

Consequently, the size-generating program does not use volume. Instead
it calculates the area of each shape produced by the shape detecting
algorithm. Next it adds together the areas of all shapes belonging to an object
to get its total area. Then using these areas it can compare two objects in size
or consult the following table for a reasonably believable discrete partitioning

of the area scale:
0.0%to 0.5% of the visual area = tiny

0.5 to 1.5 of the visual area = small

15 to 15 of the visual area - medium
15 to 35 of the visual area - large
35 to 100 of the visual area - huge
8
A
Fig. 5.23

8¥L

/

SNOILVAN3S3Hd3{ TYNOILVIOOSSY

5.3 DISCOVERING GROUPS OF OBJECTS

When a scene has more than a few objects, it is usually useful to deepen the
hierarchy of the description by dividing the objects into smaller groups which
can be described and thought of as individual concepts. Figure 5.24 seems
to divide naturally into two groups of objects, one being three objects
tied together by SUPPORTED-BY pointers, and one being three objects on
top of a fourth.

Fig. 5.24

Recognition of such groups seems to be a two part process of conjecture
followed by criticism and revision. Conjectures follow from searches for
objects linked by pointer chains or for objects bearing the same relation to
some grouping object that binds the potential group members together.
Criticism and revision is then needed to exclude from membership those
objects that are weak compared with the average for the group.

5.3.1 Seguences

A simple kind of group consists of chains of SUPPORTED-BY or IN-
FRONT-OF pointers. The first act of the grouping program is to find sets of
objects that are chained together in this way. All such sets with three or more
elements qualify as groups.

Using chains to define groups requires a rule for handling the situation
illustrated by the scenes in Fig. 5.25. On the left a chain of SUPPORTED-BY
pointers splits into two branches at the point where object C is supported by
two objects, D and E. On the right two chains of SUPPORTED-BY pointers
join at M which supports both I and L. The current version of the grouping
program terminates chains at junction points without further fuss. This seems
reasonable for it is natural to think of the scenes in Fig. 5.25 as a set of
groups consisting of A-B-C, G-H-1, and J-K-L.

Another problem arises when objects tied together by a simple chain of
relations should not constitute a group because of other factors. Here a need
for the criticism part of the grouping process becomes clear. Figure 5.26
shows one kind of situation that can occur. In this scene the machine first
conjectures a single object conglomerate, grouped together by virtue of an
unbroken chain of SUPPORTED-BY pointers. But most humans see a short
tower on top of a board on top of another tower. This must be partly

A G J

8 H K
/—'C | L
Lo [J] ¢ M

Fig. 5.25 Fig. 5.26

because of the size differences and partly because of the fact that the top
group is not directly over the other objects. My system uses either of these
radical changes as grounds for breaking the chain.

5.3.2 Common Relations and Properties

For this kind of grouping, the basic idea is again to make a generous
hypothesis as to what objects may be in a group and then to eliminate objects
which seem atypical until a fairly homogeneous set remains. When several
objects relate to some other object in the same way, they are immediately
solid candidates for a group. The legs on the table in Fig. 5.27 are typical.
They form a convincing group partly because they have the same relation to
the table top and partly because all are bricks and all are standing.

All candidates for group membership must be related to one or more
particular objects in the same way. For the table, all four objects are related
to the board by SUPPORTED-BY. This restriction is a useful heuristic
because uniform relationship to a single object seems to have strong binding
power. The bricks in Fig. 5.28 naturally constitute two groups, not one.

Now it is necessary to criticize the group with a view toward finishing
with a group whose members all have about the same right to group
membership. Said another way, established groups where the members are
very much alike should have high standards for entry while weaker groups
should be more penetrable. The somewhat involved criticism algorithm now

LV

Fig. 5.27 Fig. 5.28

S3ITdWVXT WOHS SNOILDIHOS3(] TVHNLONHLS DNINYYIT

/

6Vl

presented helps insure this characteristic in a group by iteratively casting out
the clear losers from those proposed.

The flow chart in Fig. 5.29 and the example in Fig. 5.30 help explain.
The program first forms a common-relationships-lists, a list of all relationships
exhibited by more than half of the candidates in the set. Objects A through F
are immediately perceived to be a possible group because they all have a
SUPPORTED-BY relationship with a single object G. The relationships
exhibited by the candidates are:

A, B, and C:
1 SUPPORTED-BY pointer to G
2 MARRIES pointer to G
3 A-KIND-OF pointer to BRICK
4 HAS-PROPERTY-OF pointer to MEDIUM-SIZE

|

Find objects related
to some particular
object in the same way

Form
common-relationships-list

Remove atypical
objects from
the group

Yes

Were any eliminated?

No

Supplement the net
with information

Fig. 5.29
about the new group

Fig. 5.30

D:

1 SUPPORTED-BY pointer to G

2 MARRIES pointer to G

3 A-KIND-OF pointer to BRICK

4 HAS-PROPERTY-OF pointer to SMALL
E and F:

1 SUPPORTED-BY pointer to G

2 MARRIES pointer to G

3 A-KIND-OF pointer to WEDGE

4 HAS-PROPERTY-OF pointer to SMALL

Three relations appear in the common-relationships-list because they are
found in more than half of the candidates’ relationships lists:

Common-relationships-list:
1 SUPPORTED-BY pointer to G
2 MARRIES pointer to G
3 A-KIND-OF pointer to BRICK
After this common-relationships-list is formed, all candidates are next
compared with it to see how typical each is. The measure is simply the shared
fraction of the total number of properties in the candidate list and the
common-relationships-list. Said in a more formal way, the measure is

Number of properties in intersection

Number of properties in union

where the union and intersection are of the candidate’s relationships list and
the common-relationships-list.

Using this similarity formula to compare the various objects of the Fig.

5.30 example with the common-relationships-list, one has:
A vs. the common-relationships-list » 3/4 = .75
B vs. the common-relationships-list + 3/4 = .75

C vs. the common-relationships-list > 3/4 = .75

oSt

/

SNOILVINISIHdIH TVYNOILVIOOSSY

-

4t

D vs. the common-relationships-list > 3/4 = .75
E vs. the common-relationships-list = 2/5 = .20
F vs. the common-relationships-list - 2/5 = 20

A, B, C, and D do not have scores of 1 only because the
common-relationships-list does not yet have a property indicating size. ‘The
reason is that there is no size common to more than half of the currently
possible group members, A, B, C, D, E, and F.

The much lower scores of E and F reflect the additional fact that as
wedges they are different from the standard type. They are immediately
eliminated according to the following general rule:

Eliminate all candidate objects whose similarity scores are less than 80
percent of the best score any object attains. This insures that the group will
have members all with a nearly equal right to belong.

Next the process is repeated because those properties common to the
remaining candidates may differ from those properties common to the original
group enough that one or more changes should be made to the common-

relationships-list. This repetition continues until the elimination process fails

to oust a candidate or until fewer than three candidates remain.
After the first elimination of objects leaves A, B, C, and D, there is a
new common-relationships-list:

Common-relationships-list:
1 SUPPORTED-BY pointer to G
2 MARRIES pointer to G
3 A-KIND-OF pointer to BRICK
4 HAS-PROPERTY-OF pointer to MEDIUM-SIZE

Notice that there is now a size property since three of the four remaining
objects have a pointer to medium size. The new comparison scores are:

A vs. the common-relationships-list > 4/4 = 1
B vs. the common-relationships-list + 4/4 = 1
C vs. the common-relationships-list > 4/4 = 1

D vs. the common-relationships-list > 3/5 = .6

This time D is rejected because its uncommon size causes a low score,
leaving a stable group in which the objects are all quite alike.

5.3.3 Other Kinds of Grouping

There obviously cannot be a single universal grouping procedure because
attention must be paid not only to the scene involved, but also to the needs
of the various programs that may request the grouping activity. I have

Fig. 56.31

discussed two grouping modes that programs can now do in response to various
demands. There remain many others to be explored.

One of these involves looking for things that fit together. Children
frequently do this at play without prompting, and adults do it extensively in
solving jigsaw puzzles.

Another kind of grouping, one particularly sensitive to the goals of the
request, is grouping on the basis of some specified property. The idea is to
pick out all things satisfying some criteria, such as all the big standing bricks.
The result could be a focusing of attention.

Still another way to group involves overall properties that are not
obvious from purely local observations. Techniques in this area are again
largely unexplored, but it seems that overall shape can sometimes impose
unity on a complete hodge-podge. Figure 5.31 illustrates this point. All of the
objects fit together to form a brick-shaped group. This is clearly not inherited
from any consistency in how the parts are shaped or how they interact with
their immediate neighbors.

5.3.4 Describing a Group Using
the Typical Member

The machine needs some means of describing groups. The method it uses
seems to work, but there is room for improvement.

First, the parts of the group are gathered together under a node created
specifically to represent the group as a conceptual unit. Figure 5.32 illustrates
this step for a group of three objects, A, B, and C, all arranged in a tower,

Next comes a concise statement of what membership in the group
means. This is done through the use of a typical-member node. Properties and
relations that most of the group members share contribute to this node’s
description. For our A B C case, the typical member is described as a kind of

SAGWY YT WOHA SNNOH AIHASIAA TYHNTANY | O BNINWYIS

!

et

TYPICAL MEMBER
Group members
SUPPORTED-BY 4— rorm
e
HAS -PROPERTY-OF A-KIND-OF

Fig. 6.32

brick, as lying, and as on top of another member of the group. Notice also
the FORM pointer to SEQUENCE which indicates the kind of group formed.

54 NETWORK SIMILARITIES AND
DIFFERENCES

Powerful scene description programs are essential to scene comparison and
identification. Matching is equally important since the machine must know
which parts of two descriptions correspond before it can compute similarities
and differences. Figure 5.33 briefly illustrates. A process explores the two
descriptive networks and decides which nodes of the two best correspond in
the sense that they have the same function in their respective networks. The
nodes in a pair that so correspond are said to be linked to each other. The job
of the matching program is simply to find the linked pairs. Node LC and node
RC in Fig. 5.33 both have only A-KIND-OF pointers to BRICK. Since no
other nodes have similar descriptions, it is clear that LC and RC should be a
linked pair. Similarly, LB and RB should be a linked pair since both have
A-KIND-OF pointers to WEDGE and both have SUPPORTED-BY pointers to
parts of a pair of nodes already known to be linked.

Of course the job of the matching program is not so easy when the two
scenes and the resulting two networks are not identical. In this case the
process forms linked pairs involving nodes that may not have identical
descriptions, but seem similar nevertheless.

W.m,«m,. .

\
o

Fig. 5.33

5.4.1 The Skeleton and Comparison Notes

Once the matching process has examined two networks and has established
the linked pairs of nodes, then description of network similarities proceeds.
The result is simply a new chunk of network that describes those parts of the
compared networks that correspond. This chunk is called the skeleton because
it is a framework for the rest of the comparison description. As Fig. 5.34
suggests, each linked pair contributes a node to the skeleton. Certain pointers
connect the new nodes together. These occur precisely where the compared
networks both have the same pointer from one member of some linked pair
to a member of some other linked pair. Notice that the skeleton is basically a
copy of the structure that the compared networks duplicate.

<——trom linked poir LA-RA

ONE -PART- 1S

SUPPORTED-BY

\

from linked pair LC-RC Fig. 5.34

from linked pair LLB-R8

¢St

/

SNOLLVINISIHdIY TYNOILVIOOSSY

Fig. 5.36

Complete comparison descriptions consist of the skeleton together with
a second group of nodes attached to the skeleton like grapes on a grape
cluster. Each of the nodes in this second category is called a comparison note
or C-NOTE for short. The most common type of comparison note is the
intersection comparison note which describes the situation in which both
members of a linked pair point to the same concept with the same pointer.
Suppose, for example, that a pair of corresponding objects from two scenes
are both wedges. Then both concepts exhibit an A-KIND-OF pointer to the
concept WEDGE as shown by Fig. 5.35. In English one can say:

1. There is something to be said about a certain linked pair.
2. There is an intersection involved.

3. The associated pointer is A-KIND-OF.

4. The intersection occurs at the concept WEDGE.

Figure 5.36 shows how each of these simple facts translates to a network
entry. First, a pointer named C-NOTE extends from the skeleton concept
corresponding to the linked pair to a new concept that anchors the
intersection description. The A-KIND-OF pointer identifies this concept as a
kind of intersection. Finally other pointers identify the pointer, A-KIND-OF,
and the concept, WEDGE, associated with the intersection.

All of the comparison notes look like this intersection paradigm.

POINTER-DESTINATION

5.4.2 Evans’ Anslogy Program

Embodying difference descriptions in the same network format permits
operation on those descriptions with the same network programs. Thus two
difference descriptions can be compared as handily as any other pair of
descriptions. Those familiar with Tom Evans’ vanguard program, ANALOGY,3
can understand why this is a powerful feature, rather than simply a
contribution toward memory homogeneity. Evans’ program worked on
two-dimensional geometric figures rather than drawings of three dimensional
configurations. Nevertheless his ideas generalize easily and fit nicely into the
vocabulary used here.

Figure 5.37 suggests the standard sort of intelligence test problem
involved. The machine must select the scene X which best completes the
staternent: A is to B as C is to X. In human terms one must discover how B
relates to A and find an X that relates to C in the same way.

AN

>

c ONE
TWO THREE
FOUR FIVE
Fig. 5.37

SITIWYXT WOHH SNOILDIHOSIA IVHNLONYLQ DNINHYIT

/

oCl

Using the terminology of nets and descriptions, one solution process can
be formalized in the following way: First compare A with B and denote the
resulting comparison-describing network by

d{A:B}

Similarly compare C with the answer generating descriptions of the form
d{C:X}. The result is a complete set of comparisons describing the
transformations that carry one figure into another. Next one should compare
the description of the transformation from A to B, d {A:B}, with the others to
see which is most like it. The best match is associated with the best answer to
the problem. If M is a metric on comparison networks that measures the
difference between the compared networks, one can say

choose X such that

M(d{d {A:B}xd{C:X})
is minimum

The metric 1 use is not fancy. It is the one discussed later that serves to
identify some scene with some member of a group of models. It works
because the identification problem entirely parallels the problem of identifying
a given A to B transformation description with some member of the group of
answer connected C to X transformations. The identification program,
together with a short executive routine, handles the problem of Fig. 5.37
easily, correctly reporting scene three as the best answer. Reasonably enough,
the machine thinks scene one is the second best answer.

Of course if the machine’s answers are to be those of the problem’s
formulator, then the machine’s describing, comparing, and comparison
measuring processes should all give results that resemble his. Moreover, a really
good analogy program should have available alternatives to these basic
describing, comparing, and comparison measuring processes. Then in the event
no single answer is much better than the others, the program can try some of
its alternatives as one or more of its basic functions must not be operating
according to what the problem maker intended. Evans’ program is superior to
mine in this respect because it can often compare two drawings in more than
one way. It can visualize some changes as either reflections or any of several
rotations.

Given my formulation of the analogy problem, it is easy to see how
certain interesting generalizations can be made. After all, once an X is

" selected, the network symbolized by d{d{A:B}:d{C:X}} describes the prob-
lem, and as a descripiton, it can be compared with the descriptions of other
problems. By thus applying the comparison programs for the third time, one
can deal with the question: Analogy problem alpha is most like which other

analogy problem? Alternatively, one can apply the analogy solving program to
problem descriptions instead of scenes and answer the question: Analogy

problem alpha is to analogy problem beta as analogy problem gamma is to
which other analogy problem? This involves four levels of comparison. But of
course there is no limit, and with time and memory machines could happily
think about extended analogy problems involving an arbitrary number of
comparison levels.

LA

RA RB

LB

Scene L Scene R

Fig. 5.38

54.3 A Catalog of Comparison-Note Types

The Supplementary-Pointer and the Exit
Consider the scenes in Fig. 5.38 and their descriptions in Fig. 5.39. Scene L
has the pointer SUPPORTED-BY between LA and LB, but scene R does not
have a pointer between the objects linked to LA and LB. The note describing
this situation is called a supplementary-pointer comparison note and has the
form shown in Fig. 5.40.

Suppose now we consider a standing brick and compare it with a cube.
Here the linked concepts would differ only in that the brick has an additional
pointer identifying it as standing. This differs from the supplementary-
pointer case in that STANDING is a node outside the scene description. A
pointer to the concept EXIT signals this situation. Exits involve concepts
generated by the scene description program as well as concepts like
STANDING that reside in the net permanently. If one scene contains more
objects than another, the concepts left over and not matched end up in exit

packages.
LA "\ Le o e

SUPPORTED-BY

Scene L Scene R

Fig. 5.39

vGlL

/

SNOILVINISIHdIH TYNOUVIOOSSY

A-KIND-OF

LEFT-POINTER

SUPPLEMENTARY POINTER DESTINATION

POINTER-C-NOTE

Fig. 5.40

Pointer Modifications

Suppose the left and right networks in Fig. 5.41 are compared. Notice the
MARRIES pointer between LA and LB and the DOES-NOT-MARRY pointer
between RA and RB. These could be handled individually as unrelated
supplementary-pointer comparison notes, but this would ignore the close
relationship between MARRIES and DOES-NOT-MARRY. Consequently a
different type of comparison note is used that recognizes the relationship. It is
the negative-satellite-pair comparison note. With it, the comparison looks as
shown in Fig. 5.42. To find such negative-satellite-pair comparison notes, the
comparison programs peruse the descriptions of unmatched pointers between
linked pairs for evidence of relationship. For example, MARRIES is described
in part by a NEGATIVE-SATELLITE pointer to DOES-NOT-MARRY. Now
of course there are other pointers that are also just one step removed from a
basic relation. All such pointers that are modifications of the basic relation are
called satellites because they cluster around the basic relation to which they
are attached by the pointer MODIFICATION-OF. Uncertainty, for example, is
expressed by PROBABLY satellites or MAYBE satellites. The MUST satellites

DOES-NOT-
MARRY

NEGATIVE-SATELLITE

MODIFICATION-OF

Fig. 5.41

C-NOTE

RIGHT-POINTER

A-KIND-OF

NEGATIVE -
SATELLITE -
PAIR

POINTER-DESTINATION

Fig. 5.42

and the MUST-NOT satellites are others of particular importance in model
construction. These inform the model matching programs that the presence or
absence of some pointer is vital if some unidentified network is to be
associated with a particular model network containing such a pointer.

Each type of satellite is associated with a type of comparison note
forming an open-ended family. Thus in addition to negative-satellite-pair
comparison notes, there are probably-satellite-pair comparison notes, maybe-
satellite-pair comparison notes, must-satellite-pair comparison notes, must-not-
satellite-pair comparison notes, and so on.

Concept Modifications
Frequently the members of a linked pair both have pointers to closely related
concepts. For example, if a brick in one scene is linked to a cube in another,
the situation is as shown in Fig. 5.43. This is very much like the
pointer-satellite idea with A-KIND-OF replacing MODIFICATION-OF. In any
case, the description generator recognizes this and similar situations and again
generates a group of comparison note types. The first of these is the
A-KIND-OF chain illustrated by the above situation. This causes the
comparison note of Fig. 5.44.

The a-kind-of-chain comparison note also includes situations in which
one concept is related to another not directly, but rather through two or
three A-KIND-OF relations. Suppose, for example, a cube is linked with an

S3TdWVYXT WOHL SNOILAIHOSI(] TVHNLONHLG DNINYVIT

/

Gsi

LEFT-DESTINATION RIGHT-DESTINATION

object for which no identification can be made. There is still an a-kind-of-
chain comparison note because CUBE is linked to the general concept OBJECT
by a sequence of A-KIND-OF relations.

Another kind of popular concept modification is the a-kind-of-merge
comparison note. These a-kind-of-merge comparison notes occur if there is no
A-KIND-OF chain as described above, but each concept has a chain of
A-KIND-OF pointers to some third concept. For example, WEDGE and
BRICK are both connected to the concept OBJECT by A-KIND-OF.

5.5 LEARNING AND THE NEAR MISS

I can now discuss the problem of learning to recognize simple block
configurations. Although this may seem like a very special kind of learning, I
think the implications are far ranging, because I believe that learning by
examples, learning by being told, learning by imitation, learning by reinforce-
ment and other forms are much like one another.

In the literature of learning there is frequently an unstated assumption
that these various forms are fundamentally different. But I think the classical
boundaries between the various kinds of learning will disappear once
superficially different kinds of learning are understood in terms of processes
that construct and manipulate descriptions. No kind of learning need be
desperately complicated once the descriptive machinery is available, but all
constitute opaque, intractable processes without it.

To begin with I want to make clear a distinction between a description
of a particular scene and a model of a concept. A model is like an ordinary
description in that it carries information about the various parts of a
configuration, but a model is more in that it exhibits and indicates those
relations and properties that must and must not be in evidence in any
example of the concept involved.

Suppose, for example, the description generating programs report the
following facts in connection with the arch in Fig. 5.45.

Fig. 5.45 Fig. 5.46 Fig. 5.47

1. Object A is a brick.
2. Object A is supported by B and C.

Now suppose the description containing these facts are compared with
the scene in Fig. 5.46, where object A is a wedge, and with the scene in Fig.
5.47, where object A lies on the table. In both cases comparison could be
made and differences appropriately noted, but the identification of one or the
other of these new scenes as arches would be equally likely if the machine
knows only what one arch looks like without knowing what in that
description is important!

Humans, however, have no trouble identifying the scene in Fig. 5.46 as
an arch because they know that the exact shape of the top object in an arch
is unimportant. On the other hand, no one fails to reject the scene in Fig.
5.47 because the support relations of the arch are crucial. Consequently, it
seems that a description must indicate which relations are mandatory and
which are inconsequential before that description qualifies as a model. This
does not require any descriptive apparatus not already on hand. One need
only substitute emphatic forms like MUST-BE-SUPPORTED-BY for basic
pointers like SUPPORTED-BY or, in some cases, adG new pointers.

In the learning of such models, near misse. are the really important
learning samples. In conveying the idea of an arch, an arch certainly should be
shown first. But then there should be some samples that are not arches, but
do not miss being arches by much. Small differences permit the machine to
localize some part of its current opinion about a concept for improvement. If
one wants the machine to learn that the uprights of an arch cannot marry,
one should show it a scene that fails to be an arch only in this respect. Such
carefully selected near misses can suggest to the machine the important
qualities of a concept, can indicate what properties are never found, and
permit the teacher to convey particular ideas quite directly.

It is curious how little there is in the literature of machine learning
about mechanisms that depend on good training sequences. This may be
partly because previous schemes have been too inadequate to bear or even
invite extensive exploration of this centrally important topic. Perhaps there is
also a feeling that creating a training sequence is too much like direct
programming of the machine to involve real learning. This is probably an

SNOILVINIS3Hd3Y TVNOILVIDOSSY

961

/

exaggerated tear. I agree with those who believe that the learning of children
is better - described by theories using the notions of programming and
self-programming, rather than by theories advocating the idea of self-
organization. It is doubtful, for example, that a child could develop much
intelligence without the programming implicit in his instruction, guidance,
closely supervised activity, and general interaction with other humans.

5.5.1 Elementary Model Building Operations

The machine’s model building program starts with a description of some
example of the concept to be learned. This description is itself the first model
of the concept. Subsequent samples are either examples of the concept or
near misses. One has a sequence of more and more sophisticated models.

Frequently, several responses may appropriately address the comparison
between the current model and a new sample. When this happens, branches
occur in the model development sequence and it is convenient to talk about a
tree of models. Later I discuss in more detail how the alternative branches
occur in the model development sequence. This section considers the case in
which the matching program finds only one difference between the current
model and a new example or near miss. The tables at the end of this section
summarize the results.

The A-Kind-of-Merge: Example Case

Suppose the initial model consists of a plain brick while the example is a
wedge. Figure 5.48 shows the resulting comparison description. Only one
difference is found: the object of the model is related to BRICK while the
object of the example is related to WEDGE. But since both BRICK and
WEDGE relate by A-KIND-OF to OBJECT, the a-kind-of-merge comparison
note occurs. Several explanations and companion responses are possible. One
is that the source of the comparison note may in general point to either of
the things pointed to by the A-KIND-OF pointer in the two scenes. Thus the
object could be either a WEDGE or a BRICK. Another possibility is that the
A-KIND-OF pointers from the object do not matter at all and can be
dropped from the model. Still another option and the one preferred by the
program is that the object may be any member of some class in which both
WEDGE and BRICK are represented. In the example two such classes are
simply the concepts OBJECT and RIGHT-PRISM. These are both located as
the intersection of A-KIND-OF paths. The program responds by replacing the
pointer in the comparison network that points to the a-kind-of-merge
comparison note by an A-KIND-OF pointer to one of the intersection or
merge concepts. In this case an A-KIND-OF pointer is installed between the
comparison note origin and the concept OBJECT. Here the altered comparison
network is the new model shown in Fig. 5.49. Note that this primary response
I have selected for the machine represents a moderate stand with respect to a
rather serious induction problem. I have avoided the extremes of pointing to

ONE-PART-IS

ONE -PART-IS

A-KIND-OF

Fig. 5.49

LEFT-DESTINATION RIGHT-DESTINATION

Fig. 5.48

THING or the OR of brick and wedge, but just where in the spectrum to
settle on is a difficult question. Another reasonable position would be to
choose RIGHT-PRISM, for example.

The Supplementary-Pointer:

Near Miss Case

Now suppose Scene 1 in Fig. 5.50 represents the current mode! while Scene 2
contributes as a near miss. The matching routine soon discovers that Scene 1
produces a SUPPORTED-BY relation between the two objects whereas Scene
2 does not. A supplementary-pointer comparison note results. Of course the
implication is that the concept studied requires the two objects to stand
together under the support relation. Consequently, when such a supple-

Scene | Scene 2 Fig. 5.50

mentary-pointer comparison note turns- up, it transforms to the emphatic
MUST version of the pointer involved. Thus the new model is the one in Fig.
5.51.

Of course the supplementary pointer can turn up in the near miss as
well as in the current model. Suppose Scene 1 in Fig. 5.50 is the near miss

S31dWVXT WOYL SNOILdIHOS3(] TvHNLONHLS ONINEYIT

/

LGl

ONE-PART-IS ONE -PART-IS

o

.

MUST-BE - SUPPORTED-BY MUST-NOT-BE-SUPPORTED-BY

Fig. 5.51 Fig. 5.52

instead of the current model. One concludes A cannot be on B. The
supplementary-pointer comparison note now indicates a relation that appar-
ently cannot hold. Appropriately, the MUST-NOT version of the supple-
mentary pointer is substituted in and the new net appears as in Fig. 5.52.

The Must-Satellite-Pair

Frequently comparison between the current model and a new sample displays
comparison notes that do not reveal any new feature, but rather result from
previous refinements in the model. Suppose, for example, that the current
model has a MUST-MARRY pointer in a given location, while the sample has
a MARRIES pointer. Now clearly the MARRIES pointer is appropriate in the
description and the must-satellite-pair comparison note consequent to match-
ing it with MUST-MARRY should be replaced again by MUST-MARRY. Thus
the emphatic form in a must-satellite-pair situation is retained and not
interfered with by refinement operations attempted subsequent to its
formation.

The A-Kind-of-Merge:

Near Miss Case

Sometimes a comparison note offers two or more nearly equal explanations.
Consider the very simple current model and near miss in Fig. 5.53. The
comparison note is an akind-of-merge announcing that the current model
points with HAS-PROPERTY-OF to STANDING, the near miss to LYING,
and both LYING and STANDING have A-KIND-OF paths to ORIENTA-
TIONS. Now the near miss may fail either because it is lying or because it is

Current model Near miss

Fig.553

TABLE 5.1 Action of concept generator: Example case

Comparison note type Pointer involved Response

Point to intersection with
model’s pointer

A-kind-of-chain -

Point to intersection with
model’s pointer

A-kind-of-merge -

Drop model’s pointer

Negative-satellite pair - Drop model’s pointer

Must-be-satellite pair - Retain model’s pointer

Must-not-be-satellite pair - Contradiction

Supplementary-pointer or Negative-satellite or funda- Drop model’s pointer

exit mental pointer in the model

Negative-satellite or funda- Ignore
mental pointer in the

example
Must-be-satellite Contradiction

Must-not-be-satellite Retain model’s pointer

not standing. Responding to these explanations, the model builder might
replace the akind-of-merge comparison note by a MUST-NOT-HAVE-
PROPERTY-OF pointer to LYING or by a MUST-HAVE-PROPERTY-OF
pointer to STANDING. Since most concepts humans discuss are defined in
terms of properties rather than antiproperties, the MUST version is considered
more likely. (Tables 5.1 and 5.2 summarize the points made in this section.)

5.5.2 Coping with Multiple Differences

Comparisons yielding single comparison notes are rare. More often, the model
builder must make sense out of a whole group of comparison notes. If the
comparison involves a near miss, any one of the comparison notes might be
the key to proper model refinement. Moreover, many of the comparison notes
have alternative interpretations that make further demands on executive
expertise.

The model builder must therefore consider all the comparison notes and
all the possible interpretations of each. Then it must produce the set of
hypotheses that form the model tree’s branches. These in turn must be ranked
so that the best hypothesis may be pursued first.

The case of refinement through an example is simpler than through near
misses. Since none of the observed differences are sufficient to remove the
example from the class, it is assumed that all of the differences found act in
concert to loosen the definition embodied in the model. Consequently each

8G1

/

SNOILVLNISIHdIYH TVYNOLLVIOOSSY

e s ot

TABLE 5.2 Action of concept generator: Near miss case

Comparison note type Pointer involved Response

If model’s node is at the
end of the chain add must-
not-be satellite to near
miss’ node

A-kind-of-chain . -

If near miss’ node is at the
end of the chain, use must-
be satellite to model’s node

A-kind-of-merge - Replace model’s pointer by

its must-be satellite

Replace model’s pointer by
must-not-be satellite of
near miss’ pointer

Replace model’s pointer by
its must-be satellite

Negative-satellite pair -

Must-not-be-satellite pair - Retain model’s pointer

Replace pointer with its
must-be satellite

Supplementary-pointer or Fundamental pointer in
exit the model

Insert pointer into the
model using must-not-be
satellite

Fundamental pointer in
the near miss

Negative-satellite in the Replace pointer with its
model must-not-be satellite

Insert pointer into model
using must-be satellite

Negative-satellite in the
near miss

comparison note can be transformed independently and a new model
generated by their combined action. There is no problem of deciding if one
difference is more important than another.

Consequently, if all the comparison notes had but one interpretation,
only one new branch would be generated. The a-kind-of-merge comparison
note has two possible interpretations, however, and if one such comparison
note occurs, it is only reasonable to create two branches instead of one. The
action on the other comparison notes is the same for both branches.

Near misses cause more severe problems. If two differences are found,
either of them may be sufficient to cause the sample to be a near miss, while
the other difference may be equally sufficient or merely irrelevant. If the
differences have multiple interpretations or more than two differences occur,
the number of possibilities explodes and the machine cannot work by simply gen-
erating an alternative for each possibility. The model builder clearly must dec?de
which interpretation of which differences are most likely to cause the near miss.

The most obvious way to search for key differences is by level. This
assumes only that the differences nearer the origin of the comparison
description are the more important. This certainly is a reasonable heuristic
since a missing group of blocks generally impresses a human as being more
important than a shape change, which in turn dwarfs a minor blemish.
Consequently, the program determines the depth of the comparison notes
which are nearest to the origin of the comparison description. All those
candidates found at greater depth are considered secondary.

The highest level differences allow quick formation of little hypotheses
about why the near miss misses and what to do as a consequence. A complete
hypothesis specifies one comparison note as the sole cause of the miss and it
further specifies which interpretation of that comparison note is assumed.
Consequently there is a hypothesis for each interpretation of each potentially
central comparison note.

The comparison note specified as crucial by a hypothesis is transformed
as if it were the only comparison note. The other comparison notes are
assumed by the hypothesis to be insufficient cause for the near miss.
Consequently as a new model is formulated according to the hypothesis, all of
the comparison notes but one are treated exactly as if the near miss were not
a miss at all!

So far a single comparison note is assumed to be the exclusive cause of
the miss. Were all possible combinations considered as well, not only would
the branching increase enormously, but the ranking of those branches would
be difficult. I have therefore decided that only one special combination of
two comparison notes is ever permitted to form a hypothesis.

Hypotheses based on two contributing comparison notes are added to
the hypothesis list only when two comparison notes with nearly identical
descriptions occur.

Current model Near miss

Fig. 5.54

Consider Fig. 5.54. Since exactly the same thing characterizes both
blocks in the near miss, there is no particular reason to suppose that one
difference should be singled out. Consequently a third hypothesis is formed,
namely that both differences act cooperatively. This additional hypothesis
takes precedence over the two hypotheses that consider the differences
separately. It seems heuristically sound that coincidences are significant. The

S3TdWVYXTF WOHS SNOILDIHOSI (] TIVHNLONYIQ DNINHYIT]

-

6G1

machine creates new models with such hypotheses by transforming both of
the specified comparison notes in the miss-explanation mode.

5.5.3 Contradictions and Backing Up

By now one may wonder why the program should deal with alternatives to
the main line of model development at all. To be sure, maximum likelihood
assumptions may be wrong, but then how could the machine ever know when
such a decision is an error? The answer is that the main line assumptions may
lead to contradiction crises which in-turn cause the model building program to
retreat up the tree and attempt model development along other branches.

Consider the very simple situation already presented back in Fig. 5.53.
Think again of the left side as the current model and the right side as the near
miss. The current model and the near miss combination generate an
akind-of-merge comparison note for which the priority interpretation is that
examples of the concept must be standing. The alternative that examples must
not be lying causes a side branch in the model development tree. But suppose
one really wants the concept to exclude lying but not insist on standing.
Showing the machine a tilted brick does the job. A tilted brick certainly is not
standing and its description has no HAS-PROPERTY-OF pointer to
STANDING. Yet the current model has a MUST-HAVE-PROPERTY-OF
pointer to STANDING. This is a contradictory situation.

When contradictory situations occur, the program assumes it has made
an incorrect choice somewhere, closes the branch to further exploration, and
backs up to select another alternative.

In the case at hand, an alternative is found and the must-not-be-lying
interpretation of the comparison between the scenes leads to a new
intermediate model. This in turn is refined by the tilted brick scene which
originally caused the contradiction on the former main line. No contradiction
occurs on the new path because the MUST-NOT-HAVE-PROPERTY-
OF/LYING combination of the intermediate model has nothing to clash with
in the example. Indeed the new example lends no new information to model
development along this path, the model being the same before and after
comparison. The new example served solely to terminate development of an
improper path in the model development.

5.6 SOME GENERATED CONCEPTS

In this section I explore some of the properties of the model generator
through a series of examples. In the course of this discussion, words like
house, arch, and tent occur frequently as they are convenient names for the
ideas the machine assimilates. Be cautioned, however, to avoid thinking of
these entities in terms of functional definitions. To a human, an arch may be
something to walk through, as well as an appropriate alignment of bricks. And

certainly, a flat rock serves as a table to a hungry person, although far
removed from the image the word table usually calls to mind.

But the machine does not yet know anything of walking or eating, so
the programs discussed here handle only some of the physical aspects of these
human notions. There is no inherent obstacle forbidding the machine to enjoy
functional understanding. It is a matter of generalizing the machine’s
descriptive ability to acts and properties required by those acts. Then chains
of pointers can link TABLE to FOOD as well as to the physical image of a
table, and the machine will be perfectly happy to draw up its chair to a flat
rock with the human, given that there is something on that table which it
wishes to eat.

5.6.1 The House

Figure 5.55(a) illustrates what house means here. Basically the scene is just
one wedge on top of one brick. But lacking human experience, this one
picture is insufficient to convey much of the notion to the machine. The
model builder must be used, and it must be permitted to observe other
samples.

Suppose the model builder starts with the scene in Fig. 5.55(a). Then its
description generation apparatus contributes the network which serves as the
first unrefined, unembellished model of Fig. 5.56. Now suppose the scene in
Fig. 5.55(b), a near miss, is the next sample. Its net is that shown in Fig.
5.57. The only difference is the supplementary pointer SUPPORTED-BY.
Glancing at Table 5.2, it is clear that the overall result is conversion of the

House ' Near miss

>

(a) (b)

Near miss Near miss

(c) (d)

Fig. 5.55

09}

/

SNOILVINIS3IHdIY TVYNOILLVIOOSSY

ONE -PART-IS ONE-PART-IS

Fig. 5.56 Fig. 5.57

SUPPORTED-BY pointer in the old model to MUST-BE-SUPPORTED-BY in
the new model. Thus the new model is that of Fig. 5.58.

Much is yet to be learned. For one thing, the top object certainly must
be a wedge. Showing the machine the near miss of Fig. 5.55(c) conveys this
point immediately. Similarly the near miss of Fig. 5.55(d) makes the brick
property of the bottom object mandatory. But notice that both of these steps
cause bifurcation of the model tree. The reason is that the machine cannot be
completely sure the miss occurs because the old property is lost or because
the new property is added. The program prefers the old-property-is-lost theory
and moves down the corresponding branch unless contradicted. In both of
these situations, the preferred theory is correct resulting in the final model
shown in Fig. 5.59.

5.6.2 The Tent

Think of the tent as two wedges marrying each other. As such it iflustrates
the handling of two similar differences simultaneously.

The base model is the description of the scene in Fig. 5.60(a) and the
first sample is the near miss in Fig. 5.60(b). Two a-kind-of-merge comparison

ONE-PART-IS

—— MUST-BE - SUPPORTED-8Y

Fi.5.58

A-KIND-OF

ONE-PART-IS

——— \—— MUST-BE -SUPPORTED-8Y

MUST-BE-A-KIND-OF
Fig. 56.59

& =)

notes result, one from each of the two objects because they are bricks, not
wedges. Since they differ only in source, the hypothesis that both act together
has priority. Now this result is complemented by the near miss in Fig. 5.60(c)
which informs the machine of the importance of the MARRIES relation.
Again dual comparison notes announce the loss of a pair of MARRIES
pointers, and twin MUST-MARRY pointers are installed.

Tent

(a)

Near miss

(b)
Neor miss

(c)

Fig. 5.60

STTdWVYXT WOHL SNOILAIHOSI(Q TYHNLONHLIG ONINHVIT]

/

191

5.6.3 The Arch

The arch involves a mixture of the elements seen in the previous examples.
Because of the wider variety of differences encountered, it produces a bushy
model tree and a challenge to routines that select priority hypotheses.

An arch with sides neatly aligned with the lintel forms the first model.
Combining this with the scene in Fig. 5.61(a) the machine deduces that the
MARRIES relations between the top and the supports are not crucial.

Next the near miss of Fig. 5.61(b) indicates that the support relations
are crucial. Again, both new MUST-BE-SUPPORTED-BY pointers are handled
jointly, and are installed at once.

The machine learns perhaps the most important fact from the near miss
in Fig. 5.61(c). Here the two supports touch, supplying two MARRIES
pointers to the description. This cannot be allowed. Responding, the machine
inserts MUST-NOT-MARRY pointers between the two supports in the model.
Some may think that in asserting the MUST-NOT-MARRY relations, the
machine overlooks what they consider to be the real principle, that of a hole
or passage. But for a child building with blocks, to have a hole and to have
two non-touching supports are very nearly the same idea. Consequently the
machine’s opinion seems adequate for the moment.

Finally, the top object is not necessarily a brick. The sample in Fig. 5.61(d)
teaches the machine that anything in the class OBJECT will do, since OBJECT lies
but one step removed by an A-KIND-OF pointer from both WEDGE and BRICK.

Arch Near miss
(a} (b)
Near miss Arch
(c) (d)
Fig. 5.61

MODIFICATION- OF
ONE-PART-1S

GROUP-0OF
HAS-PROPERT Y- OF

@“’/_"
-

MUST-BE -

supPORTED-gy) (SUPPORTED-BY

MUST-BE-SATELLITE

4

MODIFICATION -OF

MUST-NOT-
ABUT

v

ORIENTATION l MUST-NOT-BE-
SATELLITE
BRICK
SPATIAL -
RELATION
A-KIND-OF ———
Fig. 5.62

Figure 5.62 shows the resulting model. I give it in somewhat more detail than
usual to convey a feeling for the complexity the programs actually deal with.

5.6.4 The Table

When a concept involves groups of objects, the model generation problem
really is no more difficult. It becomes a matter of concentrating on
relationships of the typical members of the groups studied.

Study the table in Fig. 5.63 and the description in Fig. 5.64. The
essential features of the table are introduced by the following sequence of
steps:

First the table should have bricks for legs. This idea is easily conveyed

by the near miss non-table of Fig. 5.65(a). Moreover, this conception of table -

excludes structures such as that in Fig. 5.65(b), a fact which is handily
incorporated through a MUST-NOT-MARRY pointer. Next, since the non-

il

- Fig. 5.63

701

/

SNOULVINISIHAIN TIYNONVINOSSY

ONE-PART-IS

A-KIND-OF

TYPICAL -MEMBER

SUPPORTED-8Y

A-KIND-OF HAS -PROPERT Y-OF

Fig. 5.64
Table Near miss
(a) (b)
Near miss Neor miss
(c) (d)
Fig. 5.65

——— ONE-PART-!S

ONE-PART-MUST-BE

A-KIND-OF

TYPICAL -MEMBER

MUST - BE -
SUPPORTED-BY
HAS-PROPERTY-OF
MUST-NOT-MARRY MUST-BE -A-KIND-OF
Fig. 5.66

table in Fig. 5.65(c) has only two supports, no grouping occurs, which leads
to insistence on a group in the next model refinement. Finally, the scene in
Fig. 5.65(d) leads to replacement of the SUPPORTED-BY pointer by
MUST-BE-SUPPORTED-BY. Figure 5.66 shows the last model in this
development.

5.7 IDENTIFICATION

Once there are programs that describe scenes, compare description networks,
and build models, one may go on to using these programs as elements in a
variety of other goal-oriented programs. The problem-solving programs
described in this section have the following kind of responsibilities:

1. To see if two scenes are identical.

2. To compare some scene with a list of models and report the most
acceptable match. This is the identification problem in its simplest
form.

3. To identify some particular object in a scene. This is not the same as
identifying an entire scene because important properties may be

SITdWVX] WOHSL SNOILDIHOSI(J TVHNLONYLG DNINHYIT]

/

€9l

hidden and because context may make some identifications more
probable than others.

4. To find instances of some particular model in a scene. It is
frequently the case that the presence of some configuration can be
confirmed even though it would not be found in the ordinary course
of scene description. This requires the ability to discern groups with
the required properties in spite of a shroud of irrelevant and
distracting information.

5.7.1 Exact Match and Discovering Symmetry

If two scenes are identical, then the networks describing those scenes must be
isomorphic. The nodes of the two networks must relate with each other in the
same ways, and the nodes must relate to general concepts such as BRICK and
STANDING in the same ways. Consequently, comparing two such networks
produces a simple kind of comparison description. There is a skeleton, which
indicates how the parts of the scenes interrelate, and there is a group of
intersection comparison notes that describe how the parts of the scene are
anchored to the general store of concepts. None of the other types of
comparison notes appear because identical scenes cannot produce two
networks with the necessary aberrations of form.

Conversely, if comparison of two networks results in intersection
- comparison notes only, then the parent scenes must be identical in the sense
that the description generating mechanisms employed produce exactly
matching networks. There can be variation, but nothing so great as to vary the
action of the description generator. The scenes in Fig. 5.67 are identical with
respect to the descriptive power of my programs because in both cases the
relations observed are LEFT-OF and RIGHT-OF. More capable programs
might complain that FAR-TO-THE-LEFT-OF and FAR-TO-THE-RIGHT-OF
hold in one scene, while only LEFT-OF and RIGHT-OF hold in the other.
The scenes are clearly not identical with respect to a program with such a
capability.

It is interesting to note in passing that the exact match detector is a
major part of a curiously simple program that checks for a certain kind of
left-right symmetry. The method is as follows:

—/ 71T

Scene T

Scene 2

c

Fig. 5.68

—

. Copy the description of the scene exactly.

2. Convert all LEFT-OF pointers in the copy to RIGHT-OF, and all
RIGHT-OF pointers to LEFT-OF.

3. Compare the original description against the modified copy. If the

match is exact, the scene is symmetric.

This is, of course, an abstraction of the familiar condition for y-axis
symmetry in the mathematical sense, whereby symmetry is confirmed if and
only if for every point in the scene, (x,y), the point (—x,y) is also in the
scene. Switching LEFT-OF and RIGHT-OF pointers is the analog of
x-coordinate negation and network matching corresponds to a check for
invariance.

To see how this works, consider the scene in Fig. 5.68. The center
object A is flanked by B on the left and by C on the right. Figure 5.69 shows
the resulting description. There are nodes corresponding to objects A, B, and
C, and there are LEFT-OF and RIGHT-OF pointers indicating their
relationships.

Figure 5.70 shows the copy of the network with the LEFT-OF and
RIGHT-OF pointers switched. Notice that the original network and the copy
are identical. Node A matches with A’, B with C’, and C with B'. Since there
are no differences, the machine concludes the scene is in fact symmetric.

The machine knows LEFT-OF and RIGHT-OF are opposites because
they are linked together by OPPOSITE pointers. Consequently, it is

Fig. 5.69

1221

/

SNOILVINIS3Hd3IY TVNOILLVIOOSSY

IN-FRONT-OF
N

Fig.5.70

unnecessary to tell the program explicitly to substitute RIGHT-OF for
LEFT-OF and vice versa. One need only ask the symmetry program if there is
symmetry with respect to either the pointer LEFT-OF or RIGHT-OF. The
machine itself can conjure up the appropriate substitutions by working
through the OPPOSITE pointer from whichever relation is supplied, be it
LEFT-OF or RIGHT-OF. Similarly, if one asks for symmetry with respect to
ABOVE, the program realizes that the proper substitutions are BELOW for
ABOVE and ABOVE for BELOW. ,

An interesting combination is a simultaneous LEFT-RIGHT and an
IN-FRONT-OF—-BEHIND SWITCH. This one gives the machine a chance of
realizing that two scenes are simply front and back views of the same
configuration as are the scenes in Fig. 5.71.

Eventually I think the machine can come upon the symmetry notion in
the same way it now learns about arches and houses. But at this point I do
not think there is enough comparison describing capability. The needed step is
the introduction of a program that generates global comparison notes from

the local ones already at hand, thereby introducing the kind of hierarchy into’

the comparison descriptions that is already the standard in scene descriptions.
One obvious ability of such a program would be that of noticing a
preponderance of similar comparison notes. This and some of the double
comparison ideas proven useful in doing analogy problems are the things the
machine needs to learn about symmetry.

yd

AN

jai

Fig. 5.71

5.7.2 Best Match for Isolated Structures

Suppose a scene is to be identified, if possible, as a HOUSE, PEDESTAL,
TENT, or ARCH. The obvious procedure is to match its description against
those for each of the models and then somehow determine which of the four
resulting difference descriptions implies the best match.

Recall that models generally contain must-be satellites and must-not-be
satellites while ordinary descriptions do not. Consequently, comparing an
ordinary description against a model leads to a variety of comparison notes
not found when ordinary descriptions are compared. Among these are
must-be-satellite pairs, must-not-be-satellite pairs, and various flavors of exits
and supplementary-pointers. Such comparison notes are decisive in the
identification process.

Consider the case where some pointer in a scene’s description corre-
sponds to its must-not-be satellite in the model. This clearly means a relation
is present that the model specifically forbids. The resulting must-not-be-
satellite-pair comparison note in the difference network is such a serious
association impediment that identification of the unknown with the model is
rejected outright, without further consideration. This means that the near-arch
in Fig. 5.72 cannot be identified as an arch because the network describing
the near-arch has MARRIES pointers between the two supports while the
model has MUST-NOT-MARRY pointers in the same place. The combination
produces a comparison description with a must-not-be-satellite-pair comparison
note that positively prevents a match.

Identification with a particular model is also rejected if the difference
description contains exits or supplementary-pointer comparison notes which
involve must-be satellites. Such comparison notes occur when essential
relations or properties are missing in the unknown. Two bricks lying on a table
do not form a pedestal because the model for
the pedestal has a MUST-BE-SUPPORTED-BY
pointer. The result is a supplementary-pointer
comparison note involving the must-be satellite
MUST-BE-SUPPORTED-BY. Again there is no
match.

Suppose we have a HOUSE but its identity
is as yet unknown. Match of a HOUSE against
the PEDESTAL, the TENT, and the ARCH all
lead to difference descriptions with comparison
notes that forbid identification. The PEDESTAL
fails because a merge indicates that the required A-KIND-OF relation between
the top object and BRICK is missing. The TENT similarly fails because both of
its objects must be wedges. The ARCH fails because the model has a
MUST-BE-SUPPORTED-BY pointer to an object missing in the HOUSE. This
in turn causes a fatal exit comparison note in the difference description.

Fig. 5.72

SINdNVX] WOHS SNOILIHOSI(J TVHNLONYLS ONINYY3IT

/

Gol

The next problem emerges because some unknown may acceptably
match more than one model in a trail list. Given several possible identifica-
tions, there should be some way of ordering them such that one could be
reported to be best in some sense. To do this I associate each kind of
difference with a number and combine the results by forming a weighted sum
for each comparison. This seems to work well enough for the moment, but I
do not think it would pay to put much effort into tuning such a formula.
Instead more knowledge about the priorities of differences should lead to far
better programs that do not use such a primitive scoring mechanism.

5.7.3 Best Match for Structures
in a Context

Examine Fig. 5.73. Notice that object B seems to be a brick while object D
seems to be a wedge. This is curious because B and D show exactly the same
arrangement of lines and faces. The result also seems at odds with the models
and identification process of the system as described so far, because so far
anything identified as a wedge must have a triangular face.

But of course context is the explanation. Different rules must be used
when programs try to identify objects or groups of objects that are only parts
of scenes, rather than the whole scene. In the case where the question is
whether or not the whole scene can be identified as a particular model, it is
reasonable to insist that all relations deemed essential by the model be
present, while all those forbidden be absent. But when the question is whether
or not a few parts of a scene can be identified as a particular model, then
there is the possibility that some important part may be obscured by other
objects. In these situations, my identification program uses two special
heuristics:

First, the coincidence of objects lying in a line seems to suggest that
each object is the same type as the one obscuring it unless there is goqd
reason to reject this hypothesis. This is what suggests object D is a wedge in

Fig. 5.73.

‘

Fig.5.73

Wmmmﬁm FranerEN T

Second, essential properties in the model may be absent in the unknown
because the parts involved are hidden. This is why identification of object D
with wedge works even though D lacks the otherwise essential triangular face.
The requirement that forbidden properties do not occur remains in force,
however.

Fig. 5.74

Elaborate work can be done on the problem of deciding if the omission
of a particular feature of some model is admissable in any particular situation.
My program takes a singularly crude view and ignores all omissions. Rejection
of the hypothesis that the obscured is like the obscuror happens only if the
machine notices details specifically forbidden by relations in the model. Thus
the effort is not to select the best matching model, but only to verify that a
particular identification is not contradictory. This means that object B in Fig.
5.74 is confirmed to be brick-like while brick-ness is denied to D because of
the ruinous apparent triangularity of the side face.

Of course if the propagation of a property like brick-ness or wedge-ness
down a series of objects is interrupted, then the unknown must be compared
with a battery of models with the program still forgiving omissions but now
searching for the best of many possible identifications.

5.7.4 Learning from Mistakes

Suppose the program attempts to identify a house as a pedestal. Identification
fails because the wedge will not match the top of the pedestal and the
resulting type of akind-of-merge comparison note cannot be tolerated. Still it
would be a pity to throw away the information about why the match failed.
Instead the otherwise wasted matching effort can be used to suggest new
identification candidates.

The way this works is quite simple. First the machine spends idle time
comparing the various models in its armamentarium with each other.
Whenever the number of differences observed are few, a simplified description
of those differences is stored. Thus the machine knows that a house is similar
to a pedestal, from which it differs only in the nature of the top object.

These descriptions link the known models together in a sort of similarity
network.

This network and the difference descriptions noted in the course of
identification failure help decide what model should be tried next. The

aot

!

SNONYINIAQIHATL TIYNONIYINNQQY

description of the differences between an unknown and a particular model is
compared with the descriptions of the similarity net. If the difference between
the unknown and a particular model matches the difference between that
model and some other model, then identification with that other model is
likely.

For example, an unknown which happened to be a house relates to the
model of a pedestal in roughly the same way that the model of a house
relates to the model of a pedestal. HOUSE is consequently elevated to the top
of the list of trial models. Notice that the process requires the same steps as

do analogy problems as described earlier. Figure 5.75 clarifies the procedure.

|

1

Try to identify
unknown with next
model on model list

Does identification
succeed?

No

Is difference
quantitatively small?

Yes

Does difference
No description identify
with any known difference
relating this model
to some other model?

Yes

Place best
matching model at
the front of the
model list

|

Fig. 5.75

Fig. 5.76

5.1.5 Finding a Needle in a Haystack

The scene of Fig. 5.76 is curious in that one can find an arch, a pedestal, a
house, and a tent in it if one is looking for them. But if they are not
specifically searched for, mention of these particular models is unlikely to
appear in a description of the scene. Although the configurations are present,
they are hidden by extraneous objects so well that general grouping programs
are unlikely to sort them out. Yet the question, “Does a certain model appear
in the scene?” is certainly a reasonable one. One way to attack it divides
nicely into three parts:

1. Find those objects in the scene that have the best chance of being
identified with the model. If the model has unusual pointers or
references unusual concepts, the program pays particular attention to
them. Similarly, extra attention is paid to the emphasized parts of
the model, for if mates cannot be established for them, solid
identification cannot be affirmed. The result is a set of links between
the objects of the model and their nearest analogues in the scene.

2. Once a good group of objects is picked, then the pointers relating
these objects to the other objects in the scene are temporarily
forgotten. In human terms, this is like painting the subgroup a special
color.

3. Finally, with the best group of objects set into relief by the previous
excision, the ordinary identification routines are applied with the
expectation of reasonable performance.

The problem with direct application of the identification programs lies in the
myriad irrelevant exit comparison notes that the extra objects in the scene
would cause. Such clutter leaves the machine as bewildered as it does
humans.

S31dWVXT WOYd SNOLLAIHOS3(] TVHNLIONYLG ONINHVY3T

/

91

REFERENCES

1. Mahabala, H. N. V.: Preprocessor for Programs which Recognize Scenes, M.I.T.
Artificial Intelligence Laboratory Memo 177, 1969.

2. Guzman, Adolfo: “Computer Recognition of Three-dimensional Objects in a Visual
Scene,” Ph.D. thesis, MAC-TR-59, Project MAC, Massachusetts Institute of Technol-
ogy, Cambridge, Mass., 1968.

3. Evans, Thomas G.: “A Heuristic Program to Solve Geometric Analogy Problems,”
Ph.D. thesis, in Marvin Minsky (ed.), “Semantic Information Processing,” The M.LT.
Press, Cambridge, Mass., 1963.

ey e

Qa1

/

SNOILVINISIHIIH TYNOILVIOOSSY

