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Abstract - The knowledge representation system KL-ONE has been one of the most influential and '1

imitated knowledge repr5entation systems in the Artificial Intelligence conununity. Begun at Bolt
Beranek and Newman in 1978, KL-ONE pioneered the development of taxonomic representations
that can automatically classify and A88imilate new concepts baaed on a criterion of terminological
subsumption. This theme generated considerable interest in both the formal conununity and a large i
community of potential users. The KL-ONE community has since expanded to include many systems
at many institutions and in many different countries. This paper introduces the KL-ONE family and
disCU885 some of the main them5 explored by KL-ONE and its successors. We give an overview of
current research, describe some of the systems that have been developed, and outline some future
research directions.".;_i~::':' 1. INTRODUCTION -

In 1975, "What's in a Link" [1] challenged the semantic network research community to think
more clearly and be more explicit about the meanings of links and their uses in such networks.
One of the issues raised was a distinction between structural and assertionallinks-the former
link together constituents of a composite conceptual structure, while the latter express assertions
about the concepts that they link. Such a distinction is important, for example, in order to know
Whether a link structure such as:1

[telephone] [color] [black]

is intended to represent the description [black telephone] (i.e., the category of telephones that
are black) or the assertion that telephones are black (i.e., a sentence expressing the claim that
all telephones are black).
.' . Building on this distinction, and partially in answer to the challenges of "What's in a Link,"

Ron Brachman, in his Harvard Ph.D. thesis, developed a set of conventions for representing struc-
tured concepts in "Structured Inheritance Networks" [2]. In these networks, the components of
structured concepts were made explicit and concepts could be defined in terms of other concepts.
Moreover, the relationships of various parts of structured concepts to corresponding parts of
other more general and more specific concepts were also explicitly represented. The resulting
network, among other things, effectively organized defined concepts into a partial ordering based
c.n a. relationship of defined specialization. The definitions of concepts were thus taken seriously,
Since it is the definition of a concept that determines its place in the partial ordering.
-:---

.We gratefully acknowledge Ron Brachman, Fritz Lehmann, Bob MacGregor, Bill Mark, Peter Patel-Sdmeider,
and Marc Vilain for many helpful comments on earlier drafts of this paper. We also thank all of the people who
~nded to our reqU5t for references and assistance. This research was supported in part by a grant from the

'Por Family Foundation.
e 1 Throughout the paper, we will denote concepts with English names or descriptions enclosed in square brackets,

.g., [person].
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Brachman's thesis led to the development of the knowledge representation system KL-ONE t
[3,4] as part of the Natural Language Understanding Project at Bolt Beranek and Newman j
Inc. (BBN). The first author was the principal investigator for this project, and the second l

author was a key developer of the system.2 KL-ONE used structured inheritance networks to
construct taxonomic structures that ordered concepts on the basis of generality and (because of
KL-ONE's explicit notational semantics) permitted an operation of automatic classification that
could assimilate new concepts into the network at the correct p~itions in the taxonomy.

KL-ONE was used at a number of other institutions, m~t notably at the Information Sciences
Institute of the University of Southern California (USC/ISI) (e.g., CONSUL [5-8] used KL-ONE;
and Explainable Expert Systems (EES) [9,10], the Penman natural language generator [11] and
parser [12,13], and the Integrated Interfaces Display System [14] all used KL-ONE's successor,
NIKL). Moreover, the issues that it raised were actively investigated by researchers from many
institutions in a series of specialized workshops, the second of which is summarized in [15]. i
Many of these issues were embodied and explored in other systems at other institutions, and ,
KL-ONE thus became the root of a family of systems, all pursuing a persistent, if somewhat i

subtle, collection of research themes that has matured and evolved over time. MacGregor [16]
provides a brief overview of the history of KL-ONE and its successors that complements the one

presented here.
In this paper, we introduce KL-ONE and some of its successors and give an overview of the

research underlying the development of these systems. We begin with an introduction to the
basic representational mechanisms of KL-ONE, followed by an exposition of the research themes
pursued by KL-ONE and its successors. This will be followed by a discussion of a number of
research projects and experimental systems, concluding with a summary of the current state of
this research. Finally, we will present some comm~nts regarding directions for future work.

2. THE KL-ONE PERSPECTIVE

A major theme of KL-ONE and its successors is that the semantics of one's representational
devices should be well understood. That is, the meanings of represented concepts should be unam-
biguously determined by explicit notational devices whose meanings (semantics) are understood,
so that algorithms can operate on the representation in accordance with the semantics of the
notation, without needing ad hoc provisionf: for specific domain concepts. Representations with
this characteristic have come to be known as "principled" knowledge representations. Without a
principled semantics, there is little that can be done in a general and extensible way and there is
no way a system can automatically classify and handle new concepts that were not programmed
into it. Moreover, it is difficult for an unprincipled system to evolve gracefully, because eventually
it becomes too difficult to determine the ramifications of adding a new piece of knowledge when
the existing structure embodies arbitrary relationships with no governing principles. KL-ONE
began a tradition of developing principled notations for expressing conceptually distinct meanings
of the kind found in natural language statements. Subsequent systems have gone further in this
direction by providing an explicit model-theoretic semantics (see Section 4.4.).

Initially, the KL-ONE project set out to develop a set of representational conventions that
would be sufficient to express any concept expressible in natural language. Brachman, in his the-
sis, called these conventions "epistemological" primitives. They might have been better termed
"concept structuring" primitives, since they were not dealing with sources of knowledge or jus-
tifications for belief, but were essentially primitives of abstract representational notation, as
contrasted with primitive domain concepts. That is, these primitives dealt with basic conceptual
relationships such as a concept having an attribute, satisfying a constraint, being defined by a
set of properties, being more specific than another concept, etc. Concept structuring primitives
are contrasted with "primitive" domain concepts such as "ship," "tank," "bagel," "transistor,"
or whatever the subject matter of the knowledge base might be. Concept structuring primitives

2Many other people participated in the project, including, among others: Madeline Bates, Rusty Bobrow, Ron
B~aclunan, Jeff Gibbo~s, Brad Goodman, David Israel, Hector Levesque, Tom Lipkis, Bill Mark, Candy Sidner,
Bill Swartout, Dave Wilczynski, Marc ViIain, Martin Yonke, and Frank Zydbel.
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(perhaps together with some logical primitives for things like sets and sequences) should be the
only primitives on which the reasoning algorithms of a system depend.

£.1. Cqmparison with Typical Frame Systems

In order to understand the KL-ONE world view, it is useful to contrast it with the world view
of a typical frame-based representation system. Typically, a frame system consists of a collection
of data structures called "frames" that can be thought of as standing for classes of objects that
have attributes. Each frame has a number of data elements called slots, each of which corresponds
to an attribute that members of its class can have. Each slot contains information about the
corresponding attribute, such as default values, restrictions on possible fillers, attached procedures
or methods for computing (nondefault) values when needed, and procedures for propagating side
effects when the slot is filled. A frame is essentially a data structure for organizing certain kinds

of computation.
Typically a frame will include an "is a" or "ako" pointer to a more general frame or frames from

which additional slots with default values and other information may be inherited. Intuitively
these labels correspond to asserting that the first concept is an instance of the second ("isa" =
"is a") or that the first concept is a subkind of the second ("ako" = "a kind of"). Early frame
systems did not make a distinction between subkinds (e.g., a dog is a mammal) and instances
(e.g., Fido is a dog), but many now do, partly in response to papers such as [1] and [17].

In a typical frame system, these "is a" and "ako" pointers are entered by the person who con-
structs the data base, and their (operational) semantics is defined by the inheritance mechanism
of the system. Often this inheritance is defined by the notion of a virtual copy [18], in which
a frame is thought of as having its own private copy of all inherited slots and default values.
This virtual copy can then be changed locally in order to override inherited defaults. Thus, the
semantics of such links is strictly operational-defined by how they work and what they cause
to happen. There is no formal criterion for when such links should be added to a frame. It is
simply up to the person entering the information to decide where a concept should be inserted
into the hierarchy and what its links should be. There is no external criterion of correctness to
which these decisions should adhere.

From the KL-ONE perspective, however, the semantics of "ako" relationships should be de-
fined by an external semantic criterion, independent of the data structure and the algorithms
that will operate on it. This criterion expresses what it means for one concept to be in an "ako"
relationship to another and determines when it is appropriate for the data structure to include
such links. Thus, in KL-ONE, such links have a "criterial" as opposed to an "operational" se-
mantics. There is an external criterion for the correctness for a link, determined by what the
link "means." This criterion is independent of the subsequent processing that the link will cause
or enable. The operational consequences are then justified in terms of the criterial semantics.3
A criterial semantics can be provided in a number of ways, including combinations of English
characterizations of intended meanings, reductions to well understood formal systems such as
the first-order predicate calculus, and/or direct model-theoretic semantic accounts. What's im-
portant is that there needs to be an explicit understanding of what the notational devices of the
system mean that is clearly understood and shared by the implementers of the system and the
people who will use it. It is also important that these notational devices be sufficiently expressive
to permit the users to correctly say what they want to say within the delineated semantics.

If a system has a criterial semantics, then a person entering information need be concerned
only with expressing facts correctly (according to those semantics) without having to anticipate
all of the operational consequences. If the implementation is faithful to its criterial semantics,
then one can be confident that the resulting behavior will be correct. Further, if knowledge has
been entered faithfully according to a criterial semantics, then operational aspects of a system can
be changed and extended in a manner consistent with those semantics without having to revise
the knowledge already recorded. This division of labor can greatly facilitate the development of
complex knowledge-based systems. In fact, one can argue that for developing and maintaining
-

3See [19] for a genera! discussion of the distinction between criteria! and operational semantics.
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large knowledge bases, which must necessarily be constructed incrementally and evolved over
time, a dependably "criterial" knowledge base manager is essential.

KL-ONE can be thought of as a kind of frame-based system with an additional layer of
representational conventions that carry a criterial semantics. These semantics make it possible to
perform certain inferential operations such as automatic classification of new concepts. KL-ONE I

~~:;,~':~ alsO has a few additional structures not present in most frame systems. The next few sections t
will describe these more fully. t

2.2. Automatic Classification

In virtually every semantic network or frame based system, there is at least one link or slot,
such as the above "ako" and "isa," that relates more specific concepts to more general concepts.
Other names for such links include: "kind of," "subset of," "member of," "subconcept of,"
"subkind of," "superconcept," "superc," etc. These links are used to organize concepts into a
partially ordered structure called a "taxonomy." The taxonomy is used to record information
at appropriate levels of generality thus making it available to more specific concepts by means
of inheritance. Classical taxonomies, such as th~e in biology, are usually strict hierarchies (in
which each class has a unique parent class), but in KL-ONE, as in many knowledge representation
systems, concepts can have multiple parents. :

If a representational notation is sufficiently well defined by a criterial semantics and structured!
concepts can be defined in terms of other concepts, then many generality relationships among
composite, structured concepts can be derived automatically from their structures. For example, r

the concept "a woman with children" can be inferred to be more general than "a woman with I valu,
sons" by virtue of the structures of the two concepts and the relationship between children and: the ~
sons. The more general concept in such a case is said to "subsume" the more specific one. The I to b

fact that KL-ONE allows one to construct defined concepts and that its notational semantics' spec
permits the detection of subsumption relationships between defined concepts makes it p~sible! (fraI
to automatically assimilate new concepts into a taxonomy by "classifying" them with respect to' ~esc
the taxonomy and adding appropriate ako relationships. "Automatic classification" refers to the mfor
ability to insert a new concept into a taxonomy so that it is directly linked to the most specific to al
concepts that subsume it (i.e., are more general than it is) and to the most general concepts that class
it in turn subsumes. I

- The ability to automatically classify structured concepts with respect to a taxonomy is one ven~
of the distinguishing characteristics of KL-ONE and its successors. Prior to KL-ONE, network equl
taxonomies were completely hand-crafted, with each concept placed in the taxonomy by a human prof

designer. The ability to automatically classify structured concepts has emerged as an important rep.r
issue in knowledge representation [20]. tatl(

The concept of automatic classification originated in a pair of algorithms conceived by the first! ~ept
author as important algorithms to be supported by a knowledge representation system [21]. The. ISSUI

: first algorithm (called MSS,.for ~most speci?c ~ubsumer") locates t~e most specific concepts in a ~ data

taxonomy that subsume a given rnput description. The second algorithm (called MGS, for "most r f~rro
general subsumee") locates the most general concepts that are subsumed by an input description. i nlsn
Automatic classification consists of applying these two algorithms and linking the new concept to kno\

its most specific subsumers and its most general subsumees. A parallel, marker-passing algorithm
for MSS was designed by the first author [21], who also implemented a sequential version as part 2.9.
of an English-like interface to KL-ONE, called JARGON [22]. The JARGON MSS algorithmserved as the first KL-ONE classifier used by the BBN natural language understanding system . !\

~ [23]. A substantially expanded classifier was subsequently implemented by Tom Lipkis
[24-26] . 10 81

""" who
;';: Automatic classification, based on subsumption of structured concepts, has been one of the. h~-..,- major innovations in knowledge representation research and one of the powerful driving themes I ot e

[~"',:~ underlying the considerable interest in KL-ONE. An automatic classification algorithm could not I ~~ : b.e implement~d in a sta~d~rd ~rame syst~m without imposing. an additional layer of representa- ~. all ~'

,,: tlonal conventlon that dlstmgulshes certaln slots and slot attributes as constituting the defining . 1
. f Baen-

~ropertles 0 a structured concept. Not all slots and slot attributes in a frame system can be notal j
mterpreted in this way (in fact most are not). For example, slot attributes that record default I molo;

-~
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Figure 1. A KL-ONE diagram of a simple "Blocks-World" arm.

values and attached procedures are not defining properties and do not participate as criteria in
the subsumption relationship.4 At a minimum, in order for an automatic classification algorithm
to be possible, one would have to distinguish the slots corresponding to defining attributes and
specify the intended semantics of those slots. Moreover, one would have to distinguish concepts
(frames) that are completely defined by their attributes from those that are merely partially
described. If such distinctions are made in the representation and are followed when recording
information, then a classification algorithm becomes possible. Some further work is required
to address the effect of classification on slots and slot attributes that do not participate in the
classification. [28] gives one the framework for doing this.

In summary, automatic classification is made possible by a layer of representational con-
ventions with explicit criterial semantics imposed on top of implementational data structures
equivalent to those of a typical frame system. Such conventions dictate that default values and
procedures attached to a slot play no part in determining subsumption relationships. KL-ONE's
representational conventions (i.e., its concept structuring primitives) constitute such a represen-
tationallayer which is above the layer of implementational structure and below the layer of con-
ceptual knowledge of domain specific concepts.s From the KL-ONE perspective, the important
issues are these representational conventions and their consequences-not the implementational
data structures themselves. Indeed, the designers of KL-ONE (including the authors) sought to
formalize the abstract structure of concepts, independent of particular implementational mecha-
nisms. An important belief of many researchers in the KL-ONE tradition is that the represented
knowledge is about something in the world, not merely a data structure.

2.3. An Introduction to KL-ONE

KL-ONE formalized the notion of a structured concept as a constellation of elements standing
in specified relationships to each other. The relationships of these elements to the concept as a
whole are called "roles," and the relationships that the fillers of these roles must have to each
other are called "structural conditions." Roles in KL-ONE were intended to capture a common

tBrachman [27] pointed out that a frame system that permits any slot attribute to be ovenidden (i.e., treats
all slot attributes as defaults) is inconsistent with automatic classification.

. 5The notion of distinct conceptual layers of representation is becoming recognized in cognitive and computer
sclen~e as people have begun to realize that the engineering practice of layered architect~ is more than just a
notatIonal convenience; This point has been argued by Braclunan's explicit introduction of the so-called "episte-
mological" level [29] and Newell's theory of the knowledge level [30].

I . ,
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generalization of the notions of attribute, part, constituent, feature, parameter, functional ar:- KI
gument, grammatical case, etc. For example, consider the classical "blocks-world" "arch" (the dia
prototypical structured object in artificial intelligence research), which consists of a rectangular gUt
block (called the "lintel") supported horizontally on top of two vertical blocks (the uprights)., unl
This concept would have roles for the lintel and the two uprights and would have structural i likf
conditions requiring that the lintel be supported by the uprights and that the uprights have open I the
space between them. This is illustrated in Figure 1. Here, concepts are represented by ovals, roles, of
are represented by circled squares, and structural conditions are represented by doubled ovals net
attached to a diamond shaped lozenge. More details of the graphical notation will be explained ex!
below. otl

In a similar fashion, the concept of a product of two numbers would have roles for multiplier, be
multiplicand and result. Likewise, an English sentence would have roles for subject, verb, object, kn.
etc., and its underlying interpretation might have "case" roles for agent, beneficiary, manner, wit
means, etc. i

~ ag< KL-ONE Notations ~~

KL-ONE has used a number of notations for its structures--some graphical and some lexical. bu1
These notations, as well as various internal implementation structures, are all thought of simply: ing
as different manifestations of a common abstract conceptual structure. This abstract conceptual i a }

structure has properties and consequences that are independent of particular data structures and tht
algorithms, and these properties define the criteria by which inferential algorithms are judged ku.
valid. t

In KL-ONE's graphical notation, concepts are represented by ellipses and roles are repre- i sel

sented by small circles containing inscribed squares. Attached to roles are value restrictions and art
other role "facets" (e.g., names and number restrictions), and attached to concepts are roles and sy~
structural conditions. Value restrictions on roles are concepts that characterize constraints on i for
possible role fillers. They are indicated by directed arrows pointing from the role to a concept I otl

that constrains possible fillers. Structural conditions characterize relationships that the fillers of
different roles must have to each other. They are indicated by diamond shaped lozenges connect- in
ing to structures that encode propositional constraints. These constraints are expressed in special we
graphical notations equivalent to restricted forms of quantificationallogic. These conventions are Set
illustrated in Figure 1 mentioned above. More details of the representation of concepts, roles, reI
and structural conditions will be given shortly. wi

In addition to the structure within a concept, KL-ONE uses directed arrows to express re-
lationships between concepts and also between roles of concepts. Specifically, directed arrows
connect concepts to more general concepts from which they are defined or which they specialize. TI
Directed arrows are also used to connect roles to more general roles that they specialize. The '

various uses of directed arrows are generally distinguished by the kinds of nodes at the ends,
of the arrows: concept - concept represents concept specialization, role - role represents role l geJ
specialization, and role - concept represents value restrictions on the role. Occasionally these' "s1
arrows will be explicitly labeled (as in the case of role differentiation, to be discussed shortly). de

In the semantics of KL-ON E, roles and structural conditions attached to concepts apply to all th.
specializations of those concepts as well. More specific concepts are thus said to "inherit" roles CO!
and structural conditions from more gener~ concepts to which they are linked. This allows one m<
to introduce roles and structural conditions into a network at the most general level at which CO!
they apply, after which they need not be explicitly repeated for more specific concepts. This form be
of inheritance is slightly different from that of most frame systems, since what is being inherited SUI
are the defining characteristics of a concept, which can be further restricted for more specific co;
concepts, but not overridden. lin

The specific graphical conventions of the pictorial notation are not important, other than -
for capturing the relationships among the various parts of a structured concept and making
these relationships explicit. However, when KL-ONE was introdu~ed, the use of a common set I ~o~

of explicit gr;aphical conventions, with relatively well-defined semantics, was quickly found to I cor

promote a ~egree of clarity that was not usually present in previous network representations. [ is j
. ~

!
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KL-ONE structures were found to be sufficiently expressive that a person could read a KL-ONE
diagram in terms of the explicit semantics of its representational conventions without having to
guess purely from the names of the concepts what the network author had .in mind. That is,
unlike typical frame based systems, KL-ONE does not need to have concepts wIth complex names
like "animal-that-eats-meat" whose intended meaning is suggested in English but not known to
the system or enforced by it.6 In KL-ONE, such concepts can be explicitly defined in terms
of other concepts and their meanings made explicit using the graphical conventions, without
needing to appeal to external documentation. Such defined concepts in KL-ONE need not have
explicit names in order to be interpretable. (Of course such concepts are defined relative to
other concepts, which may be defined in terms of still other concepts, which must eventually
be grounded in concepts whose names are recognizable and will mean to the reader what the
knowledge base author is intending. These concepts, however, can be common generic concepts
with conventionally accepted meanings.)

It should be pointed out that, although the graphical notation is intuitively clear as a ped-
agogical device for illustrating concepts with small examples, a similar picture containing all of
the details in a nontrivial knowledge base would quickly become an unmanageable tangle of lines.
The major advantage of network representations for full-scale knowledge bases is not readability
but rather the utility that results when algorithms can exploit the links for operational process-
ing. The links are also useful for associative access by network browsing programs that enable
a human editor to inspect and modify a knowledge base. It is important to understand that
the primary goals of KL-ONE and its successors are to facilitate the construction and use of
knowledge bases, not merely the representation of individual sentences.

It should also be pointed out that, despite the goals of KL-ONE for developing well-understood
semantics, the original graphical notation is conducive to certain intuitive uses whose semantics
are not totally clear. Consequently, work on the formal semantics of KL-ONE and KL-ONE-like
systems has tended to use lexical representations that are less intuitive but more amenable to
formal analysis (as we do in Section 3). This is progress in some dimensions at the sacrifice of
others.

The formal machinery in KL-ONE and subsequent related systems has varied in detail and
in spirit from system to system and from researcher to researcher, and has evolved over time as
well. For a more complete exposition of the original KL-ONE formalism and its graphic notation,
see [4,23]. In the next section, we will describe the key concepts of KL-ONE in a way that is
relatively faithful.to the original, but using a minimum of notation. In subsequent sections we
will introduce a notation in which we can more easily compare the features of subsequent systems.

The Structure of Concepts

A concept in KL-ONE is generally defined by one or more "super concept" pointers to more
general concepts plus a collection of locally attached role descriptions and perhaps some attached
"structural conditions." The superconcept pointers specify a class (or classes) of which the
defined concept is a subclass, while the role descriptions and structural conditions describe how
the concept being defined differs from (the intersection of) its "parent" concepts. In general,
concepts can be defined by restricting one or more parent classes by the addition of one or
more roles or structural conditions that are not implied by the parents, and/or by tightening the
conditions in one or more roles or structural conditions inherited from a parent. A concept can also
be defined with no additional roles or structural conditions by merely pointing to more than one
superconcept, effectively specifying the conjunction of those parent concepts. For example, the
concept [appreciable debt obligation] could be defined by a KL-ONE concept with a superconcept
link to [debt obligation] and another superconcept link to [appreciable asset], as in Figure 2. This

6There is nothing in a typical frame system that obligates the system to operate on a frame in a way that is
consistent with such a name. Consequently, since the name is irrelevant to the system's operation, the author of
a knowledge base in such a system does not hesitate to use abbreviated and potentially ambiguous names. As a
consequence, many such networks are impossible to read without a prior understanding of how each of the frames
is intended to be used.

~ 23:2-5-J
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Figure 2. Appreciable debt obligation, an example of conceptual conjunction. !
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concept would cover investment vehicles such as bonds which both bear an interest rate (like a' str
savings account) and also may incur a capital gain or loss (like a stock). This example illustrates
the utility of inheritance from multiple parents, since each of the parent concepts has a well
defined use, but instruments such as bonds turn out to have both characteristics and are not Th
totally characterizable in a strict hierarchy as either purely a debt obligation or an appreciable
asset. By categorizing bonds under such a conjoined concept, however, one automatically inherits II .
both aspects without having to make a separate copy of the appropriate role descriptions. Note I tlO
that the name of the defined concept [appreciable debt obligation] is redundant, since one can ont
read the meaning (relative to the two concepts from which it is defined) from its structure. rol,

of;
str

Primitive Concepts obI
wit

The above secti~n describes the g~neral case o~ a defi~e~ concept in .KL-ON.E. Howev~r, I of
KL-ONE also permits concepts for whIch only partial definitions can be given which cons tram,: of
but do not fully specify the concept. Such concepts are called "primitive," to indicate that their f tio

meanings are not fully defined by the information recorded in the network. Such concepts are do,
common in natural language, especially for what philosophers call "natural kind" terms such COI
as "dog." The claim is that no complete definition of such concepts is possible since one can. th(
continually propose borderline cases (wolves or hyenas for example) or exceptions to proposed L Th
definitions (hairless dogs for example). For example, a typical dictionary "definition" of "dog" is r
"a carnivorous domestic animal," which is not a complete definition (since it does not distinguish' to
dogs from cats, for example). An equivalent definition of "dog" in KL-ONE would be represented we
by a primitive concept to indicate that the defining characteristics are incomplete. [dc

For a primitive concept, the collection of superconcepts, roles, and structural conditions con- at
stitute necessary but not sufficient conditions for determining instances of the concept. For ceJ
nonprimitive concepts, these conditions are both necessary and suffitient. Automatic classifica- inc
tion in KL-ONE cannot place a ne~' concept underneath a primitive concept, because it does i COi
not know what additional information is required for something to be an instance--i.e., it does! rol
not have sufficient conditions. Primitive concepts are indicated in KL-ONE diagrams with an fill,
asterisk to indicate that their definition is incomplete. , paJ

Note that definitions in KL-ONE are taken seriously. In order for the classifier to work i cor
correctly, the repres~nt~tion must distinguish what is fully defined and what is only partly de- I we
fined. Moreover, unlike m most frame systems, none of these defining properties can be treated as I -,

!
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Figure 3. A person whose dilldren are doctors, an example of role restriction.

defaults. In order for the classifier to work, everything in a KL-ONE concept definition must be

strict-no cancellation is possible.7

The Structure of Roles

Roles in KL-ONE carry information about the kinds of fillers permitted (called "value restric-
tions"), the minimum and maximum number of allowed fillers (called "number restrictions"), and
one or more names. Roles can also be linked to more general roles in one of several ways. First, a
role can be a differentiated version of a more general role, e.g., arms and legs are differentiations
of the more general role "limb." Second, roles attached to concepts can be modifications or "re-
strictions" of roles attached to other concepts (or to the same concept). Such restrictions can be
obtained by tightening a value restriction and/or a number restriction of a role-e.g., a child role
with a value restriction of [doctor] could be a restriction of a child role with a value restriction

" of [professional]. The effective value restriction of a role restriction is the "intersection" of all
of the value restrictions that it has or inherits from parents-in the above case, the intersec-
tion of [doctor] and [professional] (which would be [doctor], assuming the network "knows" that
doctors are professionals by means of an appropriate superconcept relationship between the two
concepts.) The restriction relationship between roles is indicated pictorially by an arrow from
the more specific role to the role that it restricts (sometimes labeled "mod" in KL-ONE figures).
The differentiation relationship is indicated by a similar arrow labeled "diff."

Roles and role restrictions can be used to define a concept. For example, a concept equivalent
to "person whose children are doctors" could be defined as a specialization of
[person with children] by using a restriction of the [child] role that adds the value restriction
[doctor]. This is illustrated in Figure 3. This figure begins with the primitive concept [person]
at the top (note the asterisk indicating that it is primitive). This is used to define the con-
cept [person with children] by the addition of a child role with the number restriction #1, n-
indicating at least one and at most n children (where n signifies an arbitrary upper bound). This
concept and this role are then used to define [person whose children are doctors] by attaching a
role restriction requiring the child role to have a value restriction [doctor]-indicating that its

::;~' fillers must be doctors. This role restriction inherits the name and number restriction from its
~- parent role since it does not mention either on its own. Note that the names of the two defined

concepts are redundant, since the meaning of the concepts, in terms of the primitive concepts
[person] and [doctor], are formally specified by the notation.

~ - 7But see [28] for a discussion of how to combine defining and default properties in KL-ONE-like systems.
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Figure 4. Woman, a person whose sex is female.

You may notice that the topmost [child] role in this figure does not specify any value restriction

for its fillers. To be more complete, this role would have a pointer to the concept [person] to

indicate that the children of persons are persons. In general, when a role has no value restriction, ,

this is considered to be equivalent to having a value restriction of [THING], the most general i
possible concept. r

In the earliest versions of KL-ONE, concepts and roles were thought of as distinctly different'

things. In a slightly later version it was realized that roles could be thought of as concepts in their

own right, and that role differentiation is analogous to the superconcept relationship between

concepts. In subsequent KL-ONE-like systems, concepts have been identified with classes or

unary predicates, while roles have been identified with binary relations.

Individual Concepts

KL-ONE makes a distinction between generic and individual concepts, corresponding roughly

to the difference between sets and their members. While the superconcept link relates generic

concepts at different levels of generality, an "individuates" link is used to link concepts represent- ,

ing individuals to generic concepts of which the individuals are instances. Individual concepts are Ii.. a distinct type of concept, indicated graphically by diagonal shading within the concept's oval

representation. Similarly, the fillers of roles for individual concepts are represented by special

individual role instantiations (called "iroles") represented by small squares with diagonal shading

inside. The set of fillers of a role (whose individual members may be unknown) is also repre-

sentable by an explicit graphical convention-a circled square with shading between the circle

and the square.

In defining a concept, it is sometimes desirable to specify a role constraint in terms of a specific defi

individual filler rather than a generic concept specifying a constraint on the filler. For example, the

in defining a woman as "a person whose sex is female," it is important to say that the sex role cau:

of a woman is filled by an individual gender called [female]-not by some instance of a generic defi
concept called [female]. A generic concept called [female] should-if the representation is not to . f mer

mislead readers-Qenote the class of all female animals and plants, in which case an instance of inst

that concept would be an individual animal or plant, not an individual gender. An appropriate

representation of this definition in KL-ONE is indicated in Figure 4. tt.
The distinction between generic and individual concepts is important and has been made in .a d<

IS
varibus ways in different knowledge representation formalisms. However, the notion of individual

concept embedded in KL-ONE seems to have been confusing and difficult to use in practice. In ~pp
KL-ONE's successors, individual concepts have been either omitted or dealt with differently, e.g., y

by having individuals in the assertional component. :~l:'

upr
Structural Conditions (i.e

Structural conditions (also called "structural descriptions") in KL-ONE express required re-
I . h .

I the

at Ions IpS among ro es-for example, the constraint that the uprights of a blocks-world arch .

must support the lintel. Generally, structural conditions are expressed by means of "parametric ~hl
individuals," descriptions of individual relationships that must be satisfied by instances of the Clef,

i

I

I
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Figure 5. Kinds of situations.

defined concept, such as the individual support relationship that holds between the uprights and
the lintel of an arch (see Figure 1). These relationships are called "parametric individuals" be-
cause there is a different instantiation of the relationship for each instance of the concept being
defined-e.g, a different support relationship for each individual arch. Thus, the support require-
ment in the arch definition is effectively parameterized by the context of each individual arch
instance and stands for a different individual support relationship for each individual arch.

Structural conditions are indicated by doubled ovals attached to a diamond shaped lozenge
attached to the concept that they modify. Each such condition refers to a generic concept that
is defined elsewhere in the network and specifies an alignment of the roles of that concept with
appropriate fillers in the context of the concept being defined. The fillers are generally specified
by roles of the concept being defined, or by "role chains" (sequences of roles that serve as an
access path from the concept being defined to the intended fillers). For example, in Figure 1, the
fillers of the [Supporters] and the [Supported] of the [Support] relationship are specified to be the
uprights and the lintel, respectively. Some fillers could also be specified by individual concepts
(i.e., constants).

KL-ONE also provides a special kind of structural condition called "role value maps" for
the special case of equality and subset relations between the filler sets of roles or role chains.
This special case can be expressed using parametric individuals, but can be handled more effi-
ciently as a special caSe. Role value maps are indicated by including the intended subset relation

I .

I ('
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(either "subset" or "equality") within the diamond lozenge of a structural condition. Role chains tht
are represented using chains of "focusjsubfocus" nodes represented by small triangles. These ori
conventions are illustrated in Figure 5, which illustrates a nontrivial use of KL-ONE notation. fit
The figure illustrates a subclassification of situations into goal-oriented and state-oriented situa- wa
tions. The former has a goal that is constrained to be a state-oriented situation, while the latter sy!'
has an associated condition that is a predicate. A special case of a state-oriented situation is a to
script-oriented situation, whose condition consists of a current state predicate. Script-oriented or
situations also have a role called a script, which is filled by a transition network. A transition
network has roles for states and transitions. Script-oriented situations have a structural condition eX;
(specifically, in this case, a role value map) which asserts that the current state of the script- ab.
oriented situation must be one of the states of the transition network that fills its script role. tel
This latter is specified by a role chain leading from the script role of [script-oriented situation] net
to the state role of [transition network] (via the triangular t'focusjsubfocus" node that links the sta
elements of the role chain). The role chain is necessary since the constraint does not relate to th.
the states of just any transition network, but only the one that fills the script role of the script- in
?ri~nte? situation in question. This figure shows a s~t membership symbo.l in. the role value map,

,mdlcatmg that the filler of the current state role IS a member of the mdlcated set of states. ATechnically, KL-ONE implemented only subset and equality relationships in role value maps. n

The notation in this figure is effectively a graphical abbreviation expressing the constraints that'
the condition role has a number restriction of exactly one and that the corresponding singleton to
roleset is a subset of the indicated set of states.1S I tht

pu
Nexuses and Contexts tio

sta
The first implementation of KL-ONE represented assertional information by connecting con- tra

cepts in the conceptual taxonomy to objects called "nexuses" in hypothetical contexts. Ordi- as
narily, nexuses represented distinct individuals in the context and an individual nexus could be as
c?nnected to all of the different conceptual descriptions that it satisfied. In addition, special pic
kmds of nexuses could represent "individuals" that might or might not exist and might or might' an'not be identical with other individuals. For example, the unknown murderer in a murder mystery .

could be represented by a separate, nonunique nexus without prejudging his or her distinctness 33]
from other individuals in the context. A nonunique nexus is treated as a hypothetical individual dol
with properties, but is not counted as a distinct individual when the total number of individu- int.
als are counted or when distinctness judgements are being made. Some of the KL-ONE nexus mi
mechanisJDS were attempts to explore representations of intensional structures not expressible in gr,
first-order logic and are of considerable importance. However, they were never fully worked out, as
although a limited version of the mechanism was implemented in KL-ONE. Such devices have wi;
not been pursued by KL-ONE's successors.

1m
P..4. Taxonomic Structure . wh

Concepts in KL-ONE are linked to more general concepts by the superconcept relation. The t ~is

more general concept in such a relationship is called the superconcept and is said to subsume ~
the more specific subconcept. The superconcept relationship effectively organizes the concepts ~~
in K~-?NE into a taxono.my. on the basis of generality, and relationships of differentiation and b~
restnctlon between roles indicate corres~ondences between diff~rent parts of related concepts. of
Some of the uses of such structures begIn to become apparent m the figure we have just seen
(Figure 5). Su~h structures can be useful to ~ person. simply for .clarifying one's co~ceptions of a Th
problem domain. For a computer, they pernut a variety of special types of reasonmg, especially "classification and inheritance. S(

The taxonomic structure in KL-OI\" E is used to organize structured concepts at different levels ~Ol

of ~enerality. T~e.classification operati~n is used to place new descriptions into a taxonomy at ~n~
their correct posItIons. The taxonomy m KL-ONE has been used for a variety of purposes. In arc

8Many other details are omitted from this figure for exp~itory pW"p~es-':'-for example, no number restrictions str,

are shown, several roles have no value restrictions, and only one structural condition is shown. pre
I
[

I,

I c

I
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he application called AlPS [31-33], the taxonomy was used as a conceptually-oriented, object-
t iented programming system to organize display instructions and graphic presentation algo-
O~thlt18 for an advanced information presentation system. In a system called IRUS, the taxonomy
fiBS used to organize the semantic interpretation process for a natural language understanding
\\' stern [34]. In CONSUL [5-8], it was used to organize information relating a user's world model
:Y the command structure of a computer message system 80 that a user's description of what he
o~ she wanted to do could be transformed into the appropriate commands for doing it.

The kind of taxonomic structure that KL-ONE is intended to support is illustrated by the
x:a.rnple in Figure 6. The figure represents the information used by the AlPS system discussed

ebove to generate graphical displays of ATN grammars, using KL-ONE as an object-oriented sys-
:em for graphical presentation. ATN grammars [35] are a grammar formalism based on transition

~;!7t-' network dia~ams.that len~ themselves to ~raphical presentation and editing and have ~ecome a
r~" standard engmeermg techmque for expressmg complex grammars for natural languages m a form
: 'i that can be efficiently processed by computer. In the next section, we will look at this taxonomy
c.;:;.,::: in some detail.

An Example
Figure 6 shows a KL-ONE taxonomy that was taken from an application using AlPS and IRUS

to display portions of an ATN grammar in response to English commands [23]. To understand
the example, it is useful to know that ATN grammars are a generalization of nondeterministic
pushdown store automata and that they represent possible sequences of constituents as transi-
tions in a state transition network with a specified start state and a set of distinguished final
states. Each transition in the diagram is labeled with the kind of constituent that can enable the
transition, together with additional conditions required for the transition and actions to be taken
as a consequence of the transition. There are a number of different types of transitions, expressed
as different types of "arcs" connecting states in the grammar. For example, CAT and WRD arcs
pick up individual words from the input string, JUMP arcs change state without consuming

~;:1,;f: - anything from the input string, and POP arcs indicate the completion of a constituent.

The information shown in Figure 6 was developed in the context of the AlPS system [31-
33] and the Natural Language Understanding Project [36] at BBN. It illustrates how specific
domain knowledge (in this case knowledge of the structure of ATN grammars) can be conveniently
integrated with general purpose graphic presentation capabilities to produce displays with a
minimum of effort. In this case, all that was necessary was to describe the various types of ATN
grammar structures and to specify at a high level of abstraction that states are to be displayed
as circles containing the state name, and that arcs are to be displayed as three segment arrows

with an arc label on a horizontal middle segment.
At the top of the figure is the general concept of an ATN constituent, which is subdivided

immediately below into states and arcs. An AT!'.: constituent has a role called "display form"
'. which is constrained to be an ATN display form. ATN display forms are subdivided into state

display forms and arc display forms (defined elsewhere in the network and not shown here,
but specifying the graphical display conventions described above). The high level display form
role of ATN constituents is modified at the level of states and arcs to have values that are state

,; display forms and arc display forms, respecti\'ely. This information constitutes the entire interface
between the domain model of ATN grammars and the graphical display routines. The remainder
of the figure specifies information about AT~ grammars.

;1C The concept [STATE] has a role named Marc," ~.hose value restriction is the concept [ARC].
The concept [ARC] has roles for the tests and actions that an ATN arc can perform and a
"source state" arc whose value restriction is [STATE], Arcs are subdivided into pop arcs and
connecting arcs, where only the latter have ~next states" (which again are states). Connect-

~ .. ing arcs are in turn subdivided into jump arcs and consuming arcs, where only the latter have
:,.--c', a label for what is consumed. Consuming arcs are in turn subdivided into input-consuming

arcs and "vir" (for "virtual") arcs, where the former consume a constituent from the input
string while the latter consume an element from a special "hold" list of constituents found
previously in the sentence. In a similar fashion, the figure shows several different kinds of

! .

" "'L"': "
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input-consuming arcs: CAT arcs, WRD arcs, and TST arcs. Note that, although not explic- ab(
itly 80 marked in the figure, all of these concepts are primitive concepts in KL-ONE terminol- for
ogy, since what is shown are necessary characteristics but not sufficient conditions. For exam- frol
pIe, there is not enough information in the diagram to distinguish CAT arcs from WRD arcs. of 1
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Figure 6. ATN conatituenu. an example KL-ONE knowledge base. ,
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Fi~ 7. An ATN arc display. I

Below the concept [CAT-ARC] is an individual concept representing a particular CAT arc 2...

from state Sf to state SfNP. In the figure, individual concepts are represented by shaded ovals,
and their corresponding instantiated roles (i-roles) are indicated by shaded role symbols. Dotted su
arrows connect the i-roles to the roles that they instantiate and to the individual concepts that fill! mt
those roles. In the KL-ONE network from which this figure was extracted, this individual concept i pr,

I both represents the object as a component of a grammar (it could be used to answer questions ~ se]

i
I

I .
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bout the grammar or to drive a parser, for example) and also constitutes a displayable object
; r generating graphical presentations of the object. Using the graphical presentation knowledge
foom AlPS, an attached procedure inherited by the individual arc concept would draw a picture
rf the arC whenever a request to draw the individual was generated. The resulting display for

~he individual arc shown is given in Figure 7.

The Importance of Taxonomic Organization

The ability to organize relevant knowledge in a way that makes it usefully applicable to the
problem at hand is a key to many knowledge-based applications. It is one thing to have knowledge
in the way that an encyclopedia has it-merely written down somewhere inside, perhaps indexed
by subject matter in some way. It is another thing to have assimilated knowledge in such a
way that it affects one's perceptions and is fully exploited in problem solving and action. One
way to achieve the latter in a computer system is to organize the knowledge of what to do
in different situations in such a way that a reasoning engine can automatically recognize when
knowledge is applicable. Taxonomic organization is a key technique for addressing such problems.
A taxonomic structure can be organized to efficiently locate matching rules in response to a
description of a goal. This is one reason why simple taxonomic hierarchies are used in object-
oriented programming systems to organize inheritance of methods for code reusability. Similar
motivations drive much of the work in KL-ONE and its successors, although with a much greater
emphasis on the conceptual structure of the knowledge.

It is not difficult to find matching knowledge for a given task when the entire body of knowledge
is small enough to search exhaustively. The challenge comes when the body of knowledge becomes
large, and the relevant knowledge must be efficiently extracted from the irrelevant within time
and resource limitations. While unable to solve the problem entirely, taxonomic classification
techniques as in KL-ONE have important applications to this problem. They are useful not only
for efficient organization and retrieval, but also for managing the evolution of large knowledge
bases [20] and for managing conflict resolution among simultaneously matching rules [28,37].

For example, when conflicts exist among the rules in a classical rule-based production system,
the conflicts may not be discovered until a conflicting situation occurs as input. In a taxonomic
classificati°.n structure, however, the subsumption of the conditions of one rule by another and
the potential for two rules to have common instances can be automatically discovered when the
rules are assimilated into the taxonomy. At this time, the person entering the rules can address
the question of how two conflicting rules should interact and express the answer in the form of
another more specific rule. The advice associated with the more specific rule can then explicitly
include a directive to override or alternatively to supplement the more general ones. Such a
scheme was implemented in CONSUL [5-8], as an adjunct to KL-ONE, and is incorporated as a
part of LOOM [37-39], a successor to KL-ONE. Woods [28] discusses the issue further.

Assimilating production rules into a taxonomic knowledge structure not only facilitates the
discovery of interactions at input time, but also promotes a compactness in the specification of the
rules. By relying on the fact that concepts inherit information from more general concepts, one
can usually create the concept for the pattern part of a new rule by merely adding a restriction
to an existing concept. In KL-ONE, when one wants to create a description of a situation that
is more specific than a given one, it is only necessary to mention those attributes being modified
or added. It is not necessary to copy the attributes of the general situation. Besides facilitating
compact memory storage, this feature also facilitates updating and maintaining the consistency
of the knowledge base by avoiding the creation of duplicate copies of information.

2.5. Experience with KL-ONE

KL-ONE is primarily a system for organizing conceptual structures into a taxonomy, and as
such deals almost exclusively with structural rather than assertional informati~n. The first imple-
mentation of KL-ONE used attached data and procedures (much in the spirit of an object-oriented
programming language) in conjunction with its nexus and context mechanism to deal with as-
sertional information, but its primary focus was on the taxonomic conceptual structures. This

I
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system was successfully used to drive not only portions of a language understanding project [34],
but also the AlPS graphical presentation project [31-33] described above. AlPS used KL-ONE
as a conceptually structured object-oriented language for expressing knowledge about graphi-
cal entities such as shapes, coordinate systems, and coordinate system transformations, and also
information about how different kinds of entities should be graphically displayed and represented.

KL-ONE was also used by the CONSUL group at USC/ISI [5-8] to represent knowledge about
the structure and function of a computerized message handling system and to provide a mapping
between the designers' view of how the system was structured and a user's view of what he or
she wanted done. Such knowledge could be used to explain to a user how to achieve his or her
goals by using the operators of the system. Key to the CONSUL uses of KL-ONE were not
only the organization of the KL-ONE network, but also the action of a "realizer" that would
recognize which individuals were described by a concept in a situation, and a "mapper" that
would transform one description of an action into another via the rules described earlier. The
operation was to repeatedly apply mapping transformations that replaced portions of a stated
user goal with corresponding descriptions of system actions until an executable action resulted.
At each step in the transformation, the resulting action description was reclassified with respect I

to the taxonomy to determine what new transformations would become applicable [5].
Experience using KL-ONE in these contexts led to considerable appreciatibn of the value

of taxonomic classification for such problems, but there was also confusion about the nature of
individual concepts and an awareness that, although the goals of KL-ONE included a well-defined
semantics, a sufficiently formal semantics was not provided, and some of the classifier's operations
were not semantically justified. There were many loose ends to be tied down, limitations in
expressive power, and subtleties that were not yet understood. Moreover, the original assertional
mechanisms were ad hoc and unsatisfying. Attempts to clean up the language and augment its
descriptional and assertional power led to the development of a host of successor systems, to
which we now turn.

'" i I
2.6. Successors to KL-ONE 1.t ) : The operation of classification in KL-ONE and its focus on representational issues such as I I

seeking a well-defined semantics and a separation of definition from assertion stimulated a prolific
investigation of systems based on the idea of "terminological subsumption." In such systems, ,
a distinction is made between a "terminological component" (or "T-box"), which formalizes
the structure of conceptual terms that can be used as constituents of facts and rules, and an t"assertional component" (or "A-box"), which records facts and rules composed from those terms. .

This formal separation of T-box and A-box into separate components was first proposed by
Levesque and Brachman in the 1981 KL-ONE Workshop [40]. The terminological component
is responsible for certain specialized kinds of reasoning that follow from the structure of the
terms, while the assertional component is responsible for general reasoning. Such combinations
of specialized inferential components for different kinds of reasoning are referred to as "hybrid"
reasoning systems [41]. .

Several hybrid representational systems based on KL-ONE have been developed and many r
other systems have explored similar or related themes. Table 1 lists some of these systems, with
references. In subsequent sections, we will discuss some of these systems in more detail in the
context of various research themes. \\'hile we are attempting to give substantial coverage of this
work; it is not possible to be complete. There are important pieces of work that we do not have i
space to discuss. Some of these include KOLA [42,43], micro-KLONE [44], N-ary KANDOR [45], 1

PROTEM and the Intelligent System Server [46-48], QUERELLE [49], QUIRK [50] and QUARK i
[51], TELOS [52] and VIE-KL [53]. In addition, except for a few illustrations, we have chosen
not to address the various applications using KL-ONE and KL-ONE-like systems.

3. A UNIFYING NOTATION

In order to concisely characterize the capabilities of different systems, we will first introduce an
expressive terminological language called K£, which is a superset of most of the other languages

J
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Table 1. Some successors to KL-ONE.

. BACK (S.3.1.): [S4-s7]

. CANDillE (S.3.4.): [58]

. CLASSIC (S.IA.): [S9,60]

. DRL (S.3A.): [61-64]

. KANDOR (S.I.2.): [6S]

. KL-CONC and KL-MAGMA (S.3A.): [6tHi9]

. KloneTa.lk (S.2.2.): [10,11]

. KL-TWO (S.2.1.): [12,13]

. KNET (S.2.2.): [14-16]

. KREME (S.3A.): [17]

. K-REP (S.3A.): [18]

. KRYPTON (S.I.I.): [41,19,80]

. L-LILOG (S.3A.): [81]

. LOOM (S.2.3.): [16,82,83]

. MANTRA (S.I.3.): [84,85]

. MESON (S.3.2.): [86,87]

. NIKL (S.2.1.): [88-91]

. SB-ONE (S.3A.): [92,93]

. SPHINX (S.3.3.): [94-96]
For each system listed, we give the section where it is discussed (in parentheses) along with citations.

in the KL-ONE family. We will use this notation to describe various systems by identifying
the portions of K£ that they include. We borrow this technique from Patel-Schneider, who
introduced the language U for similar purposes [97]. We present the language using the style of
[98] by giving a specification of its syntax and a model-theoretic account of its semantics.

One caveat is that not all terminological languages form a proper subset of K£, so near-misses
will be noted. Another caveat is that many other languages use a syntax that differs from ours.
While this may lead to some confusion, coercion of all these languages into a common syntax
greatly simplifies their comparison. In fact, the K£ language includes a number of redundancies
that were introduced solely for comparison purp~es.

Section 3.1. gives the syntax and semantics of K£. Section 3.2. describes common T-box
operations while Section 3.3. describes common A-box operations.

9.1. Syntax and Semantics

A specification in K£ consists of:
. a set of concepts,
. a set of roles,
. a set of disjointness assertions among concept.. and among roles,

. a set of individuality assertions about concepta, and

. a terminology, which maps names to specification. of concepts and roles.

The formal syntax of K£ appears in Backus-Naur form (BNF) in Figure 8.
The operators cdef and cprim allow one to specify and name concepts and to "store" those

name/specification associations in the terminology. cprim names a primitive concept, whose
specification represents conditions that are necessary but not sufficient. cdef names a defined
concept, wh~e specification represents conditions that are both necessary and sufficient. rdef
and rprim work similarly for roles.

For example, assume that the primitive concept named [MAMMAL], which represents all
mammals, has already been specified. We can specify [PERSON], which will represent all per-
sons, as (cprim PERSON MAMMAL). This states that [PERSON] is a primitive concept that

I
I ('



150 W.A. WOODS, J.G. SCHMOLZE r
is subsumed by [MAMMAL] with the informal interpretation that all persons are mammals.

Since [PERSON] is primitive, however, we have no sufficient criteria for determining when some

mammal is a person.

. I . ,
<terDllno ogy> ::= <spec> i
<spec> ::= <term-intro> I <concept> I <role> I <individual-spec> I <disjoint-spec> r

<term-intro> ::= (cprim <concept-name> <concept» I !
(cdef <concept-name> <concept» I
(rprim <role-name> <role» I
(rdef <role-name> <role»

<concept> ::= top I
<concept-name> I
(and <concept>+) I
(or <concept>+) I
(not <concept» I ,
(all <role> <concept» I

t(some <role» I
(c-some <role> <concept» I
(atleast <minimum> <role» I
(c-atleast <minimum> <role> <concept» I
(atmost <maximum> <role» I
(c-atmost <maximum> <role> <concept» I
(rvm <role> <role» I
(rvm= <role> <role» I

(sd <concept> «role> <role»+)

<role> ::= top-role I

<atomic-role> I i
<role-name> I
(and-role <role>+) I i

(or-role <role> +) I
(not-role <role» I
(restr <role> <concept» I
(domain <concept» I
(range <concept» I
(self) I
(inv <role» I
(chain <role> <role>+)

<individual-spec> ::= (individual <concept»

<disjoint-spec> ::= (disjoint <concept> <concept>+) I
(disjoint-role <role> <role>+)

< mini.mum > ::= "a non-negat~ve ~nteger" i
< ma.x1mum > ::= "a non-negative Integer" r

<atomic-concept>s, <concept-name>~. <atomic-role>s and <role-name>s are all formal symbols.
We require that they do not overlap so that they are distinguishable by context.

Fir;ure 8. Syntax of K.L:.

We can now specify the concept [GARDENER]:

(cdef GARDENER (and PERSON (c-some Hobby GARDENING-ACTIVITY»).
i

That is, [GARDENER] is a defined concept that is subsumed by [PERSON] and has at least one

filler of the [Hobby] role that satisfies [GARDENING-ACTIVITY]. The informal interpretation

is that a gardener is a person who has at least one hobby that entails gardening. In this case,

we not only know some things that are necessarily true of gardeners, we also have a sufficient..

criterion for determining when a person is a gardener. :
t

1
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As a special case, we allow for atomic concepts and roles. An atomic concept carries no
. formation other than its name. It is primitive but has no associated conditions. An example
:ould be a concept [Frob], specified as (cprim Frob top). Being subsumed by top places no
estrictions at all on [Frob]. Atomic roles can be specified similarly. (Similar specifications using

~def instead of cprim would merely define alternative names for top.) ..
There is a simple translation from much of K;£ to KL-ONE. The concept top IS equIvalent

to the KL-ONE concept [THING], which represents the entire domain. The operations cp~im
and cdef allow the specification of primitive and defined concepts, respectively, both of which
can be specified in KL-ONE. The operation and allows one to specify terms with multiple
conditions, including possibly multiple superconcepts, roles, and structural descriptions, which
is also allowed in KL-ONE. The operation all is equivalent to a value restriction; atleast and
atmost, taken together, are equivalent to a number restriction; and rvm and rvm= are equivalent
to role value maps. sd is equivalent to structural descriptions. The only difference between K;£
and KL-ONE regarding concepts is that or and not are new and did not exist in KL-ONE. Also,
c-atleast represents new expressive power over KL-ONE, allowing one to define, for example,
[PROUD-PARENT] as a person with at least one child who is a doctor.

As mentioned earlier, redundancies exist within K;£. The some operator is equivalent to
atleast with a minimum of 1. The operator c-atleast is equivalent to atleast combined with restr.
For example, the following specifications of [PROUD-PARENT] are equivalent.

(cdef PROUD-PARENT (and PERSON (c-atleast 1 Child DOCTOR»))
(cdef PROUD-PARENT (and PERSON (atleast 1 (restr Child DOCTOR»»

In a similar way, c-atmost is equivalent to atmost combined with range.
The role top-role is analogous to top and represents all pairs of individuals in the domain.

KL-ONE had no explicit role taxonomy, and thus no top-most role. In general, the KL-ONE
language for describing roles was weak. All roles were effectively primitive and could, optionally,
be a differentiation of a more general parent role. Subsumption for roles was thus equivalent
to "differentiation" in KL-ONE, but nothing more could be said about roles. Thus, rprim was
characterizable, but rdef, and-role, or-role, not-role, restr and inv represent new expressive power.
In addition, the operators self and chain could not be used in KL-ONE as roles per se, but could
only be used as parts of role value maps or structural descriptions.

We also note that restr is redundant in K;£ since it is equivalent to the conjunction of a
subsuming role with a range restriction. For example, the role representing offspring who are
doctors could be expressed in either of the following ways.

(restr Child DOCTOR)
(and-role Child (range DOCTOR))

Finally, rvm= is expressible using rvm as the former represents set equality between role fillers
and the latter represents a subset relation. For example, the concept representing persons who
are their own grandfathers can be specified in either of the following ways.

(cdef OWN-GRAMPA (rvm= (chain Child Child) (self)))
(cdef OWN-GRAMPA (and (rvm (chain Child Child) (self))

(rvm (self) (chain Child Child))))

The model-theoretic semantics for K;£ appears in Figures 9 and 10. A model is a pair < D, f. >
where D is a domain of individuals and where { is an assignment function that assigns a set from
D to each concept and a set of pairs from D to each role.

Ambiguities arise with respect to terms wh~e definitions contain cyclic dependencies. An
example would be a concept [A], which we could specify, using a role [R], as:

(cdefA (all RA»)
An appropriate model < D, f. > must satisfy:

f.[A] = {x E DI'v'y( < x, y >E f.[R] -+ y E f.[A])}
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Unfortunately, this equation can have multiple solutions. Two solutions are ~[A] = 0 and ~[A] =
D. Other solutions are possible depending on ~[R]. Our stated semantics allows for any of these

solutions.

x:.c, includes almost all of the operators used in the various KL-ONE dscendants. In a x:.C, knowl~e base,
let C be the set of concepts and R the set of roles in2a terminology. A model is a set D and ~ &88lgnment I.

function { sum that { : C - eD, { : R - eD where eD is the powerset of the domaIn D, where !

D2 = (D X D) and where { must satisfy the conditions below:

1. concepts:
. {[top] = D. {[(and Cl ... cn)] = n:= 1 {[ Ci]

. {[(or cl ... Cn)] = U:=l {[Ci]

. f.[(not c)] = D - {[c)

. f.[(allrc)]={zEDIVy«z,y>E{[r]-yE{[c])} ,

. {[(some r)] = {z E DI3y < z,y >E {[r]}

,' . {[(c-some r c)] = {zE DI3y« z,' >E f.[r] J\ y E f.[c])}

! . {[(atleast n r)] = {z E DI3n distinct y's < z, y >E {[r]}
. f.[(c-atleast n r c)] = {z E DI3n distinct y's« z, y >E {[r] J\, E {[c])}

. {[(atmost n r)] = {z E DI-.(3n + 1 distinct y's < z, y >E {[r])}

. f.{(c-atmost n r c)] = {z E DI-.(3n + 1 distinct y's( < z, y >E {[r] J\ y E {[c]»}

. {[(rvm rl r2)] = {z E DIVy < z, y >E {[rl] -< z, y >E {[r2]}

. {[(rvm= rl r2)]={zEDIVy<z,y>E{[rl]-<z,y>E{[r2]}

. {[(sd, (rJ r1)...(r~ r~»]=

{zEDI3y(yE{[.]J\VZ1,...,Zn((<Z,Zl >E{[r1]-<y,Zl >E{[r;])J\...J\ c

« z, Zn >E {[rn] -< y, Zn >E {[r~]»)}

2. roles: .. f.[top-role] = D2 11nn ] fl

.{[(and-rolerl...rn)]= i=l{[ri C

. {[(or-role rl ... rn)] = U:=l {[ri] ~

. {[(not-role r)] = D2 - {[r] ~

. {[(restr r c)] = {< z,y >E f.[r]ly E {[c)}

.f.[(domainc)]={<z,y>ED2IrEf.[c]} C

t
. f.[(rangec)]={<z,y>ED2IpEf.[C]}

s. f.[(self)] = {<z,z>ED2} .

. f.[(invr)]={<z,y>ED21<r,r>Ef.[r]}

. {[(chainrl...rn)]= ' S
{<z,p>ED213z1,...,Zn-l«Z,Zl >E{[rl]J\<zl,z2>E{[r2]J\...J\ t

< 'n-l " >E {[Tn])} f
Figure 9. Model-lhtorelic aemantics of x:.C,-Part I of II.

It
Nebel [99,100] investigated the impact of such cycles with respect to several methods for l

i specifying a semantics. The one we have used is a case of what he calls descriptive semantics, r
but we make no claims that this is the best treatment. Other possible choices are the least C
and greatest fixed point methods. One of Nebel's observations is that the fixed point methods
are deterministic, whereas the descriptive method is not. By "deterministic" we mean that, !
given a terminology and legitimate assignments for all primitive terms, then the assignments for
defined terms are uniquely determined by the semantics of the operators and the assignments,
for the primitive terms. This is not true of the descriptive method, as demonstrated by our [

example concept [A]. As a result, the descriptive semantics tends to be weaker than the fixed!
point methods (i.e., justifies a subsumption conclusion in fewer cases), since in the d~criptive! -
case there are more allowable models that must satisfy the subsumption requirement, making J
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subsumption more difficult to conclude. Nebel shows that the greatest fixed point method has
the advantage of leading to a conceptually simple subsumption algorithm, but this only applies
to simple terminological languages. He also found that each method produces counter-intuitive
results on certain examples, either by concluding a subsumption that it should not, or by failing
to conclude one that it should. Nebel concludes that the choice of the best method is not obvious.
Furthermore, he shows that the unrestricted use of cycles can lead to undecidability.

3. tentl introductions:
. ([nc] f ([c] whenever (cprim nc c)
. ([nc] = ([c] whenever (cdef nc c)

. ([nR] f ([r] whenever (rprim nR r)

. ctnR] = ([r] whenever (rdef nR r)

4. individuality assertions:
. Ictc] I ~ 1 whenever (individual c)

5. disjointness assertions:

. ctc] n ctc') = 0 whenever (disjoint Cl ... Cn) and
there exists i and j with 1 ~ i,j ~ n, i ~ j, c = Cj and c' = Cj.

. ([r] n ([r') = 0 whenever (disjoint-role r 1 ... rn) and
there exists i andj with 1 ~ i,j ~ n, i ~j, r = rj and r' = rj'

Note that 1&\ denotes the cardinality of the set &.

Figure 10. Model-theoretic semantics of K-C-Part II of II.

9.2. Terminological Operations

A knowledge representation system in the KL-ONE tradition supports a variety of terminolog-
ical and assertional operations. In this section and the next we will introduce and give definitions
for the most common terminological and assertional operations, using the model-theoretic ac-
count of the K£ language, where practical. We will also give a general idea of how systems differ
with respect to these operations. We will identify the operations offered by individual systems
when we discuss them in later sections.

The primary terminological operations are th~e for specifying terms: the operators
cprim, cdef, rprim and rdef. All the systems we will discuss include operations equivalent to
the cdef operator. The inclusion of cprim, rprim and rdef varies from system to system. All the
systems allow the use of atomic concepts and roles.9

Other common terminological operations are:

SUBSUMPTION: In the KL-ONE tradition, a term is said to subsume another term if and only if
the set it denotes includes the set denoted by the other in every allowed model. In other
words, A subsumes B if and only if for every model < D,{ >, {[B] ~ {[A].lO Classification
is the process of identifying all appropriate subsumption relations among a given set of
terms.

INHERITANCE: Inheritance is the process of identifying those conditions that apply to a concept
because they are conditions for a subsumer of the concept.

COMPLETION: Completion is the process of identifying and recording all conditions that apply
to a concept. This includes all the conditions found through inheritance plus certain other
conditions that are logically implied. For example, if a concept representing a hand uses
an rvm= to state that the [Finger]s of a [HAND] are the same set as its [Digit]s, then any
value restriction for [Finger] of a [HAND] also applies to [Digit] of a [HAND], and vice
versa. This information would not be noticed by inheritance per se. Completion would
note it and record it explicitly.

- 9Those systems without cpria or rpria allow specifications of atomic terms in other ways.

I lOBut lee [28] for an argument that the "if" part of this definition il too strong.

! -
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COHERENCE: A term is coherent if and only if there is a model in which the term's denotatiqn is
not empty. In other words, A is coherent if and only if there e.xists a model < D,f. > such

that f.[A] # 0.

All systems examined in this paper compute inheritance and subsumption. Most perform
classification, many check terms for coherence, and some perform completion. In addition, those i
that allow disjointness specifications usually can determine whether any pair of terms are diSjoint. ,.

As we will discuss in Section 4., a major research theme in the KL-ONE tradition has to
i do with a tradeoff between t~e expressive power of the knowledge representation system and
I the soundness, completeness, and computational tractability of its algorithms. Soundness and

\ completeness refer to the fidelity of the algorithms to a model-theoretic criterion like the model-
f.' theoretic semantics presented here for 1:-£. Informally, an algorithm is sound if it is guaranteed to

-: conclude something only if that conclusion is justified by the model-theoretic semantics-usually,
! if it is true in all allowable models. Conversely, an algorithm is complete if it is guaranteed to
i ' draw any conclusion that is so justified. This can best be illustrated by considering the operation

I of subsumption.
ti

Let SUBS?(A, B) ~epresent a subsumption algorithm that is total (i.e.! always .returns an
answer) and returns eIther true or false when A and B are terms. SUBS? 18 sound If and only
if whenever SUBS?(A, B) returns true, then A subsumes B according to the model-theoretic
criterion. SUBS? is complete if and only if whenever A subsumes B, then SUBS?(A, B) returns
true. If SUBS? is only sound but not complete, then returning true implies that A subsumes B
but returning false means that the algorithm cannot tell. If SUBS? is both sound and complete,
then returning true implies that A subsumes B and returning false implies A definitely does not

subsume B (i.e., there exists a model where f.[B] ~ f.[A]).
In nearly all the systems studied, the algorithms that implement the terminological operations

are sound, total and computationally tractable. Inheritance is fairly simple, so the inheritance
algorithms are usually complete as well. However, the other operations mayor may not be

complete depending on the system. t
I

9.9. Assertional Opemtions

,
The assertional operations provided by KL-ONE-like systems vary from system to system

much more than do the terminological ones. We will give only a brief review of their differences.
All A-boxes we will examine provide basic database storage and retrieval operations. Namely,
one can introduce individual constants and record the concepts they realize and values for their '
roles. In addition, one can query the A-box to identify all individual constants that realize a
concept or role, or that relate to a given individual constant via a given role. Some systems allow
one to "close" a role for a given individual, i.e., to assert that all of its fillers are known, so that
one can conclude that anything not known to be a filler is not one. Moreover, some offer more
sophisticated assertional capabilities-e.g., SPHINX allows Prolog-like rules to be asserted-~d ,

others offer sophisticated retrievallanguages--e.g., LOOM's retrieval language incorporates a full I
first-order language. Some determine consistency, and some provide truth-maintenance facilities ,
with retraction. Finally, many perform the following operation of realization, which identifies !
individuals that can be described by a concept in a situation.

Realization is the process of identifying all concepts that are realized by an individual-i.e.,
all the concepts of which it is an instance. The operation of realization applies to individual
constants, which are usually found in the A-box, and are not to be confused with individual
concepts (which, if they are permitted, are found in the T-box and in this notation, as in NIKL,
are like definite descriptions denoting sets that are either singleton or empty.) A concept is realized
by an individual constant if and only if, in every model, the interpretation of the individual 1

constant in the model is in the set denoted by the concept. Since we have not introduced f
individual constants into our model theory (indeed, we have not addressed the model-theory of '

the assertional compon~nt .at ~l), we will not offer a formal definition of "realize." i 1

. The process of reallz.atlon IS affected by wheth~r or not the clos~d world ass~mption is be- r

mg made. For example, If [CHILDLESS-PERSON] IS a concept denotmg people without children
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f~:'~):

defined by

(cdef CHILDLESS-PERSON (and PERSON (atmost 0 Child»)

and if we have an individual constant, p, about which we only know that it represents a person,
can we conclude that p represents a [CHILDLESS-PERSON]? The answer is "yes" if we make
the closed world assumption and "no" if not.

None of the systems examined in this paper that perform realization make the closed world
assumption as a general rule. However, as mentioned above, some have special facilities to "close"
a role. For example, in CLASSIC, the above p would not be realized as a [CHILDLESS-PERSON]
unless one closed the [Child] role for p.

4. MAJOR RESEARCH THEMES

The strengths of KL-ONE led several researchers to develop similar knowledge representation
(KR) systems with some variations. Much effort was expended in making refinements to KL-ONE
and 'in exploring developments of and variations on its themes. In the remainder of this paper,
we present some of the themes of this research.

An important landmark was the development of KRYPTON, which identified three key is-
sues for KL-ONE-related research: the separation of definitional from assertional information,
the specification of a formal semantics, and the trade-off between expressive power and computa-
tional tractability. In this section, we will consider each of these issues, along with several other
important themes.

,/.1. Distinguishing Definitions from Assertions

A major issue raised by KRYPTON was that definitions and assertions should be clearly
separated. This was first raised for semantic networks by Woods [I], as mentioned earlier, and
introduced in the KL-ONE context by Brachman and Levesque [15,101]. KRYPTON took an
extreme position by separating the two kinds of information into distinct components. Definitions
went into a T-box while assertions went into an A-box. The two boxes were implemented in
KRYPTON as separate modules with separate data structures. Information Bowed between
them in a limited and carefully specified manner (we examine this further in Section 4.3).

The conceptual separation of definitions and assertions has played a part in every KL-ONE-like
system, including KL-ONE itself. While the designers of KRYPTON took an absolute position
on the matter, designers of other systems were willing to blur this distinction. One problem is
that there does not appear to be a commonly accepted meaning for "assertion," and often its use
confuses as much as it clarifies [16]. In particular, several types of information seem to cross the
definition/ assertion boundary.

One such type of information includes terms for which no complete accounting can be made,
but for which certain necessary conditions apply. An example is a term for the class of all persons.
All persons are necessarily mammals, among other things, yet it is commonly accepted that the
class of persons forms a natural kind. and no complete definition of "person" can be constructed.
One could specify a concept to represent persons in KL-ONE using cprim, as we did earlier,
to specify [PERSON] as a primitive concept subsumed by the primitive concept [MAMMAL].
While this is in some sense "definitional" in that the symbol [PERSON] has now been introduced
to refer to the class of persons, it is not a complete definition since it does not provide both
necessary and sufficient conditions. In particular. it does not specify what differentiates persons

-r;'..;!fi~ from mammals. But it seems also to be partly assertional in that it represents the fact that all
f':t):; persons are mammals. Although it did not do so originally (see Prim Generic in [79]), KRYPTON
' eventually rejected this blur by not allowing primitive terms to have any structure, i.e., a primitive

term could not have necessary conditions associated with it. [PERSON] and [MAMMAL] could
be primitive concepts in KRYPTON, but the fact that all persons are mammals would normally
be represented in the A-box.II

OW' .Ith some effort, one could represent [PERSON] in a different way that would capture its subsumption by

~ 23:2-5-K

. .-
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The more common view, which most systems in the KL-ONE family adopt, and which we st.

incorporated into x:"c, is simply to take the position that constructs that introduce or specify in1
terms should be distinguished from other facts, whether they provide complete definitions or not. th
Some terms are specified as definitions (with conditions that are both necessary and sufficient), i th
while others are specified as primitives (with conditions that are necessary only). t na Another problem with the definition/assertion distinction is that often it does not go far wi

enough. One reason for distinguishing term specifications from assertions is the assumption that; [D
the former are always necessary (if not always sufficient). If contradictions arise, such necessary ~ to
information is not subject to being wrong and recovery procedures can thus be directed elsewhere. i nit
However, there is a subtle confusion here between necessary in the sense of being part of the I for

meaning of the term, versus necessary in the sense of being necessarily true in all cases. The is
former notion, that of conditions which are part of the meaning of a term and therefore true "by la1
d~finition," is sometimes called "analytic" in philosophical discussions. It turns out that there no
can be conditions that are necessarily true but are not part of the meaning of a term (i.e., are not:
analytic). One class of such conditions includes the necessary consequences of a term's definition. I .I.j For example, it is necessarily true that a polygon with three sides will have three angles, but

this is a consequence of, rather than part of, the definition of a triangle. As Woods [28] points
out, if one were using a KL-ONE-like system and wanted to capture in the terminology the facts, tiv
that triangles are the same class as polygons with three sides and polygons with three angles,! CO!
then both would need to be part of the definition of a triangle. Unfortunately, if [TRIANGLE]! SpE
is defined as: J ne]

I
f pr(

(cdef TRIANGLE (and POLYGON (atleast 3 Side) (atmost 3 Side) f. it i

(atleast 3 Angle) (atmost 3 Angle))) ! MJ

then the information is lost that either polygon with three sides or polygon with three angles suc

would be sufficient to conclude that something is a triangle and certain subsumption relationships
are likely to be missed. Clearly, one would like to say that a polygon either with three sides or In J
with three angles is a triangle, and that all triangles necessarily have both three sides and three an
angles. Only a few KL-ONE-like systems examined herein can state all of this, and they would con

do so for triangles by using the above cdef specification plus a statement of the appropriate [MJ
sufficiency conditions, to which we now turn.12 que

A similar issue arises for information that is sufficient but not necessary. Given a class, there
may be several different sets of associated sufficient conditions. For example, an animal whose bet
parents are persons must be a person, and a featherless biped also must be a person. Only a; are

I few of the KL-ONE-like systems allow one to express pure sufficiency conditions. For example, enc
I LOOM, MESON and CLASSIC have done so using rules. of {

i .4' .2. Disjointness ~ In (

, the
. . A second type of inf~rmation that often crosses the definitional/assertional boundary is di&- ~ ass!
jorntness. An example IS the fact that the class of persons and the class of dogs are disjoint. ,
An easy method of representation was adopted in NIKL, where disjointness declarations among!
previously specified concepts could be made in the T-box by simply declaring concepts to be 4.4

disjoint. However, even though these declarations are made in the T-box, the treatment in NIKL
is effectively assertional since, in this case, the specification of neither [PERSON] nor [DOG] be

(MAMMAL] in the T-box, but such represenlationa are not the ones that would spontaneously come to mind. For au.t
example, one could represent ; thl~

: frar
(cdet PERSON (and MAMMAL PERSON NESS)) I Lev

where [PERSONNESS] is a (probably primitift) concept representing all individuals having the properties common -
I to pel'Bons other than those implied by being ma.rrunals. : 13

I 12Woods [28] raises and deals with this issue by distinguishing the operation of definition from other conditional: inteJ
relationships, allowing a concept 's n"e~essary conditio~ to ~e different from its sufficient conditions, and by allowing! conc
some structures to have both definitional and assertlonallmport. The ~ult is a generalized notion of definition I was

i that provides f?~ abstract concepts with multiple alternative definitions and for partially defined concepts wh~
I" 14

necessary conditIons are not the same as their sufficient conditions. sepa

"
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tates anything about their being disjoint. That they are disjoint is stated after the terms are
~ troduced.13 An example of a definitional approach would first specify, say, [PERSON], and
~:en specify [DOG] such that [DOG] is a primiti~e concept that ~ .subsumed by, .among other
things, the negation of [PERSON]. Here, the negation of a concept lS rnterpreted as ~ A£C [103],
aIJlely it represents all objects that are not in the class denoted by the concept. A mmor problemn ith this definitional approach for representing disjointness is its asymmetry-the specification of

~OG] mentions [PERSON] ~ut not vice versa. While no~ a serious probl.e~~ this le~ researchers
, to look for other representational means. For example, In CLASSIC, .dlsjorntness lS' bo~h defi-
! nitional and symmetrical. It differs from the A£C scheme above by usrng user-~upplied mde:ces

1 for colle~ti°n.s ?~ disjoint ~oncep.ts to enc.ode the fact th.a~ eve~y pair of ~on.cepts rn th~ collection
, 's pairwise dlSjornt. A minor difficulty 18 that these disjunction class rndlces are uDlnterpreted

." ~a.bels used to encode the relationships among the concepts in the collection, and otherwise have
no semantic import.

, 4.9. Hybrid Systems

The separation of definitions and assertions into distinct components in KRYPTON was mo-
tivated by more than just a desire to maintain the definition/assertion distinction. It was also
considered more efficient to build specialized modules for the sub-languages of a system so that
specialized procedures could run over specialized data structures, resulting in efficient compo-
nents. This approach to KR became quite popular and has been called the hybrid system ap-
proach. Nearly all KL-ONE-like systems after KRYPTON adopted this approach. Moreover,
it is not limited to just T and A boxes, but can be used for any number of components (e.g.,
MANTRA [84,85] has four--see Section 5.1.3.). Other lines of research on hybrid KR systems,
such as the CAKE system[104-106], have also been investigated.

In nearly every KL-ONE-like hybrid system, information flows readily between components.
In general, if there is information in one component that, if shared with another, would lead to
an inference, then specialized routines are implemented to make that information flow between
components and to draw the appropriate inferences. For example, if the T-bax were told that
[MAMMAL] subsumes [PERSON] and the A-box were told that p is a [PERSON], then, if
queried, the A-box would conclude that p is a [MAMMAL].

Unfortunately, there are some costs associated with the coordination and flow of information
between components of a hybrid system. Some of these specialized inter-component routines
are complex and difficult to design. In Section 5.2.1., we examine the difficulties and subtleties
encountered in the design of KL-TWO. Such complexities involve trade-offs, and the advantages
of a hybrid approach must be weighed against the disadvantages.

Note that it is not necessary to separate definitions and assertions into different components
in order to make a definitionaljassertional distinction. In CLASSIC, for example, we find that
the T and A box distinction is not crucial, even though the distinction between definitions and
assertions is maintained (see Section 5.1.4.).14

4.4. Formal Semantics

An important issue raised by the KR'.PTON effort was that a KL-ONE-like language can
be viewed as a formal language for which a formal semantic account can be given. In fact, the
authors of KRYPTON went further and claimed that such an account should be given. While
this observation was already ingrained in other lines of KR research, such as Hayes' logic of
frames [107], Shapiro's SNePS system [108], and Schubert's semantic nets [109,110], Brachman,
Levesque and Fikes were the first to do so for the KL-ONE family.
- --

13Unfortunately, this treatment ofdisjointness in ND<L infected the classifier. Since the classifier WAS ostensibly
intended to examine only "definitional" information, it ignored disjointness declarations. Thus, two defined
concepts whose only difference WAS that they were disjoint would be considered equivalent and thus merged. This
was the subject of a complaint in [102].

14Woods [28] discusses some of the disadvantages of separating terminological and ASsertional knowledge into
separate components and points out some advantages of integrating these two kinds of infonnation more effectively.
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At first, Brachman, Levesque and Fikes provided a translation from the language of KRYP. d
TON to first-order predicate calculus, which in turn could be provided with the usual model. d
theoretic account. Eventually, they chose to assign a model-theoretic semantics directly to the iI
KRYPTON language. This style of account was used in Section 3. ; it

The advantage of providing a semantic account is that it gives an independent standard 1 b
of correctness-a criterial semantics as discussed earlie~. Algorith~ that store, retrieve or ~fer I

information can be given formal standards to meet and lIDplementatlons can be compared agaInst i 'I
those standards. The clarity this provides has been so useful that semantic accounts have become tl
a standard component of every KL-ONE-like system developed after KRYPTON. sl

f S,4.5. Limited Expressive Power and Tractability t oj

I rr
One issue raised by KRYPTON that has had the strongest impact on KL-ONE-related research t tl

is' the tradeoff between expressive power and computational tractability. Following Levesque
[111,112], Brachman, Levesque and Fikes made initial arguments in [79], and Brachman and

~Levesque later made stronger arguments [98,113] that the answers given by a KR system should
be fully correct with respect to a formal semantics and that the operations s~ould be performed
in a predictable and reasonable amount of time.

These requirements can have very severe consequences for the system's inferential algorithms., m
A common interpretation was that these algorithms should be sound, complete and tractable.; SI
A consequence of this interpretation was that the expressive power of each component of a KR "
system should be limited, since otherwise a system cannot simultaneously be sound, complete, and cl
tractable for classification and other inferential algorithms. Brachman and Levesque expressed OJ
the hope that, by combining various components in creative ways, an expressive and powerful t,
KR system could result that would be made up of sound, complete and tractable sub-parts. This s~
became a key goal of the hybrid system approach. tf

KRYPTON attempted to meet these requirements for the T-box with respect to two types of
inference, namely, inheritance and subsumption determination. Inheritance algorithms had long 5.
before been developed that met these criteria. However, the complexity of determining subsump-
tion was somewhat of a mystery at the time. (The unraveling of this mystery is summarized in
Section 5.4.) To meet these requirements, the expressive power of KRYPTON's T-box language h~
was specifically chosen such that determining subsumption would be tractable.15 As a result, the W
T-box language was quite expressively weak as compared to KL-ONE. That is, certain things s~
that could be expressed in KL-ONE could not be expressed in KRYPTON. To balance this weak-
ness, the language for the A-box of KRYPTON was powerful, namely, the first-order predicate i 5

calculus. The inferential algorithm offered' was that of full deduction, which was based upon
Stickel's connection graph theorem prover [114]. Thus, the A-box's main inferential algorithm: s'
was sound and first-order complete, but intractable. Here, the goal of tractability was sacrificed I ti
for completeness. ! oj

The attractiveness of the above functional requirements was clear: if they could be met,
I pJ

predictable answers could be guaranteed in a predictable time. It thus launched a long series of
investigations into limited systems that tried to meet these goals. , II

~

4.6. Expanded Expressive Power and Inferential Services 1 a

While some researchers followed the KRYPTON strategy of developing KR systems with lim- :
ited expressive power and limited inferential services, others chose instead to explore systems with J T

wide expressive power and expanded inferential services. Where the former were motivated by I a.
the goals of computational tractability and predictable consequences presented above, the latter; tJ
adopted a different view-one of service to the user. This approach starts from the assumption [ d,
that each user of a KR system has certain representational and inferential needs. If the user's f d
needs are not met by the KR system, then the user must go "outside" the system. This can lead! -

to ad hoc connections between the KR system and data structures that the user must supply W

I for representing what the KR system will not. In addition, it can lead to ad hoc procedures for b,

: 15 Actually, the first design of KRYPTON did not have this goal [79], but successive designs did [80]. I s(
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d wing inferences since the information is now spread among the KR system's and the user's
dr~a structures. Thus, these researchers decided it was better to have greater expressive and
;Cerential power, even though it would preclude having both completeness and tractability. As
.t turns out, complete and tractable inferential algorithms are nearly imp~sible to attain for any
~ut the weakest of languages (see Section 5.4.).16

In a sense, KRYPTON fits into both the limited and the expansive categories in that KRYP-
TON's T-box was limited but its A-box had the widest expressive and inferential power of all
the A-boxes that we will examine. Systems such as SPHINX offer T-box languages that are
slightly weaker than KL-ONE's, but wh~e A-box languages are relatively strong. In the case of
SPIIINX, the A-box language was that of Horn clauses. On the far end of the spectrum, LOOM
ffers the most expressive T-box language of all those examined, along with a host of program-

~g metaphors including rule and objected-oriented programming. Overall, each system has
taken a slightly different stand on these issues.

5. THEME DEVELOPMENT

The issues discussed in the previous sections constitute some of the primary themes that have
motivated much of the KL-ONE-related research. In the next few sections, we highlight the
specific results of various systems that have pursued these themes and a variety of subthemes.
We divide our review as follows. Section 5.1. reviews systems that accepted the KRYPTON
challenges directly, including KRYPTON itself. Section 5.2. reviews th~e systems that are more
or less direct descendants of KL-ONE. While influenced by KRYPTON, these systems did not
take KRYPTON's goals as primary. Section 5.3. examines several other notable KL-ONE-like
systems. Section 5.4. reviews the results of analyzing the complexity of subsumption for a host of
terminological languages. Finally, Section 5.5. examines some criticisms and dissenting opinions.

5.1. The KRYPTON Challenge

With the challenge of hybrid systems out in the open, a number of researchers ch~e to design
hybrid systems that were expressive, powerful and manageable (though often not tractable, as
we will see). To demonstrate this thread of KL-ONE-related research, we examine the following
systems: KRYPTON, KANDOR, MANTRA and CLASSIC.

5.1.1. KRYPTON

In designing KRYPTON [41,79,80], Brachman, Levesque and Fikes wanted the overall KR
system to have expressive power that went well beyond that of KL-ONE (at least on the asser-
tional side). Of particular concern was the representation of incomplete knowledge such as "one

! of the three people in that room is a murderer" or "there is a cow in the field." The first-order
predicate calculus could handle these with

Inroom(A, R) A Inroom(B, R) A Inroom(C, R) A (Murdertr(A) V Murderer(B) V Murderer(C))17

and
3c( Cow( c) A Infield( c, F)).

Thus, they chose a first-order language as their representational formalism. However, they
also wanted to take strong advantage of KL-O~E-like taxonomies. Strengthening the defini-
tionalfassertional distinction that was partially addressed in KL-ONE, and applying their strong
desiderata regarding the functional role of a KR system, they adopted the hybrid T-boxf A-box
design that we have already discussed in Section 4.

l~For some systems, certain inferences, such as detennining subsumption, is merely c()oNP-hard (e.g., BACK),
while for others, it is undecidable (e.g., ND<L).

17But note that this does not give an account of an individual concept that would be described as "the murderer,"
but whose identity remains mtknown. This was one of the goals which KL-ONE's nexus mechanism attempted to
solve and is still an open problem.

- -- -- -
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KRYPTON's T-box was strictly definitional with weak expressive power, and its A-bo~ Was i
strictly assertional with strong expressive power. Initially, the T-box language was designed!
to include the concept operators and, all, atleast, atmost, disjoint, cprim and cdef, and the role
operators restr, chain, disjoint-role, rprim and rdef [79] (see our Figures 8, 9 and 10). However,
the T-box language that was actually implemented was considerablr smaller due to the desire to
keep subsumption tractable, coupled with time limitations on the project. In the end, the T-box
language consisted of the concept operators and, all and cdef, and the role operators chain and
rdef [80]. f

The A-box offered a full .first-order language and used deducti~n to answer. que~ies. . -:rhus, f
queries to the A-box took an unpredictable a~ou~t of resources gIven the seffil-decldabllit~ of t
deduction in a full first-order system. DeductIon ill the A-box was performed by a refutatlon- ,
based connection-graph theorem prover developed by Stickel [114]. ~for~ation flow b.etween t
the T and A boxes went primarily from T to A and was expressed prlInarily by extendmg the,
power of unification based on Stickel's partial theory resolution. For example, if [PERSON] was
subsumed by [MAMMAL], then unification was extended by allowing (PERSON x) to unify with
(MAMMAL y). Since the theorem prover was based on a connection graph, these extended
unifications were identified by having the T-box add them to the connection graph. See [80] for
further details.

The KRYPTON system was a landmark for the issues it highlighted and on which it took a
firm stand. However, due to its particular combination of a weak terminological component and

Ian unwieldy assertional component, it did not find its way into applications. To address this,
i midway into its development, the KRYPTON group began the development of KANDOR.
i

5.1.2. KANDOR

The goals of KANDOR [65] were the same as those stated earlier for KRYPTON. KANDOR's I

T-box language was chosen so as to be an expressive subset of KL-ONE with the property ,
that subsumption was tractable. KANDOR's T-box language included the concept operators ~
and, all, atleast, c-atleast, atmost, disjoint, cprim and cdef plus the role operators range and rprim. ]
KANDOR's A-box was effectively a database, offering the basic A-box operations. The inferen- !
tial algorithm offered by the A-box was realization. It did not make the closed world assumption. t

Realization appears to be tractable in KANDOR.18 Unfortunately, it was later shown that com- (
plete subsumption in KANDOR is co-NP-hard [115] and, consequently, that KANDOR's classifier I
is incomplete. KANDOR did find its way into applications, most notably the ARGON system c

[116]. ARGON eases query processing into a database for casual users by allowing incremental I 1 construction of queries, guided by a taxonomy. I

.. ]
5.1.3. MANTRA ; (

f
Beginning in the late 1980's, Bittencourt began the development of the MANTRA system t

[84,85]. MANTRA combines four components: a first-order logic, a KL-ONE-like term compo- r

nent, a semantic net component with defeasible inheritance, and a production rule system. All f
features of MANTRA were chosen with two goals in mind: each should be semantically motivated I
and all algorithms involved should be decidable. The first three components form the basis of f
the knowledge representation facility upon which the production system operates. ,

To meet the decidability requirement, the first-order language (the logic box) uses a four-
valued semantics, based primarily upon [117], that was specifically chosen so that entailment (

involved no chaining (see Section 5.4.). The four values are the powerset of {true,false}, i.e., (
{true}, {false}, {true, false}, and 0. The first two values correspond to true and false, respec- r
tively. The third value corresponds to having contradictory evidence both for and against a I
given proposition, while the value 0 corresponds to having no information about a given propo-
sition. The logic box performs complete deduction with respect to its semantics and is de- t
cidable. A consequence, however, is that this non-standard semantics reduces its utility for -
some users (see the comments at the end of Section 5.4.). The term language (called the "frame

~
18No proof is offered but the tractability of realization is argued for in [65].

i
i
i
i

I" F~



..-
The KL-ONE family 161

:"~"

boJ:") includes and, or, all, exists, cprim and cdeffor concepts. Instead of roles, MANTRA's frame
boJ: introduces relations, which are n-ary relations with n > 1. It offers n-ary versions of the

d-role, or-role, domain, range, rprim and rdef operators. Subsumption is the only inferential al-
anrithm performed by the frame box, and is decidable. The semantic net language (the snet box)
~ob8Sed upon [118] and allows nodes to be connected by default or exception links and answers
lSuestiOns about subsumption between nodes. Of course, the names of terms can overlap in the
~bree boxes and thus information about terms can appear throughout the system.

Bittencourt gives compatible four-valued semantics to each of these three sub-languages. Fur-
thermore, he defines the questions that each can be asked along with what constitutes the correct
answers. He then defines the questions that can be asked from pairs of these sub-languages along
with what constitutes the correct answers. He thus has a clear, formal characterization of the

entire hybrid system, along with a working implementation.

5.1.4. CLASSIC

The most recent work in this line of development is the CLASSIC system [59,60], now being
developed at AT&T Bell Laboratories. The developers of CLASSIC include Brachman and Patel-
Schneider, two of KRYPTON's developers. Here, we find that certain traits of KRYPTON have
remained: CLASSIC was designed to have tractable subsumption but with greater expressibility.
We also find that some traits are gone: there is no physical separation of the T and A boxes. In
CLASSIC, the language for describing terms is the same as the language for describing individ-
uals. The definition versus assertion distinction remains, but it is less clear than in KRYPTON
given the lack of separate T and A boxes. The classifier only pays attention to definitional opera-
tors. The cprim operator, which some would argue carries assertional import, is considered by the
classifier. However, Brachman et al argue that cprim is entirely definitional. On the other side,
CLASSIC allows rules of the form "if an individual is of type A then it is also of type B", which
amount to sufficiency conditions (rules of this form first appeared in LOOM, Section 5.2.3., and
second in MESON, Section 5.3.2.). These rules can provide sufficient conditions for a concept.
However they are not considered by the classifier and are thus considered assertional. Overall, the
goals of CLASSIC appear to be more pragmatic than those of KRYPTON. CLASSIC's design-
ers have taken advantage of their experience regarding user needs, implementational methods,
complexity measures, and the importance of certain distinctions. The result is a tractable and

reasonably expressive KR system.
The T-box language includes the operators and, all, atleast, atmost, disjoint,19 cprim and cdef

for concepts and no operators for roles. In addition, CLASSIC has an rvm= operator where the
roles can use chain. However, all roles and role chains appearing in an rvm= must be single-valued.
Like BACK, CLASSIC allows a concept to be defined by an explicit, extensionally defined set
(using an operator called one-of). CLASSIC also allows a concept to be defined by an individual
filling a given role using an operator called fills. It also includes a concept-forming operator, test,
that takes a function as its argument to be applied as a predicate against individuals. To the
T -box, test concepts are primitive. However, the test function can be applied to individuals to
see if they instantiate the concept. This is useful for concepts whose criterion is best described
procedurally. However, it has the disadvantage that no analysis of these test functions is p~sible
for use by the classifier. Finally, as mentioned above, one can express rules of the form A ~ B
where A and B are concepts.

At the time of this writing, the authors of CLASSIC argue informally that subsumption in
CLASSIC is indeed tractable, however no proof is yet available. Interestingly, the authors are
considering expansions of the term language to include role operators such as and-role, inv, and
rdef. These are needed by certain applications and may be added even though this would most
likely preclude tractable subsumption.2o

The system performs classification, completion, coherence checking and realization. In addi-
tion, it executes rules against individuals (as appropriate) in a forward chaining manner. It also

~19Disjoint declarations in CLASSIC are actually specified in a definitional fashion, not in the assertional fashion
of K.C.

20Personal communication with R. J. Brad1man, May 1900.

.
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i
detects contradictions and allows retractions. Whenever an assertion is made, the system uses
forward reasoning to conclude all it can. If a contradiction is detected, the most recent assertion
is retracted and the user is informed. ~

5.2. Direct Descendants of KL-ONE I

Beginning with NIKL [88-91], several systems followed in the footsteps of KL-ONE. While:
respecting and partially adopting the design goals of KRYPTON, these systems were more con- ~

cerned with providing greater expressivity and less concerned with completeness and tractability f
issues. The systems we will review are NIKL, KL-TWO, KNET, KloneTalk and LOOM.

5.2.1. NIKL and KL-TWO I
r

In 1982, the developers of KL-ONE who remained at Bolt Beranek and Newman and at :

USC/Information Sciences Institute undertook a new implementation of KL-ONE that eventually
became NIKL [88-91}. The goals in developing NIKL were (1) to improve the utility of the
language while retaining many of its useful features and (2) to make it more efficient. NIKL also
provided a base for research in hybrid systems, leading to the KL- TWO system [72,73] that we
discuss below.

The design of NIKL was strongly influenced by the work that led to KRYPTON. The asser-
tional component of KL-ONE, consisting of nexuses, description wires and contexts, was discarded I
on the grounds that (1) it was both awkward and expressively weak, and (2) NIKL would address
only the definitional side of the definition/assertion separation (although, as we will see, certain
assertional constructs remained in NIKL). A separate role hierarchy was introduced, which was
the culmination of role differentiation in KL-ONE. Finally, a formal semantics was provided.
For assertions, a new and separate component would be designed, which eventually became the
component known as PENNI (again, see below).

An interesting historical note is that, initially, structural descriptions were discarded because
it was thought that their expressive power was redundant given the rvm= operator plus the
(newly introduced) notion of defined roles. Later on, around the time that a formal semantics
was adopted, it became clear that structural descriptions could not be captured using other
constructs and, eventually, they were added to NIKL. They retained the same expressive power
as in KL-ONE, which includes a fixed, and thus limited, type of quantification. Most of the KR
systems examined in this paper do not include structural descriptions.

In the end, NIKL's language offered and, all, atleast, atmost, rvm, sd, individual, disjoint, cprim
and cdeffor concepts and and-role, domain, range, inv, rprim and rdeffor roles.21 In addition, when
specifying roles within an rvm or sd, one could also use self and chain. NIKL performed classi- r

fication and completion, and it determined coherence and disjointness. All of these operations
were implemented with efficient algorithms, but none were complete.

Along with NIKL's development came the development of what became known as KL-TWO
[72,73]. In choosing an assertionallanguage, the developers decided that at least the power of
a quantifier-free propositional calculus was necessary. The choice was then made to use the
RUP system [119,120] as an A-box. RUP was a truth maintenance system (TMS) that offered
a propositional calculus with equality based on a three-valued logic (true, false and unknown)
and offered a suite of tools for dealing with contradictions and performing retraction, forward
chaining, and demon-like procedure execution. RUP was expanded to a system called PENNI
that caused information to flow between NIKL and itself. The entire system was called KL-TWO.

PENNI's responsibilities were primarily (1) to reflect terminological information in the as-
sertional component, and (2) to perform realization. For an example, consider the concept
[GARDENER] introduced earlier:

(cdef GARDENER (and PERSON (c-some Hobby GARDENING-ACTIVITY»)

21disjoint, individual and inv were ignored by the classifier and were thus more like simple markers rather
than term specification operators (although disjoint was used by the disjointness algorithm).

l.=~



~ ':-:"

The KL-ONE family 163

Regarding (1), if PENNI is told that (GARDENER g), it would then respond with "true"
hen asked the truth status of (PERSON g). Regarding (2), if instead PENNI is told that

~ERSON p), (Hobby p a) and (GARDENING-ACTIVITY a) are all true, it would then re-
ond with "true" when asked the truth status of (GARDENER p).sp While the initial motivation for KL- TWO arose from a need to expand NIKL, the designers

on realized that the A-box would receive primary use in many applications, rendering the T-box
: secondary. The hard part in designing KL-TWO was getting the TMS to work correctly with
the classifier. The TMS is designed to draw incremental inferences and to record each one. The
classifier, on the other hand, is designed to draw larger scale inferences and not to record them.
Bridging these differences so that the TMS worked correctly took considerable effort.

PENNI always made the open world assumption-that is, one could not "close" a role. This
introduces some difficulties, as shown by the following modified specification for a (totally in-
volved) gardener:

(cdef TI-GARDENER (and PERSON (all Hobby GARDENING-ACTIVITY)))

Given (PERSON p), (Hobby p a) and (GARDENING-ACTIVITY a), PENNI could not conclude
that p was a [TI-GARDENER] , because there might be other [Hobby]'s for p that were not

[GARDENING-ACTIVITY]'s. However, for roles that are single-valued, PENNI could draw the
correct conclusion. In other words, if [PERSON] included the specification (atmost 1 Hobby),
PENNI would then be able to conclude (TI-GARDENER p).

A further consideration was that of counting. As mentioned earlier, RUP (and thus PENNI)
allowed assertions of equality between individual constants, which was considered essential to
a number of applications. However, as a consequence, one could not determine that distinct
constants denoted distinct individuals unless it was asserted specifically. For example, given
(Child Joe Mary) and (Child Joe Pete), one could not determine that Joe had at least two
children unless one also knew that Pete ;C Mary. Of course, these assertions could be made,
and, in general, applications did so. To simplify such assertions, PENNI introduced a special
declaration called LPN where (LPN a) asserted that the constant a was guaranteed to denote
an individual that was distinct from that denoted by any other constant. Like all assertions in
PENNI, use of LPN was retractable.

Overall, NIKL offered a fairly wide expressive power, going beyond that of KL-ONE.
KL- TWO built upon that power and offered a fairly powerful hybrid system that could ac-
cept, manipulate and reason about assertions. Both NIKL and KL- TWO found their way into a
number of applications.

5.2.2. KNET and KloneTalk

Early in the 1980's, and prior to NIKL, a number of other KL-ONE-like systems were devel-
oped. Two of these were KNET [74-76], which was written in Prolog, and KloneTalk [70,71],
which was written in SmallTalk. Both included the basic notions from KL-ONE plus some exten-
sions. In the KNET effort at Burroughs/UNISYS and Harvard University, Freeman and Leitner
examined qua concepts and extended structural descriptions. A qua concept is a concept repre-
senting the filler of a role in a certain context. For example, a tenant is a person who fills the
renter role in a leasing-agreement. A more elaborate qua concept would show other connections,
such as tha~ each tenant has a landlord ~.ho happens to be the person who fills the lessor role in
that same leasing-agreement. Freeman and Leitner's work on structural descriptions put those
constructs on a more firm foundation (note that this work pre-dates the efforts to give semantic
accounts) and showed additional inferences that could be drawn from them. In a similar fashion,
the work on KloneTalk at Xerox PARC included a limited form of qua concept and elaborated
the types of conclusions one could reach regarding structural descriptions and role value maps
(again, this was done before formal semantic accounts were common).

A simple version of qua concepts found its way indirectly into NIKL-simple qua concepts
were expressible using atleast, and-role, inv and range. For example, tenant could be described
with the following:

(cdef TENANT (atleast 1 (and-role (inv Renter) (range LEASING-AGREEMENT))))

~-
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Regarding (1), if PENNI is told that (GARDENER g), it would then respond with "true"
h n asked the truth status of (PERSON g). Regarding (2), if instead PENNI is told that

(P~RSON p), (Hobby p a) and (GARDENING-ACTIVITY a) are all true, it would then re-
ond with "true" when asked the truth status of (GARDENER p).

sp While the initial motivation for KL- TWO arose from a need to expand NIKL, the designers

n realized that the A-box would receive primary use in many applications, rendering the T-box
:osecondary. The hard part in designing KL- TWO was getting the TMS to work correctly with
the classifier. The TMS is designed to draw incremental inferences and to record each one. The
classifier, on the other hand, is designed to draw larger scale inferences and not to record them.
Bridging these differences so that the TMS worked correctly took considerable effort.

PENNI always made the open world assumption-that is, one could not "close" a role. This
introduces some difficulties, as shown by the following modified specification for a (totally in-

volved) gardener:

(cdef TI-GARDENER (and PERSON (all Hobby GARDENING-ACTIVITY)))

Given (PERSON p), (Hobby p a) and (GARDENING-ACTIVITY a), PENNI could not conclude
that p was a [TI-GARDENER] , because there might be other [Hobby]'s for p that were not
[GARDENING-ACTIVITY]'s. However, for roles that are single-valued, PENNI could draw the
correct conclusion. In other words, if [PERSON] included the specification (atmost 1 Hobby),
PENNI would then be able to conclude (TI-GARDENER p).

A further consideration was that of counting. As mentioned earlier, RUP (and thus PENNI)
allowed assertions of equality between individual constants, which was considered essential to
a number of applications. However, as a consequence, one could not determine that distinct
constants denoted distinct individuals unless it was asserted specifically. For example, given
(Child Joe Mary) and (Child Joe Pete), one could not determine that Joe had at least two
children unless one also knew that Pete # Mary. Of course, these assertions could be made,
and, in general, applications did so. To simplify such assertions, PENNI introduced a special
declaration called LPN where (LPN a) asserted that the constant a was guaranteed to denote
an individual that was distinct from that denoted by any other constant. Like all assertions in
PENNI, use of LPN was retractable.

Overall, NIKL offered a fairly wide expressive power, going beyond that of KL-ONE.
KL-TWO built upon that power and offered a fairly powerful hybrid system that could ac-
cept, manipulate and reason about assertions. Both NIKL and KL- TWO found their way into a :
number of applications. 1,

5.2.2. KNET and KloneTalk ~

Early in the 1980's, and prior to NIKL, a number of other KL-ONE-like systems were devel- !i
oped. Two of these were KNET [74-76], which was written in Prolog, and KloneTalk [70,71], ,
which was written in SmallTalk. Both included the basic notions from KL-ONE plus some exten- I
sions. In the KNET effort at BurroughsjUNISYS and Harvard University, Freeman and Leitner ~

examined qua concepts and extended structural descriptions. A qua concept is a concept repre- .J
senting the filler of a role in a certain context. For example, a tenant is a person who fills the
renter role in a leasing-agreement. A more elaborate qua concept would show other connections,
such as tha~ each tenant has a landlord ~.ho happens to be the person who fills the lessor role in .~

that same leasing-agreement. Freeman and Leitner's work on structural descriptions put those Ii
,

constructs on a more firm foundation (note that this work pre-dates the efforts to give semantic 'J

accounts) and showed additional inferences that could be drawn from them. In a similar fashion, j
the work on KloneTalk at Xerox PARC included a limited form of qua concept and elaborated ';

Ithe types of conclusions one could reach regarding structural descriptions and role value maps "

(again, this was done before formal semantic accounts were common).
A simple version of qua concepts found its way indirectly into NIKL-simple qua concepts

were expressible using atleast, and-role, inv and range. For example, tenant could be described
with the following: ,

(cdef TENANT (atleast 1 (and-role (inv Renter) (range LEASING-AGREEMENT))))
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KloneTalk introduced inheritance along the rvm chain in its completion algorithm and strength-

ened the inferences that could be drawn about structural descriptions and role value maps. These
techniques were subsequently incorporated into NIKL's completion algorithm and many subse-

quent systems.

5.2.3. LOOM r

,
LOOM [16,82,121] is the successor to NIKL and is being developed at USC/ISI. 100M's goal

~ is to provide a near-total representational and reasoning environment in which users can express
, and program nearly all they need for their applications.

(",,'.¥~/,':' 100M's T-box language is the m~t expansive of all the systems we will survey. It includes all
, of K-£ except sd, or-role, not-role and disjoint-role. In addition, it allows representation of finitely

.,' enumerated sets, both ordered and unordered, as concepts. It allows representation of numeric

intervals, including the union of multiple intervals, as concepts. Finally, it allows the representa-
tion of rules for classifying instances of one concept under another, similar to those we described I
earlier for CLASSIC. (As we mentioned before, the CONSUL effort pioneered the development

Iof such rules, and LOOM was the first terminological KR system to incorporate such rules as
part of the KR system.) The A-box language for LOOM is capable of recording information
equivalent to a standard data base system-that is information equivalent to unnegated literals
in the first order predicate calculus. Its query language, on the other hand, supports queries
with the expressive power of the full first order predicate calculus-i.e., including conjunction,
disjunction, negation, and quantification.

100M's services include subsumption, realization, truth maintenance (for both the T and
A boxes), default reasoning, production rules, pattern-driven procedures, a pattern classifier
(for aiding conflict resolution), and automatic detection of inconsistencies. The classifier has
some ability to classify first-order expressions consisting of conjunctions of literals with variables.
Moreover, LOOM attempts to integrate at least four types of programming common to AI: object-
oriented programming (message passing), data-driven programming (production rules), problem I
solving (as in SOAR [122]), and constraint programming. LOOM thus occupies the opposite end
of the spectrum from systems with small languages and limited services.

The reasons for 100M's approach are several and are articulated in [16]. In summary,
100M's designers note that the inferential operations needed by many applications are in-
tractable in general. The KR designer must thus choose whether or not these needs are expressed

.';;'c~ inside or outside of the representation system. Systems such as KRYPTON place them outside

the KR "black box," leaving a clean and predictable KR system but requiring the user to provide
what's missing. LOOM provides facilities to express such needs within the KR system, where the

;:',-' resulting difficulties are dealt with by the application programmer. The advantage from 100M's
:::', perspective is that the user is offered a consistent representation scheme-there is no need to

,'::,::':: construct ad hoc supplements to the KR system.
..'.:..~ The final story on LOOM is not available as the system is still under development. However, 1

it is already in use by several applications. r

" 5.3. Other KL-ONE-/ike Systems

While not following directly in the paths of either KRYPTON nor KL-ONE, a number of
. systems have been developed that were strongly influenced by both. We now examine several of

these systems, namely, BACK, MESON and SPHINX.

5.3.1. BACK

A ~eparat~ effort begun in the mid-1980's was the development of BACK [54-57] at the
Techmcal University of Berlin. The principal design motivation behind BACK was to construct
a tightly-coupled hybrid system with balanced expressiveness. The notions of tightly coupled and
bala.nced expressiveness are in contrast to the design of KL- TWO, which we discussed earlier. !

Basically, the BACK designers tried to offer complementary expressiveness in the T and A boxes.

-
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Tractable and complete subsumption was too restrictive, so they did not require it. However,

they wanted terminological reasoning to be manageable, so they did not offer wide expressibility.

BACK's T-box language included and, all, atleast, atmost, rvm=, individual, disjoint, cprim :

and cdef for concepts and and-role, domain, range, rprim and rdef for roles. BACK also included 1

a method for introducing a term that was defined by an explicit, extensionally defined set. Sub- ~~

sumption in BACK is intractable [115], so a tractable but incomplete algorithm was included. il~

Disjointness was computed as well. ~K

BACK's A-box language allowed for the basic database operations. However, a "value" for :;

a role filler could be a single constant,. a s.et of co~st~nts, or a disjunction of.se.ts of constants. :~

Furthermore, a value could be a cardlDallty restrIctIon on the number of dlStmct role fillers. '(~

This number restriction, expressed with card(min, flax), identified the minimum and maximum ..

~'
number of fillers and thus allowed a local declaration of the closed world assumption, which BACK .
took ~dvantage ~f. A~ a res~lt, the A-box allo~e~ for local forms of incomplet~ information plus 1';
a linuted quantIficatIon USlDg card. The main mferences that the A-box trIed to draw were i'
realization, consistency and whether one A-box expression was more general than another. ~jJ The balance in terms of expressiveness was achieved in several ways. Terms in the T-box '

could be used to assert information about individuals in the A-box. Moreover, the A-box utilized
the restrictions expressed about such terms in the T-box (of course, all KL-ONE-like hybrid 'i!
systeIDS did this as well). Beyond that, distinct constants in BACK's A-box are assumed to ~!I~

denote distinct objects so that the number of role fillers could be counted and thus compared 'II
against number restrictions (KRYPTON was the first to do this). Also, with the card operator, ~~

it is possible to close a role for a given individual, i.e., to assert that the system knows all there ~
~s to know about it. ~ver~ll, BACK was successful in meeting its stated goals and found its way

i !~i mto a number of appl1catlons (e.g., [123]). ~

!i

5.3.2. MESON ~~

i,(j!

The MESON system [86,87], developed at Philips in Hamburg, Germany, beginning in the :~
mid-1980's, aimed at a unified view of knowledge- and data-base management systems. Its goal
was to combine the ability of database systems to handle large numbers of facts with that of
terminological knowledge base systems to handle and reason about complex types. The language
for describing terms was compact. The language for making assertions mainly allowed simple
database operations.

MESON's term language included and, all, atleast, atmost, disjoint, cprim and cdef for con-
cepts and no operators for roles. It also offered an operator for specifying implication rules
similar to that of LOOM's, namely, A ~ B where A and B are concepts. The A-box offered "'l
several database-like assertion and retrieval operations, which we will not examine here. In tl
[86], MESON's developers present their system in terms of a formal data model in the spirit of !
[124]. Finally, MESON has been used in several applications, most notably for a co~figuration ~ ,i application [87].

r'"

5.3.3. SPHINX 'II

"

The SPHINX system [94-96] was modeled after KL- TWO but with an assertional compo- ;.

nent based on Horn clauses as opposed to KL- TWO's propositional logic. SPHINX is basically ~
a Prolog-based theorem prover for Horn clauses that is augmented with a classification-based 4
reasoner. '1

The term language includes and, all, some, c-some, cprim and cdeffor concepts and range, rprim !~~

and rdef for roles. It also allows a concept to be partitioned into a set of other concepts, thus ,{
c~~~ining the or and disjoint operators. It offers algorithms to determine subsumption and ;,1

dlSjOmtness, of which the subsumption algorithm is incomplete (the problem turns out to be .. 1
NP-hard for SPHINX's term language). {'Ii;'

The language for making assertions is that of Horn clauses where the terms in the T-box are j\i

available for use. The language for queries is an extended language that includes certain logical

connectives and quantifiers. The system takes a query and tries to prove it true, as in Prolog,
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using all information in both the T and A boxes. The T-box information is represented in the
A-box as deduction rules, which are generated automatically by the T-box. SPHINX provides
a simple truth-maintenance system and allows retraction of simple assertions. It does not have
explicit negation, but uses negation-as-failure instead, again as in Prolog. It thus makes a closed
world assumption.

5.3.4. Other Systems

In addition to the systems discussed above, there are many other systems that have pursued
variations on the KL-ONE themes, some of them directly influenced by KL-ONE, and some
of them independently developing similar or related themes. In the next few paragraphs we

~;.i§;,.. will describe a sa~pling of such systems and related work to give some idea of the diversity :
Wf;~,,:v of approaches and issues. It turns out that there are a great many more works than we could :
"... possibly include. I

Systems Oriented To~ard Graphical Interfaces

KL-CONC and KL-MAGMA [66-69], developed by Cappelli and Moretti and others at CNR
in Pisa, are implementations of KL-ONE and Brachman's SI-NETS. These systems focus on
mechanisms for user interaction with the knowledge bas~.g., through Macintosh windows.
KL-MAGMA runs on a variety of machines, including Macintosh, IBM-PC, VAX and SUN, and
IBM mainframes. I-

SB-ONE [92,93] concentrates on the issues of providing an integrated environment for a user
to interact with the knowledge representation structures. It was developed in the context of
the XTRA natural language system, and its goals include the extension of KL-ONE style rep-
resentations to handle sets and to support their use in a natural language processing [93]. Its
developers stress the importance of the graphical interface for showing relationships between roles
and concepts, not just displaying separate role and concept hierarchies.

A direct descendant of NIKL was KREME [77], developed at BBN in the late 1980's. KREME
began as a copy of NIKL with its focus placed on the user interface. The result was a system
that made it much easier to enter and edit NIKL taxonomies. Eventually, KREME added a
few constructs of its own (e.g., a simple mechanism for supplying default values), but its main
contribution was its very usable interface.

Database-Oriented Systems

K-REP [78] is a system developed at IBM in Yorktown Heights, New York, for database r

applications. Unlike most KR research, it has addressed database issues such as sharing and t
persistent storage objects. Its central application is a financial marketing expert system for f
assisting the design of financial solutions for the acquisition of large computer systems. I

CANDIDE [58] is a database system that provides a T-box-like language for describing
database types and uses classification as the basis for query processing.

Alternative Semantic Accounts

DRL [61-64] is a knowledge representation language conceived by Guarino as a revisitation
of hy.brid s:rstems like KRYPTO:..- ~.ithin the framework of many-sorted logics. He argues that i
terminological knowledge needs a true intensional semantics (free of existential commitments), 'I which is not the case for current many-sorted systems.

Another type of alternative semantic account is that of Patel-Schneider's which we have,
already discussed in Section 5.1.3. and will discuss further in 5.4.

Systems Addressing Related Issues t

In addition to systems that are directly descended from KL-ONE or derived from it, there are
a number of other systen1S that have developed similar or related themes. For example, OMEGA

.
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I [125,126] is a descripti~n-oriented logic original~y developed at MIT and conti~ued under the
: European ESPRIT project that has been used lD the context of office automation. It offers a

..::ti¥~ higher order logi.c alo~g ,,:ith a formal ~count ~f inheritanc~ and attri~ut.ions .and h~ a sou.nd
I and complete axIomatlZatlon. TaxonomIc reasonmg on a lattice of descrIptions 18 combmed with

deduction strategies defined at the metalevel.
"'c"', CAKE[104-106] is a many layered hybrid representation system developed at MIT. It has

formed the backbone of the Programmer's Apprentice project [127,128], which studies automatic
programming. CAKE performs quick and shallow deductions automatically, and supports forward
and backward chaining. At its base is a truth-maintenance system with equality called BREAD,
which is built on RUP[119,120]. On top of BREAD is a layer, called FRAPPE, that implements a
typed logic with special purpose procedures for sets, partial functions and frames, and for various
algebraic properties of operators (e.g., commutativity and associativity). On the top layer rests

,.' the domain specific implementation of the Plan Calculus, used for reasoning about programs. ~
David McAllester, Bob Givan and T. Fatima, also at MIT, have developed a taxonomic syntax ~

for first order inference [129] that uses quantifier-free taxonomic literals that they prove are more
expressive than literals of first order logic and have a polynomial time decision procedure for

satisfiabili ty.
Hassan Alt-Kaci [130] working at the University of Pennsylvania developed a taxonomic sys-

tem that is intended to be a structured type theory for a programming language--specifically,
for a logic programming language whose computations are defined by "type checking." His work
is well grounded in algebra and lattice theory and has been pursued and extended at a number

of subsequent institutions [131,132].
L-LILOG [81], developed at IBM in Stuttgart, Germany, has produced a series of results

dealing with reasoning using attributive concept descriptions and with feature logics and unifica-
tion. With its primary application in natural language processing, L-LILOG integrates frame-like
feature-value descriptions used in computational linguistics into an order-sorted predicate logic

framework.

5.4. The Complexity of Subsumption

In [98], Brachman and Levesque raised the issue of the complexity ofsubsumption and pointed
out an unexpected "computational cliff." Subsumption in the language they called F.c-, con-
sisting of the concept operators and, all and some and no role operators, took polynomial time
with respect to the size of the terms in the worst case. Su bsumption in F.c- was thus tractable.
However, by adding the role operator restr (which they called VRdiff} , subsumption became
co-NP-hard and thus intractable. Their conclusion was that very subtle changes in the term
language could lead to dramatic differences in the complexity of subsumption.

This effort launched a series of studies into various term languages and the resulting com-
plexity of subsumption and coherence. Table 2 presents the highlights of these studies.22 As can
be seen, there are several of these "cliffs." For example, subsumption in MESON, with concept
operators and, all, atleast and atmost, has polynomial worst case behavior. By changing atleast
to c-atleast, one gets KANDOR, in which subsumption is co-NP-hard.

Another important and surprising "cliff" is when subsumption moves from being a decidable
problem to an undecidable one. Patel-Schneider showed that subsumption in NIKL is undecid-
able [133]. Schmidt-SchauB introduced a minimal language A.cn, which includes only the concept
operators and, all and rvm= with no role operators, and he showed that subsumption in AI:.'R: is
still undecidable [134]! Obviously, AI:.'R is a very small subset of KL-ONE and NIKL. Clearly
the rvm= operator, almost by itself, introduces considerable complexity. Schmidt-SchauB also
shows, however, that if all roles are functional (i.e., single valued), then subsumption becomes
tractable [134].23 ~;;

"J
'""

- 22Some of the infonnation i~ Table 2 was ~at~ered from a similar ta,ble distributed by Bernhard Nebel at the ~I

W~fkshop on Term Subswnptlon Languages In Knowledge Representation, Jackson, NH, October, 1989. ;"'j
We note that some of these results came out of research that connects wlification grammars with tenninological '!

KR systems (e.g., [135,136]). In unification grammar terminology, rv..- is called the agreement operator and "

functional roles are called feature.. ;~i
1

. ,'~
- ::~

- ;'Z



168 W.A. WOODS, J.G. SCHMOLZE r
I

Table 2. SummArY of worst case complexity ~ult8.

I Nalnl' Collcept Ops. Role Ops. Subsumption Coherence I
L~- and all some polynomial (A) all concepts coherent(B)

:FJ:. and: all: some restr co-NP-ha.rd (A) a.ll concepts cohercnt(B)
KRYPTON and, all chain polynomial (C) all concepts coherent

"MESON and, all, atleast, atmost polynomial
KANDOR and, all, c-atleast, co-NP-ha.rd CD) I

atmost I
IlACK and, all, atleast, atmost and-role co-NP-hard (D) ,

AL and, simple-not, all, linea.r (B)
some

ALE and, simple-not, all, NP-complete (E) co-NP-hard (E)
c-some

Am and, or, simple-not, all, co-NP-hard (B) NP-complete (B) :.
some

AJ:.C and, or, not, all, c-some P-SPACE-complete(B) P-SPACE-complete(B)
AJ:.C wi and, or, not, all, c-some, P-SPACE-complete(F) P-SPACE-comPlete(F)

~number constr. atleast, atmost

AJ:.C wi and, or, not, all, c-some and-role P-SPACE-complete(F) P-SPACE-complete(F)

role bier.
ALC wi both and, or, not, all, c-some, and-role decidable (F) decidable (F) ,
number constr. atleast, atmost :
& role bier. r
ALCA and, or, not, all, c-some, undecidable (G) undecidable (G)

rvm=
ALCA wi only and, or, not, all, c-some, co-NP-complete (H) NP-complete (H) f
functional roles f-rvm= r
ALCA where and, or, not, all, c-some, decidable (F) i'
rvm= used f-rvm=
only wi !
funclionaJ roles f
AJ:.'R. and, all, rvm= undecidable (G) i
NIKL and, all, atleast, atmost, and-role, undecidable (G,I)

rvm, sd, disjoint domain
range, inv

The above complexity results a.re worst case in time with respect to the size of the terms being compared.
AU results assume there is no sepa.rate terminology (i.e., all assume that cprim, cdef, rprim and rdef are not
allowed). A blank box means that the complexily is unknown. A missing citation means that the result t

is informal. simple-not is a restricted not operator that ca.n apply only to atomic concepts. f-rvm= i& a
restricted rvm= operator that can apply only to functional roles (also called "featuresD). Citalions for the
'lhove results follow. ,

A: [98] D: [115J G: [134J !
B: [103] E: [137] H: (135,139]
c: [g.:] F: (138] I: (133] k

There is another surprising source of complexity. All of the foregoing results do not incorporate'
an actua] terminology. In other words, they assume that all names of concepts or roles that appear
within the terms are primitive and atomic (i.e., do not have definitions). When one incorporates a
terminology (in our case, using cprim, cdef, rprim and/or rdef), then another source of complexity
arises. Nebel has shown that the problem of classification in such cases is co-NP-complete [140].
Thus, while subsumption between two fully expanded terms in, say, KRYPTON is polynomial, t
the overall subsumption complexity, if it includes expanding the terminological definitions, is co- ,:
NP-complete. Moreover, he states that we cannot escape this worst-case complexity even if we
assume that all subsumption relations between previously defined terms are already known and t
the subsumption algorithm takes advantage of that information. Thus, even in the simplest of T- I

box languages, worst-case subsumption is intractable if term definitions are allowed. Fortunately, t
as Nebel points out, the performance of classifiers on actual terminologies found in applications I

is frequently, if not consistently, tractable. Apparently, the cases that lead to combinatorial ~

explosions either do not arise or arise very infrequently. Thus, the practical effect of this result r
may not be overly negative. l
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, We conclude this section by examining an alternative approach to studying complexity.
In [141], Patel-Schneider offers a method to describe the inferences drawn by classifiers simi-
lar to that of NIKL by introducing an alternative style of semantics (this was briefly discussed in

, Section 5.1.3., where we examined MANTRA). The NIKL classifier is incomplete with respect to :
the semantics of NIKL. Several unsuccessful efforts were made by NIKL's developers to desc~ibe i
succinctly the class of subsumptions actually discovered by NIKL's classifier. Patel-Schneider ;1
uccessfully produced an approximation to such a description using the following approach. He :!'

~ntroduced a language similar to that of NIKL and provided an alternative semantics that was j! ,
;'~ weak in the sense that it was capable of supporting far fewer inferences than would be supported ii;

"" using the standard account. In particular, this alternative account allows no chaining of results- ~
e,g., it does not support modus ponens, the rule of classical logic that combines an if-then rule I":
with the truth of its antecedent to conclude the consequent. The semantics he provided was based ;'

on a four-valued relevance logic that yields a weak entailment relationship. Patel-Schneider argues ;..that the subsumptions supported by his semantics is very close to the set of subsumptions that ! I

the NIKL classifier actually determines. Thus, this account closely approximates the sought-after
account, although at the cost of introducing a nontraditional semantic account.

5.5. Critiques and Dissenting Opinions

While KL-ONE and its successors have been used for a variety of applications and have con- j J
tributed many useful capabilities, not all users have been completely satisfied. (The general
tenor of the objections, however, are in the direction of "we want more" rather than "we don't
want this.") An extensive critique of NIKL is offered by Haimowitz [142], much of which applies
to nearly all the systems reviewed in this paper. Haimowitz was part of the medical diagn~is
research group at Massachusetts Institute of Technology (MIT) that developed, among other sys-
tems, ABEL, a medical diagnostic program for acid-base and electrolyte disorders. That group
used NIKL for representing part of their medical knowledge base and found that the basic tax-
onomic functionality was very useful for certain aspects of medical knowledge, However, NIKL
was not able to make the desired inferences regarding other aspects, such as with regards to tran-
sitive relations (e.g., part-whole), symmetric relations (e.g., connected-to), causality, intervals
and sequences. Also, NIKL did not provide a way of specifying sufficient conditions for recogni-
tion, since the specification of a term in NIKL must be either necessary or both necessary and
sufficient. Overall, the comments in [142] and another critique by Smoliar and Swartout [143],
which addresses the limitations of the NIKL classifier in the context of the Explainable Expert .',
System (EES) project [9,10], provide a good review of NIKL's uses and limitations, and they
identify topics for future research. An analysis of these comments is made in [91]. Woods [28]

.,!~"~ offers somewhat different criticisms and proposes methods to overcome some of the deficiencies.
:I~' Some researchers take issue with some of the design goals of Brachman and Levesque [98,113]
. that have affected many the works reviewed in this section. Most vocal are Doyle and Patil [144], ~~.

who argue against limiting expressiveness in order to guarantee complete and tractable inferential
algorithms. The net effect, they claim, is a language so severely limited that it is no longer of ,

general use, even though it may find specific u~ in some applications. They also argue against the "!'
restriction that the classifier operate only with respect to purely definitional information. As an
alternative, they urge that KR languages off~r fully expressive languages and that classification
take contingent information into account. Th~y argue further that completeness and tractability
are poor measures of a KR system's utility, and that broader notions of utility and rationality as
found in decision theory should be used inst~ad. A final suggestion is that a KR system should
offer inference tools along with ways to manage them, should support approximate (and possibly
unsound) forms of recognition, and should allow classification of definitions involving defaults. i~

i't
,...1,

"II
",

6. SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS ;j"
':
,

'Ii

KL-ONE marked a transition from knowledge representation systems that were essentially ':iV
ad hoc data structures for managing certain kinds of computation, to systems with an external Ii!

I;'
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semantic criterion to which both the representation of knowledge and the algorithms that operate
on that knowledge should both be faithful. As such, it generated tremeJldous interest, both in the
formal community and in a large community of potential users. As in most pioneering systems,
the original KL-ONE system did not fully achieve all of its goals. However, it has pointed the. way
to an active research area that is still making advances and has a great deal of future proffilse.

An important goal of KL-ONE was to make useful KR services available to a wide audience.
Thus, expressive power in early KL-ONE increased as the system developed. This expansion ~as
limited, however, by a number of factors so that the resulting language remained less expressIve
in most respects than, say, first-order predicate calculus. Some of the limitations came from
the intuitions of the developers along the lines of "what should and should not be included
in a terminological language."24 Default information, for example, was expressly prohibited
from KL-ONE since defaults are not necessary conditions. Other limitations were motivated
by concerns about the system's ability to draw conclusions for unrestricted kinds of inference.
A direct representation of sequences, for example, was held off, in part, because the KL-ONE
developers were unclear about how well and how easily the classifier could determine subsumption
using them. The 9verall direction, however, was toward providing more, not less, expressive

power.
As we have seen, this goal of increasing expressiveness took several turns in subsequent re-

search, resulting in substantial decreases in expressive power in many systems. For some users,
these simpler systems that offered less expressive power were exactly what was needed. For a
number of other users, however, even the more expressive systems were inadequate (e.g., [16,102]).

One of the areas where KL-ONE both succeeded and failed is in the distinction between defi-
nitional and assertional information. As we have seen, this distinction has become a fundamental
principle in much of the research that has followed KL-ONE, especially in KRYPTON and its
successors. However, in much of this research, a number of distinctions related to this one, but
not quite the same, have become aligned as if they were the same distinction. For example,
conceptual structure is often equated with definition; definition is equated with necessary and
sufficient conditions; and necessary conditions that are not sufficient are equated with assertional
information. Similarly, structured subsumption is equated with terminological knowledge; and
terminological knowledge is equated with efficient taxonomic operations. One result of all this
is that users of these systems often cannot understand some of the subtle distinctions made by
the developers. As MacGregor puts it, "Our experience with NIKL and LOOM suggests that
drawing I'uch a distinction [between terminological and assertional knowledge] confuses (all but
the most sophisticated) users as often as it helps them" [16].

This situation is exacerbated by the fact that these systems (especially the more limited ones)
often don't provide some of the capabilities that some users need. When this happens, users get
creative and the intended semantics of the notation is easily cast aside for an operational semantics
determined by what the algorithnlS do (to the extent that they can be understood). In many
cases, users have creatively used these systems to achieve behavior that was not intended by
the designers. For example, the USC/ISI CONSUL group ignored the provisions in KL-ONE
for individual concepts because they wanted to further specialize individual descriptions, an
operation that KL-ONE did not permit; they used generic descriptions instead. In a similar way,
many users have wanted to use the classification operation to take into account information that
is assertional rather than ternunological or definitional. While a few systems permit this, many
of the others can be manipulalt'J to achieve that effect by ignoring the intended semantics of the
notations. There are some lessons here to be digested. Woods [28] proposes a framework that
may provide a solution. For exanlple, he points out that assertional and definitional functionality
are not necessarily mutually exclusive alld that some notational devices may simultaneously have
both aspects.

At this point in time, the surfeit of intractability results seems to have reached its logical end
with the conclusion that practically everything of any use is intractable (in the worst case). The
research mood is shifting to favor incomplete systems with increased expressivity and tractable

24 We are not being temporalJy accurate in our use of tenninology here, since at the time of KL-ONE's devel-

opment, the word "tenninologica.!" was not in common use. However, its common usage nowadays provides A
convenient hook to identify the KL-ONE line of research.
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algorithms. However, there is a need for new, more realistic goals to replace deductive com-
leteness and worst case tractability. We need new ways to characterize the class of inferences ,

ihat a taxonomic network can perform and to more realistically characterize the time required to '.1
perform them. For example, Woods [28] proposes a definition of "intensional" subsumption, that ',;
involves an almost psychological distinction between the kinds of subsumption that people (and J;'

Systems) should be able to do rapidly and those that require more complex deduction. Woods I;,
argues that complexity with respect to knowledge base size is a better measure of utility than 1j~

complexity with respect to the size of individual conceptual descriptions, and he shows that a ~~

version of intensional subsumption has a typical case complexity tha,t is sublinear in the size of ",Ii

the knowledge base. ;1

1:, While redirecting the focus of formal analysis of taxonomic systems is a useful direction for Ii..
C1 Ifurther research, there are other research directions in need of attention as well. For example, ,;;1

we mentioned earlier the relative neglect of issues such as "individuals" that have properties but 1i

either do not exist or are not distinct from other individuals known to the system. Such things I!! do not fit well in a first-order semantics, yet almost all formal work in this area has been done in 1;!

the first-order context. More work devoted to understanding intensional entities that cannot be
adequately characterized with a first-order semantics is definitely in order. Such structures are
essential in ?aturallanguage applications involving belief modeling (e.g., [145]) and intentional
plan recognition (e.g., [146]). ;.il'

Fi.Dally, we. need to devote more attenti~n to discovering efficient ~lg~rithms for useful tax- ,,'
ononuc operations and other related operations. For most purposes, It IS not enough to know 11:;;
that an algorithm is polynomial or exponential time. We need to know how rapidly it can be :~~

done, and if there are intractable worst cases, we need to know efficient algorithms for useful sub- i~~

classes of the problem. One obstacle to making advances in this area is the difficulty of gaining ;('
~"a sufficiently crisp statement of the problems such systems are expected to solve so that formal ;:]

attention can be devoted to them. Woods [28] is one attempt to provide such a statement. Doyle ,;,;'

and Patil [102] provide a substantial list of things that users would like a knowledge represent a- ...,*
tion language to do. MacGregor [16] provides an implementor's perspective on what a knowledge ;"\,
representation should provide. There is much food for thought here, and a great deal of room for
further progress.

REFERENCES c

,"
..

l'
I. W.A. Woods, What's in a link? Foundations for semantic networks. In Repre.entation and Under.tanding: 1

Studie. in Cognitive Science, (D.G. Bobrow and A. Collins, Eds.), pp. 35-82, Academic Press, New York, :',t
(1975). Reprinted in Reading. in Knowledge Repre.entation, (Edited by R. Braclunan and H. Lev5que) , :~
Morgan-Kaufman, San Mateo, CA, 1985, and in Reading. in Cognitive Science, (Edited by A. Collins and
E.E. Smith), Morgan-Kaufman, San Mateo, CA, (1988).

2. R.J. BrAChm!!o!l, A structural paradigm for repreeenting knowledge, Ph.D. Th5ia, Harvard Univ., (1917), also,
BBN Report No. 3605, Bolt Beranek and Newman Inc., (May, 1978).

3. W.A. Woods and R.J. Braclunan, Research in natural language understanding, Quarterly Technical Progress
Report No.1: 1 Sep 77 - 30 Nov 77, BBN Report No. 3742, Bolt Beranek and Newman Inc., (December,

1977). !'
4. R.J. Braclunan and J.G. Schmolze, An overview of the KL-ONE knowledge representation system, Cognitive "

Science 9(2), 171-216, (April-June, 1985). ;.
S. W. Mark, Representation and inference in the oonaul .y.tem, In Proceeding. of the Seventh International

Joint Conference on Artificial Intelligence (IJCAI.Sl), Vancouver, BC, (August, 1981).
6. W. Mark, Natural-language help in the consul .y.tem, In AFIPS Conference Proceeding., (H.L. Morgan,

Editor), 475-479, National Computer Conference, AFIPS Press, (June, 1982).
7. W. Mark, Use of database organization in the consul system, In Proceeding. of the Work.hop on Data

A6.tractlon, Data6a.se., and Conceptual Modellin" Joint SIGART /SIGPLAN/SIGMOD (ACM) Publication,
(February, 1981).

8. D. Wilczynskj, Knowledge acquisition in the consul system, In Proceedin,. of the Seventh International Joint

Conference on Artificial Intelligence (JJCAI.Sl), (1981).
9. R. N.~5, W.R. Swartout and J.D. Moore, Enhanced maintenance and explanation of expert systems through

explicIt models of their development, IEEE Tran.action. on Software Engineering SE-ll(11), 1337-1351,
(November, 1985). (

CAIfI/A 23: 2-5-L 111'
"

,



112 W.A. WOODS, J.G. SCHMOLZE

10. W.R. Swartout and S.W. SmoliaE, On making expert systema more like experts, Ezpert S,.tem.4(3), 196-207,

(August, 1981).
11. J. Bateman, R. Kasper, J. Schutz and E. Steiner, A new view of the process of tranal&tion, In Proceeding.

oj EA CL-89, the 4th ConJerence oj the European Chapter oj the A..ociation Jor Comp.tational Ling.i.tic.,

Manooester, England, (June, 1989).
12. R. Kasper, An experimental p&r8er for systemic gr&mm&r8, In Proceeding. oj Coling-88, the 1 fth International

ConJerence on Computational Lingui.tic., Budapest, Hungary, (August, 1988).
13. R. Kasper, Unification and classification: An experiment in information-based parsing, In Proceeding. oj the

International Work.hop on Par.ing Technologie., Pittsburgh, PA, (August, 1989).
14. Y. Arens, L. Miller, S.C. Shapiro and N.K. Sondheimer, Automatic construction of user-interface displays,

In Proceeding. oj the Seventh National ConJerence on Artificial Intelligence (AAAI-88), 808-813, St. Paul,

Minn., (August, 1988).
15. J.G. Schmolze and R.J. Br&chman, Proceedings of the 1981 KL-ONE workshop, Technical Report 4842, Bolt

Beranek and Newman Inc., (June 1982). Also appe&r8 as Fairchild Technical Report No. 618, (May, 1982).

16. R. MacGregor, The evolving technology of classification-based knowledge representation systema, In Prin-
ciple. oj .emantic network.: Ezploration. in the repre.entation oj knowledge, (J. Sow&, Editor), Morgan-
Kaufman, San Mateo, CA, (1991).

11. R.J. BrArhmA!!, What IS-A is and isn't: an &D&lysi8 of taxonomic links in semantic networks, IEEE Comp.ter

16(10), 30-36, (October, 1983).
18. F&hlm&n, NETL: A Sy.tem For Repre.enting and U.ing Real-World Knowledge, The M.LT. Press, (1919).

19. W.A. Woods, Don't blame the tool, Computational Intelligence 3(3), 228-231, (August, 1981).

20. W.A. Woods, bnportant issues in knowledge representation, Proceeding. oj the IEEE 14(10), (October, 1986).

21. W.A. Woods, Parallel algorithms for real time knowledge based systems, In Re.earch in Natural Lang.age
Under.tanding: Quarterly Progre.. Report No.6, December 1, 1978-February 1.8, 1979, (Edited by W.A.
Woods), Teclmical Report 4181, (April, 1919).

22. W.A. Woods, The JARGON language, In Theoretical Studie. in Natural Language Under.tanding, Ann.al
Report, May 1, 1978-ApriI30, 1979, (Edited by W.A. Woods), BBN Report 4332, Cambridge, MA, (April,

1919).
23. R.J. Br&chman, R.J. Bobrow, P.R. Cohen, J.W. Klovstad, B.L. Webber and W.A. Woods, Researoo in natural

language understanding, Annual Report (Sept. 1, 1978-Aug. 31,1919), Technical Report 4214, Bolt Beranek
and Newman Inc., Cambridge, MA, (1919).

24. T. Lipkis and W. Mark, Consul Note 5, The consul classifier, Technical report, USC/lnfonnation Sciences
Institute, Marina del Rey, CA, (1981).

25. T.A. Lipkis, A KL-ONE classifier, In Proceeding. oj the 1981 KL-ONE Work.hop, (Edited by J.G. Schmolze
and R.J. BrArhmAn), pp. 128-145, Bolt Beranek and Newman Inc. Report No. 4842, (June, 1982).

26. J.G. Schmolze and T .A. Lipkis, Classification in the KL-ONE knowledge representation system, In Proceeding.
oj the Eighth International Joint ConJerence on Artificial Intelligence (IJCAI-83), Karl8n1he, West Gennany,
(August, 1983).

21. R.J. Braclunan, I lied about the trees, The AI Magazine VI(3), 80-93, (Fall, 1985).

28. W.A. Woods, Understanding subsumption and taxonomy: A framework for progress, In Principle. oj Seman-
tic Network.: Erploration. in the Repre.entation oj Knowledge, (John Sow&, Editor), Morgan-Kaufmann,
San Mateo, CA, (1991).

29. R.J. Braclunan, On the epistemological status of semantic networks, A..ociative Network.: Repre.entation
and U.e oj Knowledge by Comp.ter., (Edited by N. V. Findler), pp. 3-50, Academic Press, New York, (1919).

30. A. Newell, The knowledge level, Artificial Intelligence 18(1), 81-121, (1982).

31. N.R. Greenfeld and M.D. Yonke, AlPS: an information presentation system for decision mAkers, BBNREP
4228, BBN, (December, 1979).

32. M.D. Yonke and N.R. Greenf~ld, AlPS: An lnfonnation Pr~sentation Syst~m for Decision Makers, In Pro-
ceeding. oj Thirteenth HawAii IRternAtional ConJerence on Sy.tem Science., Volume II, pp. 48-56, Univ.
of Hawaii, January, 1980, Also reprinted in Data Base, V.12, 1980. A revised version of this paper is also
av&il&ble as BBN Report No. 4228, Bolt Beranek and Newman Inc., (December, 1919).

33. F. Zdybel, N.R. Gr~enfeld, M.D. Yonke and J. Gibbons, An information presentation system, In Proceeding.
oj the Seventh InternAtional Joint ConJerence on Artificial Intelligence (JJCAI-81), pp. 918-984, Vancouver,
B. C., (1981).

34. M. Bates, D. Stallard and M. Moeer, The mus transportabl~ natural language database interface, In Ezpert
Databa.e Sy.tem., (Edited by L. Kersooberg), Cummings Publishing Company, Menlo Park, CA, (1985).

35. W.A. Woods, Transition network granun&r8 for natural language analysis, CACM 13(10), pp. 591-600,
(October 1910), Reprinted in T.torial.: Contert-Directed Patttern Recognition and Machine Intelligence
Technique. Jor InJormatioR Proce..ing, (Edited by Y. Pac and G. W. Ernest), IEEE Computer Society
Press, Silver Spring, MD, (1982) and in Reading. in Natural Language Proce..ing, (Edited by B. Grosz, K.
Spark Jones and B. L. Webber), Morgan-Kaufman, San Mateo, CA, (1986).

36. W.A. Woods, Natural language communication with machines: An ongoing goal, In Artificial Intelligence
ApplicAtion. Jor Bu.ine.., (Edited by W. Reitman), pp. 195-209, Ablex Corporation, Norwood, NJ, (1984).

,



ir
~ The KL-ONE family 173

J. Yen, A principled approach to reasoning about the specificity of rules, In Proceeding6 of the Eighth National37. Conference on Artificial Intelligence (AAAI-90), Boston, MA, (July, 1990).

38- J. Yen, R. Neches and R. MacG~or, Using te~ological.m~dels to ~nhance the rule-baaed. paradigm, In
proceeding6 of the Second International Symp061um on Artificial Intelhgence, Monterrey, MeXIco, (October,
1989). i

39- J. Yen, Reasoning about specificity of patterns in te~ su.bsumption-based systems, Tedmical Report TAMU
90-003, Dept. of Computer Science, Texas A&M UDlVerBJty, (February, 1990).

40 R J. Brachman and H.J. Levesque, Assertions in KL-One, In Proceeding6 of the 1981 KL-ONE Work6hop,. (Edited by J.G. Schmolze and R.J. BIachman), pp. S-17, Bolt Bernek and Newman Inc. Report No. 4842,

(1982).
41. R.J. Brachman, R.~. Fikes. and H.J. Levesque, KR~,!ON: Int~grating terminology and assertion, ~ Pro-

ceeding6 of the Third National Conference on Artificial Intelhgence (AAAI-83), pp. 31-35, Washington,
D.C., (August, 1983).

42. Y. Jang and R. Patil, KOLA: A knowledge organization language, In 13th Symp06ium on Computer Appli-
cation6 in Medical Care, (Edited by Lawrence C. Kingsland Ill), IEEE Computer Society Press, (1989).

43. Y. Jang, KOLA: Knowledge organization language, Technical Report LCS TR-396 , MIT Laboratory for
Computer Science, (1988). I

44. M. Derthick, Mundane reasoning by parallel constraint satisfaction, Ph.D. Thesis, C&rIlegie Mellon University,
Pittsburgh, PA, September (1988), available as Technical Report CMU-CS-8S-182, Department of Computer
Science, Carnegie Mellon University.

45. J.G. Schmolze, Terminological knowledge representation systems supporting N-ary terms, In Proceeding. I;

of the Fir.t International Conference on Principle6 of Knowledge Repre6entation and Rea.oning (KR89),
Toronto, Canada, (May, 1989). I

46. T. Finin, R. Fritzson, R. McEntire, D. McKay and A. O'Hare, The intelligent system server: Delivering
AI to complex systems, In Proceeding, of the Fir,t International Work.hop on Tool6 for AI, Architect.re.,
Language6 and Algorithm6, Fairfax, VA, (October, 1989).

47. T. Finin and R. Fritzson, How to serve knowledge--notes on the design of a knowledge base server, In AAAI
Spring Sympo,ium on Knowledge Sy,tem Delle/opment Tooll and Language6, (March, 1989).

48. D. McKay, T. Finin and A. O'Hare, The intelligent database interface: Integrating AI and database systems,
In Proceeding6 of the Eighth National Conference on Artificial Intelligence (AAAI-90), Boston, MA, (July,
1990).

49. E. Decio, P. Petrin and L. Spampinato, Pushing the terminological barrier, In Proceeding, of the Work.hop on
Inheritance Hierarchie6 in Knowledge Repre,entation and Programming Language" Viareggio, Italy, (Febru-
ary, 1989).

50. H. Bergm&nn and M. Gerlach, QUIRK-Implementierung einer TBox zur Repraesentation begrifBichen Wi&-
sens. Technical Report WISBER Report MIl, University of Hamburg, (June, 1987), (in German).

51. M. Poesio, The QUARK Reference Manual, Tedmical Report WISBER Report M22, University of Hamburg,

(June, 1988).
52. M. Koubarakis, J.. Mylopoulos, M. Sl.a.nley and A. Borgida, Telos: Features and formalization, Technical I

Report KRR- TR-89-4 , Dept. of Computer Science, University of Toronto, (1989). ~

53. H. Trost and B. Pfahringer, VIE-KL: An experiment in hybrid knowledge representation, Technical Report ~

TR-8S-8, Oesterreichisches Forschungsinatitut fuer Artificial Intelligence, Wien, (1988). ~

54. K. von Luck, B. Nebel, C. Peltason and A. Schmiedel, The anatomy of the BACK system, KIT Report 41, H

Department of Computer Science, Techniache Univeraitit Berlin, Berlin, West Germany, (January, 1987). ~

55. B. Nebel and K. von Luck, Hybrid reasonins in BACK, In' Methodologie6 for Intelligent Sy,tem" (Edited by
IZ.W. Ras and L. Sa.itta) Vol. 3, pp. 260-269. North-Holland, Amsterdam, Holland, (1988).

56. B. Nebel and K. von Luck, Issues of integration and balancing in hybrid knowledge representation systems,
In GWAI-8~. 11th German Worr.6hop on Artifici.llntelh,ence, (Edited by K. Morik) pp. 114-123, Springer- :
Verlag, Berlin, Gennany, (1987). &

'"57. C. Peltason, A. Scluniedel, C. KindermArul and J. Quantz, The BACK system revisited, Ted1nical Report ;',
KIT Report 75, Department of Computer Science, Technische Universitat, Berlin, (August, 1989). ~

58. H. W. Beck, S.K. Gala and S.B. N avat he , Claaaification as a query processing technique in the CANDillE ~
semantic data model, In Proceeding. of IEEE Conjrrencr on Data Engineering, Los Angeles, CA, (February, fr
1989). ;'

59. A. Borgida, R.J. Brachman, D.L. McGuinneu and L.A. Resnick, CLASSIC: A structural data model for ~
objects, In Proceeding. of the 1989 A CM SIGMOD International Conference on Management of Data, rII

ACM, Portland, Oregon, (June, 1989). :~
"60. R.J. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L.A. Resnick and A. Borgida, Living with CLASSIC: '~:

When and how to use a KL-ONE-like language, In Principle, of Semantic Network.: Exploration6 in the
Repre&entation of Knowledge, (Edited by J. Sowa) Morgan-Kaufmann, San Mateo, CA, (1991). ri

61. N. Guarino, DRL: terminologic and relational knowledge in Prolog, In Proceeding6 of 8th European Conference ~l

on Artificial Intelligence (ECAI-88) Muenchen, (Edited by Y. Kodratoff), (August 1-5, 1988). Ii'
6 '

2. N. Guarino, Representing domain structure of many-sorted Prolog knowledge bases, In Foundation. of logic 1.

and functional programming, (Edited by G. Levi, M. Boscarol and L. Aiello), Springer- Verlag, Berlin (1988). i~

j



174 W.A. WOODS, J.G. SCHMOLZE r
!

63. N. GUMinO, Attributes and extensional equivalence in DRL, In Proceeding. oj the 3rd InternAtionAl S,m.
po.ium on Methodologie. Jor Intelligent Sy.tem. (ISMIS-88)Torino (October 12-15, 1988), (Edited by B.
Radig and L. Saitta), North-Holland (1988).

64. N. Guarino, Nature and structure of terminological knowledge: The DRL approach, In Proceeding. oj the l.t

ConJerence oj the ItAliAn A'60ciAtion Jor ArtificiAl Intelligence (AI-IA), Trento, (November, 1989).
65. P.F. Patel-Schneider, Small can be beautiful in knowledge representation, In Proceeding. IEEE Worhhop

on Principle. oj Knowledge-BA.ed Sy.tem., pp. 559-565, Denver, Colorado, (December, 1984), IEEE COin-
puter Society, Extended version available as AI Technical Report No. 37, Schlumberger Palo Alto Researd1,

(October, 1984). .
66. A. Cappelli, L. Moretti and C. Vinchesi, KL-CONC: A language for interacting with SI-Nets, ProceedIng. 01

the Eighth InternAtionAl Joint ConJerence on ArtificiAl Intelligence (1JCAI-83), (1983).
67. A. Cappelli and L. Moretti, An approach to natural language in the SI-Nets paradigm, In Proceeding. 01

Fir.t ConJerence oj ACL-Europe, Pisa, (1983).
68. A. Cappelli, G. Caracoglia and L. Moretti, A chunking mechanism for a knowledge representation system,

Cybernetic. And Sy.tem. 17(4), 277-287, (1986).
69. G. Adomi, A. Cappelli, S. Gaglio and L. Moretti, Integrating logic programming and structured knowledge

representation, JournAl Jor the Integrated Study oj ArtificiAl Intelligence, Cognitive Science And Applied,

Epi.temology 4(1), (1987).
I70. R.R. Fikes and A. Henderson, On supporting the use of procedures in office work, In Proceeding. oj the Fir.t

NAtionAl ConJerence on ArtificiAl Intelligence (AAAI-80), Stanford, CA, (1980).
71. R.R. Fikes, Highlights from KloneTalk, In Proceeding. oj the 1981 KL-ONE Work.hop, (Edited by J.G.

Schmolze and R.J. Brachman), pp. 8-17, Bolt Beranek and Newman Inc., Report No. 4842, (1982).
72. M. Vilain, KL-TWO, A hybrid knowledge representation system, BBN Technical Report 5694, BBN Labo. I

ratories, (September, 1984). i
73. M. Vilain, The restricted language architecture of a hybrid representation system, In Proceeding. oj the Ninth

InternAtionAl Joint ConJerence on A rtificiAI Intelligence (1JCAI-85), pp. 547-551, Los Angeles, CA, (August,

1985).
74. M. W. Freeman and H.H. Leitner, KNET Extensions, JournAl oj ComputAtionAl Lingui.tic., (July-September,

1981).
75. M.W. Freeman, L. Hirschman, D.P. McKay and M.S. Palmer, KNET: A logic-based associative network

system, In Pre.ented At the third Knowledge Repre.entAtion Work.hop, Santa Barbara, CA, (October, 1983). ;
76. M. Freeman, L. Hirschman, D. McKay and M. Palmer, KNET: A logic-based associative network framework f

for expert systems, Technical report, Research and Development Division, SDC-A Burroughs Company, i

(1983).
77. G. Abrett and M.H. Burstein, The KREME knowledge editing environment, InternAtional Jo.",al oj MAa-

MAchine Studie. 27(2), 103-126, (1987).
78. E. Mays, C. Apte, J. Griesmer and J. Kastner, Experience with K-Rep: An object-centered knowledge

representation language, III Proceeding. 01 IEEE AI ApplicAtion ConJerence, San Diego, California, (Mardl,

1988). ,
79. R.J.Brachman, R.E. Fikes and H.J. Levesque, KRYPTON: A functional approach to knowledge representa- '

tion, IEEE Computer 16(10), 67-73, (October, 1983), Also available as Fairchild Technical Report No. 639
or as FLAIR Technical Report No. 16.

80. R.J. BraChrnan, V.P. Gilbert and H.J. Levesque, An essential hybrid reasoning system: Knowledge and
symbol level accounts of KRYPTON, In Procteding. oj tht Ninth InternAtionAl Joint ConJerence on ArtificiAl
Intelligence (1JCAI-85), pp. 532-539, Loe Angeles, CA, (August, 1985).

81. U. Pletat and V. Luck, Knowledge representation in LILOG, Technical Report IWBS Report No. 90, IBM,
~Germany, Scientific Center, Institute for Knowledge Based System, (November, 1989).

82. R.M. MacGregor, A deductive pattern matcher, In Proceeding. oj the Seventh NAtionAl ConJerence on Arti-
ficiAl Intelligence (AAAI-88), pp. 403-408. St. Paul, Minn., (August, 1988).

83. R. MacGregor and J. Yen, The knowl~ge representation project at ISI, Technical Report Tech. Report
RR-87-199, USC/ISI, (1987).

84. G. Bittencourt, A unified fonnalism for knowl~g~ representation, In Proceeding. of the Third InternAtionAl
Sympo.ium on Methodologie. for Inttlh,tnt S,.ttm. (ISMIS) ,pp. 111-121, Torino, Italy, (October, 1988).

85. G. Bittencourt, A hybrid system arclUtecture and its semantics, In Proceeding. of the Fourth InternAtionAl
Sympo"ium on Methodologie. for Inttlh,t~t S,.ttm. (ISMIS) ,Charlotte, N.C., (October, 1989).

86. J. Ede~ and B. Owsnicki, Data modela in knowledge representation systems: A case study, In GWAI-86 ,
und 2, O.terreichi.che A rtificiA/-/nttlh,tnCt- TAgung, (Edited by C.R. Rollinger and W. Horn), pp. 69-74, r
Springer-Verlag, Berlin, Germany, (1986).

87. B. Owsnicki-Klewe, Configuration aa a consistency maintenance task, In GWAI-88. 12th German Worklhop
on A rtificiAllntelligence, (Edited by W. Hoeppner), pp. 77-87, Springer-Verlag, Berlin, Germany, (1988). :

88. M.G. Moser, An overview of NIKL, The new implementation of KL-ONE, In Re.eArch in Knowledge Repre- i

.entAtion for NAturAl LAnguAge Under.tAnding, AnnuAl Report (1 Sept. 1982 - 31 Aug. 1983). BBN Report
No. 5421, (Edited by C. Sidner, M. Bates, R. Bobrow, B. Goodman, A. Haas, R. Ingria, D. Israel, D.
McAllester, M. Moser, J. Schmolze and M. Vilain) , pp. 7-26, Bolt Beranek and Newman Inc., Carnbridp,
MA, (1983).



(. I- ..'W.~- c, ~ o-.c;f"f "" "~:- "

The KL-ONE family 175

G Robins, The NIKL Manual, Technical Report, Univ. of Southern California Information Sciences Institute,89. .
Marina del Rey, CA, (1986), (draft).
T.S. KaczmArek, R. Bates and G. Robins, Recent developments in NIKL, In Proceeding. of the Fifth NAtionAl

90. Conference on A rtificiAIIntelligence (AAAI-86), pp. 978-987, Philadelphia, PA, (August, 1986).

1. J.G. Sdunolze and W.S. Mark, The NIKL experience, ComputAtionAl Intelligence, 6(1), (1991).
92 A. Kobs&; Utilizing knowledge: The components of the SB-ONE knowledge representation workbenm, In i9 . principle. of SemAntic Network.: Ez:plorAtion. in the Repre.entAtion of Knowledge, (Edited by J. Sowa), I

Morgan-KaufmaDD, San Mateo, CA, (1991). i

93. J. Allgayer and C. Reddig, What KL-ONE ~oo~es.need to.cope with ~turallanguase-.sc°pe and aspect I

of plural noun phrases, In Sort. And Type. In A rtificIAIIntelhgence, (Edited by K.H. BI&51us, U. Hedstueck [
and C.R. Rollinger), Springer-Verlag, Berlin, Gennany, (1990). t

94. S. Han, A frame and horn clause-based hybrid knowledge representation, Ph.D. Thesis, Department of Com- ~

puter Science, Korea Advanced Institute of Science and Technology, Seoul, Korea, (1989). t
95. S. Han, D.W. Shin, Y. Kim, Y.P. Jun, S.R. Maeng and J.W. Cho, A logic programming approach to hybrid ,.

knowledge representation, Applied ArtificiAl Intelligence: An InternAtionAl JournAl 2, 93-127, Hemisphere .;
Publishing Corporation, (1988). ;

96. S. Han and J. W. Cho, Sphinx-a hybrid knowledge representation system, In Proceeding. of InternAtionAl
Conference on Fifth GenerAtion Computer Sy.tem., Tokyo, pp. 1211-1220, (November, 1988).

91. P.F. Patel-Schneider, Decidable, logic-based knowledge representation, Ph.D. Thesia, Univ. of Toronto,
(1987), Also available as AI Technical Report No. 56, Schlumberger Palo Alto Research, (May, 1987)

98. R.J. Brachman and H.J. Levesque, The tractibility of subsumption in frame-based description languages,
In Proceeding. of the Fourth NationAl Conference on Artificial Intelligence (AAAI-84), pp. 34-37, (August,

99. ~~~~bel, On tenninological cycles, Technical Report KIT - Report 58, Technische Universitat Berlin, Ger- ~

manY, (November, 1987). h
100. B. Nebel, Ternlinological cycles: Semantics and computational properties, In Principle. of SemAntic Net- ;j

work.: Ez:ploration.t in the Repre.entation of Knowledge, (Edited by J. Sowa) , Morgan-Kaufmann, San fl
j

Mateo, CA, (1991). II

101. R.J. Brachman and H. Levesque, Competence in knowledge representation, In Proceeding. of the Second ff

National Conference on A rtificialIntelligence, (AAAI-8f), Pittsburgh, PA, (August, 1982). "
I'

102. J. Doyle and R.S. Patil, Language restrictions, taxonomic classifications and the utility of representation ~
services, Technical Report MIT /LCS /TM-381, Massachusetts Institute of Technology Artificial Intelligence I~

Laboratory, Cambridge, MA, (May, 1989). ,
103. M. Schmidt-Sc:hauB and G.SmoIka, Attributive concept descriptions with complements, ArtificiAl Intelli-

gence, 48(1), (February, 1991); also available as IWBS Report 68, IBM Gennany Scientific Center, IWBS,
Stuttgart, Germany, (June, 1989).

104. C. Rich, Knowledge representation languages and the predicate calculus: How to have your cake and eat
it too, In Proceeding. of the Second National Conference on Artificial Intelligence (AAAI-81.), pp. 193-196,
(August, 1982).

I
105, C. Rich, The layered architecture of a system for reasoning about programs, In Proceeding.t of the Ninth .:i

International Joint Conference on Artificial Intelligence (IJCAI.85), pp. 540-546, Los Angeles, CA, (August, J

1985). I;:I;'
106. Y.A. Feldman and C. Rich, Bread, frappe and cake: The gourmet's guide to automated deduction, In :

Proceeding. of 5th I.rAeli Sympo.ium on ArtificiAl Intelligence, Tel Aviv, Israel, (December, 1988). :~

101, P.J. Hayes, The Logic of frames, In Framt Conctption. And Tert Under.tanding, (Edited by D, Metzing) ;:
pp. 46-61, Walter de Gruyter and Co., Berlin, (1979), 11

108. S.C. Shapiro and W.J. Rapaport, SNePS considered as a fully intensional prop~itional semAntic network, In II;, The Knowledge Frontier: E..ay. in tAt Repre.entAtion of Knowledge, (Edited by Nick Cercone and Gordon

McCalla), Springer-Verlag, New York, (1987). .
109. L.K. Schubert, Extending the expressive power of semantic networks, ArtificiAl Intelligence 7(2), 163-198, :..

(Summer, 1976).
110. L.K. Schubert, R.G. Goebel and N.J. Cercone, The structure and organization of a semantic net for com-

prehension and inference, In A..ociative NetUlork.: Rtprt.tntation And U.te of Knowledge by Computer., 'Ii
(Edited by N.V. Findler), pp. 121-175, Academic Press, New York, (1979).

111. H.J. Levesque, A fonnal treatment of incomplete knowledge bases, Ph.D. Thesis, Dept. of Computer Science,
Univ. of Toronto, Toronto, Canada, (1981). ,.

112. H.J. Levesque, The interaction with incomplete knowledge bases: A fonnal treatment, In Proceeding. of j~~
the Sevtnth InternationAl Joint Conference on Artificial Intelligence, (/JCAI-81), Vancouver, B.C., Canada, ..1

(August, 1981). "i
113. R.J. Brachman and H.J. Levesque, Expressiven5a and tractability in know ledge representation and reasoning, "1

ComputationAl Intelligence 3(2), pp, 78-93, (1981). JU
114. S.E. Stickel, Automated deduction by theory resolution, In Proceeding. of the Ninth International Joint !'ifj

Conference on Ar.tific~aIIn~elligence (/JC~I.85), pp. 1181-1186, Los Angeles, California, August, 1985, tl~

An expanded version IS available as Technical Note 340, Artificial Intelligence Center, SRI International, .,
(October, 1984). !

I
i!;'

PI
';'



176 W.A. WOODS, J.G. SCHMOLZE I
I

115. B. Nebel, Computational oomplexity of terminological reasoning in BACK, ArtificiAl Intelligence 34(3),

371-383, (April, 1988).
116. P.F. Patel-Schneider, H.J. Levesque and R.J. Brachman, ARGON: Knowledge representation meets informa-

tion retrieval, In Proceeding. of the Fir.t Conference on ArtificiAl Intelligence ApplicAtion., IEEE Computer i

Society, Denver, Colorado, (1984).
I117. P.F. Patel-Schneider, A decidable fimt-order logic for knowledge representation, In Proceeding. of the Ni,,"

InternAtionAl Joint Conference on ArtificiAl Intelligence (UCAI-8S), pp. 455-458, Lc» Angeles, CA., (August,
1985). (Also available as AI Ted1. Report No. 45, Sd1lumberger Palo Alto Research, (1985». . I

118. D. W. Etherington, On inheritance hierard1ies with exceptions, In Proceeding. of the Fifth NAtIonAl Confer- i

ence on ArtificiAl Intelligence (AAAI-86), pp. 104-108, Philadelphia, PA, (August, 1986).
119. D.A. McAllester, An outlook on truth maintenance, AI Memo 551, Massachusetts Institute of Tedmology,

Artificial Intelligence Laboratory, (August, 1980).
120. D.A. McAllester, Reasoning utility package user's manual, AI Memo 667, Massachusetts Institute of Tech- i'

nology, Artificial Intelligence Laboratory, (April, 1982).
121. R. MacGregor, Loom users manual, Technical Report Working Paper ISI/WP-22, USC/lnformation Sciencea

Institute, (1990).
122. J.E. Laird, A. Newell and P.S. Rosenbloom, SOAR: An ard1itecture for general intelligence, ArtificiAl Intel.

ligence 33(1), (September, 1987).
123. C. Peltason, The scheme of Posidonius-Using taxonomic reasoning in design, In Proceeding. Second I"ter-

nAtionAl Conference on AppliCAtion. of ArtificiAl Intelligence in Engineering, pp. 299-314, Cambridge, MA,

(August, 1987).
124. E.F. Codd, Data models in database management, In Proceeding. of Work.hop on DAtA Ab.trcactio",

DatabA.e. and Conceptual Modelling, ACM SIGMOD 11(2), pp. 112-114, (1981).
125. G. Attardi and M. Simi, Consistency and oompleteness of OMEGA, a logic for knowledge representation, In ,

Proceeding. of the Seventh International Joint Conference on Artificial Intelligence (UCAI-81), pp. 504-510, !
Vancouver, B.C., Canada, (1981). . ,

126. G. Attardi and M. Simi, A description oriented logic for building knowledge bases, In ProceedIng. of the;

IEEE 74(10), (October, 1986).
I127. C. Rich and R.C. Waters, Automatic programming: Myths and prospects. IEEE Computer 21(8), 40-51,

(August, 1988).
128. C. Rich and R.C. Waters, The prograrruner's apprentice: A research overview. IEEE Computer 21(11),

11-25, (November, 1988).
129. D. McAllester, R. Givan and T. Fatima, Taxonomic syntax for fimt order inference, In Proceeding. of the Fir.t

International Conference on Principle. of Knowledge Repre.entation and Rea.oning (KR89), pp. 289-300,

(1989).
130. H. Ait-Kaci, A Lattice theoretic approach to computation based on a calculus of partially ordered type

structures, Ph.D. Thesis, Dept. of Computer Science, Univ. of Pennsylvania, PhiIa., PA, (1984).
131. H. Ait-Kaci and R. Nasr, LOGIN: A logic programming lAllguage with built in inheritance, Journal of Logic

Programming 3(3), 185-215, (1986).
132. G. Smolka and H. Ait-Kaci, Inheritance hierarchies: Semantics and unification, Journal of Symbolic Com-

putation 7(3/4), 343-370, (1989). t
133. P.F. Patel-Schneider, Undecidability of subsumption in NIKL, Artificial Intelligence 39(2), (June, 1989). i
134. M. Schmidt-SchauB, Subsumption in KI.,-ONE is undecidable, In Proceeding. of the Fir.t InternationAl!

Conference on Principle. oj Knowledge Repre.entation and Rea.oning (KR89), (Edited by R.J. Braclunan, t
H.J. Levesque and R. Reiter), pp. 421-431, Toronto, Ontario, (May, 1989). !

135. G. Smolka, Feature constraint logics for unification grammars, IWBS Report 93, IBM Germany Scientific
~Center, IWBS, Stuttgart, Gennany, (November, 1989), In the Proceeding. of the Work.hop 0" Unificatio.

Fonnali.m.-Syntar, SemAntic. and Implementation, Titi.ee, (April, 1988), MIT Press, (to appear).
136. B. Nebel and G. Smolka, Rep~ntation and reasoning with attributive descriptions, In Sort. And Type. i.

A rtificiallntelligence, (Edited by K .-H. Blasius, U. Hedtstiick and C.-R. Rollinger), Springer-Verlag, Berlin,
iGermany, (1990); Also available aa IWBS Report 81, IBM Germany Scientific Center, IWBS, Stuttgart,

Germany, (September, 1989). t
137. F. Donini, B. Hollunder, M. LelUerini, A.M. Spaccamela, D. Nardi and W. Nutt, The frontier of tractability

for concept description languages, Dfkj-report, DFKI, Postfach 2080, 6750 Kaiserslautem, Germany, (1989). t
138. B. Hollunder, Subsumption algorithms for some attributive concept description languages, Masters Thesis, i

FB Informatik, Universtit Kaiserslautem, 6750 Kaiserslautern, Gennany, (1989).
139. G. Smolka, A feature logic with subaorts, LILOG Report 33, IWBS, IDM Deutsd1land, Postfach 80 08 ~I

7000 Stuttgart 80, (May, 1988).
140. B. Nebel, Terminological reasoning is inherently intractable, A rtificiallntelligence 43(2), (May, 1990), Alao

available as IWBS Report 82, IBM Gennany Scientific Center, IWBS, Stuttgart, Germany, (October, 1989).
141. P.F. Patel-Schneider, A four-valued semantics for terminological logics, Artificial Intelligence 38(3), 319-351,

(April, 1989).
142. I.J. Haimowitz, Using NIKL in a large medical knowledge base, Technical Report MIT ILCS/TM-348, Lab-

oratory for Computer Science, Massachusetts Institute of Technology, (January, 1988).



(r: The KL-ONE family 177143. S.W. Smoliar and W.R. Swartout, A report from the frontiers of knowledge representation, Draft paper,(October, 1988).44 J. Doyle and R.S. Patil, Two theses of knowledge representation: language restrictions, taxonomic classifi- ;1 . cations and the utility of representation services, Artificial Intelligence 48(3), 261-297, (April, 1991). ii145. A.R. Haas, A syntactic theory of belief and action, A rtificial Intelligence 28(3), 245-292, (May, 1986).1;
46. J.F. Allen and C.R. Perrault, Analyzing intention in utterances, Artificial Intelligence 15(3), 143-178, (1980),

1 Reprinted in Reading. in Nat.ral Lang.age Proce..ing, (Edited by B. Gr~z, K.S. Jones and B.L. Webber),Morgan-Kaufman, San Mateo, CA, (1986). 11
Ii

;;

~~
!'j
I;

I~
.~

i~1-:' ~ .. , \: I
;t,~~
I~

~

~'i

~

~.

H~
,\

;

~
";

.fI'li :

:1
'r

c'
I"

!... ~\:','
1], 'h
:j!';1

in"11; !b
:irn
iI1i!
"i'

I
~,'{i

iM~
iji

liV
r'.

,

'11[:1 \
cU111'"1;~j~r:!


