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sorted logic statically, order-sorted logic requires dynamic
well-sortedness checking, which usually occurs during
unification. Depending on the expressive power of the sig-
nature, sorted unification may be unitary, finitary, or in-
finitary (Walther, 1988; Schmidt-Schauss, 1989; Mese-
guer and co-workers, 1989). Allowing sets of sort
constraints on variables or embedding a poset with non-
unique glbs into a semilattice can turn the finitary into
the unitary case. In some situations, sorted unification is
not decidable. Schmidt-Schauss (1989) has investigated
sorted unification under nonempty theories and presents a
sorted paramodulation rule. If sort literals and overlap-
ping are allowed then further inference rules are required
to retain completeness (Cohn, 1987), for example, a rule to
resolve two characteristic literals that do not have the
same predicate symbol is needed; this rule is an instance
of theory resolution (see ResoLutioN, THEORY). Often, a
translation to unsorted logic is given (a relativisation) and
a sort theorem proved, which shows that the sorted logic is
no more expressive (although it may be more efficient). If
the logic is substitutional (Frisch, in press), that is, if it
obeys certain syntactic restrictions (in particular there
are no sort literals), then a sound and complete inference
procedure for an arbitrary sorted calculus can be automat-
ically synthesized from an unsorted one. Frisch’s approach
to sorted deduction is not a sorted logic in the conven-
tional sense because there is no signature, but rather a
logical theory, which can be used to specify very general
information about sorts and the sortal behavior of the
nonlogical symbols. This theory does not affect the seman-
tics as a signature does, and there is no notion of well-
sorted formulas (only substitutions).

There are many other representation languages that
treat taxonomic knowledge specially, in particular, se-
mantic or associative networks and the KL-ONE family of
languages. The TBOX of these latter languages is usually
sufficiently expressive to make subsumption computa-
tionally intractable, whereas the signature of most sorted
logics allows testing whether a term is of a particular sort
(performing a subsumption test in KL-ONE terminology)
to be cheap. Feature logics (Smolka and Ait-Kaci, 1989)
are also closely related to sorted logics.
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LOGIC, PREDICATE

Predicate logic—also known as predicate calculus or first-
order (predicate) logic—is the study of inferences that can
be made on the basis of an analysis of atomic sentences
into “terms” (essentially, noun phrases) and “predicates”
(essentially, verb phrases). It is an extension of proposi-
tional (or sentential) logic and is the modern descendant
of Aristotle’s logic of subjects and predicates (see Logic,
propostTioNaL). For discussions of traditional Aristotelian
syllogistic logic see Kneale and Kneale (1962), Kneebone
(1963), and Prior (1967a,b). For a general discussion of
logic and references to other articles on logic in this Ency-
clopedia, see Locic. Secondarily, it is also the study of the
representation of information (see KNOWLEDGE REPRESENTA-
TION) by predicates and their terms. Because of the rela-
tionships of predicates and terms to noun phrases and
verb phrases, predicate logic has often served as a founda-
tion for natural-language syntax and semantics (see the
NATURAL-LANGUAGE entries; PARsING).

In this article, the syntactic items that are used in the
representation of information are called sentences, and
the items in the “world” that sentences mean or express
are called propositions. A “predicate” is, as suggested
above, usually taken to be a verb phrase or the name of a
property, relation, or class of objects. Thus, in the sen-
tence

Roses are red

“(is) red” is the predicate; it can be taken to name the
property or attribute of being red or of redness, or the class
{x: x is red} or {x: x has redness}. In addition to this “sub-
atomic” analysis of the atomic sentences treated by propo-
sitional logic, predicate logic employs a machinery of vari-
ables and quantifiers that allows it to express how many
objects fall under a given predicate. The adjective “first-
order” indicates that the quantifiers only range over indi-
viduals, not properties, relations, or classes (ie, they range
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over the things represented by terms, not the things rep-
resented by predicates). Second-order logic (see below)
quantifies over predicates; by extrapolation, propositional
logic may be thought of as being of “zero order.”

Although predicate logic is usually taken to be a way of
analyzing propositions or declarative sentences, there are
also predicate logics for other types of sentences (eg, quan-
tified modal logic and quantified epistemic logic). In fact,
the logic of some sentences, such as interrogatives (ero-
tetic logic), only becomes interesting in the quantified
case. (For discussions of epistemic and other modal logics,
see Locic, MoDAL; BELIEF REPRESENTATION sYSTEMS; Gabbay
and Guenthner, 1984; Hintikka, 1962; Hughes and
Cresswell, 1968; Nute, 1981; Prior, 1967c. For erotetic
logic, see Belnap and Steel, 1976; Harrah, 1984; and Lam-
bert, 1969.)

As is the case with propositional logic, the representa-
tional system of predicate logic is its underlying language,
consisting essentially of terms, predicates, quantifiers,
and truth-functional connectives, with a grammatical
syntax and a semantics in terms of individuals and prop-
erties (or classes). The syntax is often extended to include
functions (or term-producing operators), the identity pred-
icate, and definite and indefinite description operators.
The deductive system of predicate logic extends that of
propositional logic to include axioms and rules for manip-
ulating quantifiers.

THE LANGUAGE OF PREDICATE LOGIC

Informally, an atomic proposition is analyzed into a single
verb phrase (the predicate) and a sequence of noun
phrases (grammatically, its subjects and objects) called
the arguments of the predicate. For example,

Socrates is Greek
. is Greek” together with its

consists of the predicate “. .
argument “Socrates”; and

Fredonia is between Erie and Buffalo

consists of the predicate “. . . is between . . .and . . .”
together with its arguments “Fredonia,” “Erie,” and “Buf-
falo” (or the argument sequence, (Fredonia, Erie, Buffa-
l10)). In the first case the predicate names the property:
being Greek, or the class: {x: x is Greek}; in the second case
the predicate names the relation: being between . . . and

. ., or the class of ordered triples: {(x, y, 2): x is between y
and z}. Discussed below are important theoretical differ-
ences between the full first-order logic of relations and
monadic first-order logic, which only has one-place predi-
cates.

To be able to express propositions such as

All humans are mortal.
Some philosophers are computer scientists.
There are no unicorns.

quantifiers and variables are used. Thus, the first of these
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Table 1. Alphabet of £

n-place predicate symbols
(n an integer)

A ...,Z;A,B, .. . (lan
integer); any sequence of
words separated by hyphens

f, g, h; f;, g;, h; ( an integer);
any sequence of words sepa-
rated by hyphens

n-place function symbols
(n an integer)

Individual variables u, ... ,2 U8, ...,z an
integer)
Individual constants a ...,ea,...,e(lan

integer); any noun phrase
(the words separated by

hyphens)
Connectives N, 71
Punctuation “’”’ “[7’, “]”’ ‘((”’ “)))
Quantifiers
Universal v
Existential 3

examples might be expressed using the universal quanti-
fier (“for all”):

For all «, if x is human, then x is mortal.

and the second might be expressed using the existential
quantifier (“for some” or “there exists”):

For some x, x is a philosopher and x is a computer
scientist.

There exists an x such that x is a philosopher and x is a
computer scientist.

Syntax

A formal syntax for a language £ of predicate logic can be
presented by giving an alphabet, a recursive definition of
term, and a recursive definition of well-formed formula
(wff) (given in Tables 1-3). In order to define the notion of
a sentence and to give the inference rules, the following
definitions are necessary:

(D1) Let ¢ be a wff prefixed by a quantifier phrase (ie,
either Vv or 3v). Then ¢ is the scope of the quantifier
phrase. For example, the scope of Vx in Vxe(x) is ¢(x),
but the scope of 3y in (Jy () \/ ¥) is ().

Table 2. Terms of £

(T1) All individual variables are terms.

(T2) All individual constants are terms.

(T3) Ift,, . . . ,t, are terms and fis an n-place function
symbol, then f(¢;, . . . , t,) is a term.

(T4) Nothing else is a term.

For example, each of the following is a term:
x
X
a
Qg3
John
Mother-of(Bill)
Son-of(Harriet, Frank)
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Table 3. Well-formed Formulas of £

(wff.1) Ift,, . . . , t, are terms and P is an n-place predicate
symbol, then P(#;, . . . , ¢,) is a(n atomic) well-formed
formula.

(wff.2) If ¢ and & are well-formed formulas, v is an individual
variable, and ¢(v*) is a well-formed formula containing
zero or more occurrences of v, then

e
(CAVA))
Yvle(v¥)]
Av[p(vH)]

are well-formed formulas.
(wff.3) Nothing else is a well-formed formula.

Parentheses and brackets will sometimes be omitted when no
ambiguity results. For example, each of the following is a wif:

Alx, y)
In(Eiffel-tower, France)

71 Republican(John-F.Kennedy)
(Capital(Albany, New-York) \/ B)
VxFx
Vx[1 Human(x) \/ Mortal(x)]

1 3x Unicorn(x)

(Note that a zero-place “predicate,” like B, is an atomic wiff.)

(D2) Let the variable in a quantified phrase be called its
vartable of quantification. Then:

(a) An occurrence of an individual variable in a wff
¢ is bound means: the variable occurs in the
scope of a quantifier phrase in ¢ that has that
variable as its variable of quantification.

(b) An occurrence of an individual variable in a wff
¢ is free means: the occurrence of that variable is
not bound.

(c) A variable is bound means: there is an occur-
rence of that variable that is bound.

(d) A variable is free means: there is an occurrence
of that variable that is free.

For example, in
(Fx v VxGx)

the first occurrence of x is free and the second is bound; the
variable x is both free and bound in this wif. Finally,

(D3) A sentence is a wff with no free variables.

For further discussion of the grammatical syntax of a
first-order language and translations of natural-language
sentences into it, see Kalish, Montague, and Mar (1980),
Otto (1978), Schagrin (1979).

Semantics

Providing a semantics for such a first-order language is
somewhat more problematic than it is in the propositional

case. The main reason for this is that a decision must be
made about the domain (or universe) of discourse. It was
noted above that a predicate can name a property (or rela-
tion) or a class. But classes are extensional (“two” classes
are identical if they have the same members), whereas
properties are intensional (ie, nonextensional). Moreover,
there are important questions about what counts as an
individual:

1. Can properties or classes themselves be individuals?
This is surely plausible; consider such propositions
as:

Red is a color.
Colors are properties.
{x: x is a rational number} is countable.

However, care must be taken to avoid paradox, as in
Russell’s (Whitehead and Russell, 1927) well-known

example:

{x:x &x} € {x:x € x}
if and only if {x: x & x} & {x: x & x}

2. Must the individual actually exist? If variables and
terms may only range over existents, how does one
express such sentences as the following?

There are no round squares.
Santa Claus does not exist.
All unicorns are white.

Thus, a semantics for a first-order language cannot be
completely specified independently of an ontology—a pre-
cise specification of the domain. Nevertheless, the general
form of such a semantics (often called formal semantics,
see Nute (1981)) does not vary. Metatheoretical results
are given here in terms of set-theoretic semantics (ie, in
terms of an ontology of sets and their members), which is
the way they are given in most of the literature.

Let M be the structure (D, R, F), where D is a non-
empty set, R is a set of n-place relations on the elements of
D, and F is a set of n-place functions on the elements of D.
An interpretation, I, on M for & is a function from the
symbols of £ to D U R U F such that:

If ¢ is an individual constant or individual variable,
then I(¢) € D.

If fis a function symbol, then I(f) € F.

If fis an n-place function symbol and ¢, . . . , ¢, are
terms, then I(f(t, . . ., t)) = I(Hdy, . . .,
I(t,)) € D.

If P is an n-place predicate symbol, then I(P) € R.

The notion of “truth on an interpretation” (symbolized as:
k) can be defined recursively as follows:

1. If P is an n-place predicate symbol, and ¢;, . . . , ¢,
are terms, then 5P, . . ., t,) if and only if
@), . .. It,)) € I(P).



2. If ¢ and ¢ are wffs and v is &n individual variable,

then

(a) k1 ¢ if and only if not- =¢;

() Eile \v W) if and only if ke or Fnp;

(¢) EVve if and only if | ¢ for every interpretation
I' that differs from I at most on what it assigns
to v,

(d) k3ve if and only if Fr¢ for some interpretation
I’ that differs from I at most on what it assigns
tov.

Finally,

A wif ¢ is valid in M (written: Ml E ¢) if and only if ¢
for every interpretation I on M.

A structure M is a model for a sct H of wifs if and only
if M E H; for every wif H; € H.

Expressibility. As is the case with propositional logic,
one can choose to employ either a sraall number of connec-
tives and quantifiers (for elegance and metatheoretical
simplicity) or a wide variety (for expressive power). Thus,
on the one hand, the formal systerr: presented above may
be extended in a natural way to include the other truth-
functional connectives or, on the other hand, restricted to
using (say) only —, \/, and V. The latter can be accom-
plished as in propositional logic, together with the follow-
ing definition:

Ivo =g Vv-ig

Another variation is to employ restricted quantifiers.
Instead of translating

All As are Bs.
Some As are Bs.

as, respectively,

Vx[Ax — Bx] and 3x[Ax N Bx]

with the noticeable change in synta:tic structure, a family
of restricted quantifiers can be introduced:

(Vx: ¢(x)) and (3x: ¢(x))

Using this notation, the translations become the more
uniform-looking

(Vx: Ax)Bx and (3x: Ax)Bx
This notation has the additional advantage of being ex-
tendible to generalized quantifiers for handling such sen-

tences as

Most As are Bs.
Many As are Bs.

as well as numerical quantifiers:
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Exactly 4116 As are Bs.
Greater than 5 As are Bs.
Between 5 and 10 As are Bs.

Generalized and numerical quantifiers are, however,
beyond the scope of first-order logic (for discussions of
these issues, see Barwise and Cooper (1981), Brown
(1984), McCawley (1981), Montague (1970), and Shapiro
(1979).

Other alternatives to first-order languages and logics
have been motivated by ontological concerns. As is seen
below, when deduction is discussed, Vxo(x) implies Jxp(x)
in a nonempty domain. But what about the empty do-
main? Why should logic imply that something exists?
Shouldn’t logic be independent of ontology? Attempts to
broaden the scope of first-order logic have included free
logics (ie, logics that are free of existence presuppositions)
and Meinongian logics that allow [for representing and
reasoning about nonexistents. Both of these kinds of
logics often choose to represent existence by a special
predicate, E!, rather than by trying to define existence in
purely first-order terms (as, eg, “xlx = a]” for “a exists”)
[for discussions of free logics, see Hintikka (1966), Lam-
bert (1969, 1970, 1981, 1984), Leblanc and Thomason
(1968), and Scott (1967) and for discussions of Meinongian
logics, see Castarieda (1972), Parsons (1980), Rapaport
(1978, 1981, 1984, 1985a,b), Routley (1979), and Zalta
(1983)1.

DEDUCTIVE SYSTEMS OF PREDICATE LOGIC

As with propositional logic, a deductive system for predi-
cate logic can be presented axiomatically or as a natural
deduction system.

Axiomatic Predicate Logic

In this section a set of axioms and rules of inference for
predicate logic are presented using the terminology intro-
duced in the article Locic, PROPOSITIONAL. As is done there,
the wffs are restricted to those whose only connectives are
— and —; and the only quantifier is the universal quanti-
fier. All wifs of the following forms will be axiom sche-
mata:

(A1) (¢ > (W — ).

(A2) (g = W — x) = (g = ) = (@ = X))

(A3) (M=) = W — o).

(A4) (Vv[p — ¢] — (¢ — VVy)), where v is not free in ¢.

(A5) (Vve(v¥) — o(t/v)), where o(t/v) is the result of re-
placing all free occurrences of v in ¢ by any term t
and where all variables in t are free at all locations
in ¢ where v occurs freely.

There are two rules of inference:

Modus ponens: From ¢ and (¢ — ), infer ¢.
Universal generalization: From ¢, infer Vve.
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A Natural-Deduction System for Predicate Logic

The natural-deduction systern for propositional logic in-
troduced in Locic, PROPOSITION.AL may be extended to predi-
cate logic by providing introd action and elimination rules
for the quantifiers. Because these rules involve the substi-
tution of variables by constants, and vice versa, care must
be taken not to accidentally bind a previously free vari-
able or free a previously boind one. Consequently, the
quantifier rules are not as “natural” as the rules for the
connectives.

V Elimination: From Vve(v*), infer ¢(c/v), where
¢(c/v) is the wif that results from o(v*) by replacing
all free occurrences of the variable v by the con-
stant c.

V Introduction: From ¢(c*), infer Vve(v/c), where
¢(v/c) is the wif that results from ¢(c*) by replacing
all occurrences of ¢ by ‘v, provided: ¢ does not occur
in a premise; if ¢(c*) ozcurs in a subproof, then no
individual constant in ¢(c*) occurs in an assumption
that is global to the sabproof; and all new occur-
rences of v must be fre: after the replacement.

3 Introduction: From ¢(c*), infer Ive(v/c*), where
o(vic*) is the formula that results from ¢(c*) by re-
placing zero or more occurrences of ¢ by v.

3 Elimination: From 3ve v*) and a subproof that be-
gins with the assumption ¢(c/v) and that ends with

Translation:

a proposition  not containing c, infer ¢, where c is
an individual constant that has not been used before
and ¢(c/v) is as described above.

[These rules are adapted from Schagrin, Rapaport, and
Dipert (1985). For further discussion and other sets of
rules, see other standard introductory texts such as Copi
(1979), Jeffrey (1981), Kalish, Montague, and Mar (1980),
Mendelson (1979), Quine (1951, 1980, 1982).] As with the
case of propositional logic, there is a form of the inference
rule Resolution that has proved to be of importance in Al
contexts (see Chang and Lee, 1973; Manna, 1974; Nilsson,
1971, 1980; Raphael, 1976; Rich, 1983; Winston, 1984 and
THEOREM PROVING).

As an example of the use of the introduction and elimi-
nation rules, Figure 1 shows a translation and natural-
deduction proof of the argument:

Horses are animals.
-. Every head of a horse is a head of an animal.

The rules of — Elimination and — Introduction used on
lines 7 and 11 can be derived from the rules for the connec-
tives 11 and /\ and the logical equivalence “material condi-
tional”; the former rule is, essentially, modus ponens (see
Locic, proposimional and Schagrin, Rapaport, and Dipert
(1985) for details of these rules and the derivations).

Vx[Horse(x) — Animal(x)] F Vy[3x[Horse(x) » Head-of(y, x)]
— Jz[Animal(z) A Head-of(y, 2)]]

Proof:

1. Vx[Horse(x) — Animal(x)]

; premise of argument
: BEGIN subproof using — Introduction to prove

:(3x[Horse(x) A Hoad-of(a, x)] — 3z[Animal(z) A Head-of(a, 2)])

* 2 Jx[Horse(x) A 1Head-of(a, x)]

; assumption for — Introduction

: BEGIN sub-subproof using 3 Elimination to prove 3z[Animal(z) A Head-of(a, 2)]

(Horse(b) A Head-of(a, b))
Vx[Horse(x) — Animal(x)]
(Horse(b) — Animal(b))
Horse(d)

Animal(d)

Head-of(a, ¢)

©E N TR

¥ OR K X ¥ X X X
* X K O X X ¥ X

; from line 2 (assumption for 3 Elimination)
; sent in from line 1

; from line 4, by V Elimination

; from line 3, by » Elimination

; from lines 5 and 6, by — Elimination

; from line 3, by A Elimination

. (Animal(b) .\ Head-of(a, b)) ; from lines 7 and 8, by A Introduction
10.3z[Animal(:) A Head-of(a, 2)]; from line 9, by 3 Introduction

:END of sub-subproof that used 3 Elimination to prove 3z[Animal(z) A Head-of(a, 2)]

11.3z[Animal(z) ». Head-of(a, 2)]

: returned to outer subproof from line 10 of innermost sub-subproof

* 192.(3x[Horse(x) » Head-of(a, x)] — 3z[Animal(z) A Head-of(a, 2)])
: from lines 2 and 11, by — Introduction
; END of subproof that used — Introduction to prove
; (3x[Horse(x) A Head-of(a, x)] = 3z[Animal(z) A Head-of(a, 2)])
13.(3x[Horse(x) A Head-of(a, )] — 3z[Animal(z) A Head-of(a, 2)])
: returned to main proof from line 12 of outer subproof
14.Vy[3x[Horse(x) A Head-of(y, x)] — 3z[Animal(z) » Head-of(y, 2)]]
; from line 13, by V Introduction

Figure 1. An example of Introduction and Elimination rules to prove the argument that if horses
are animals, then every head of a horse is a head of an animal.



EXTENSIONS OF PREDICATE LOGIC

First-order languages are often extended by the addition
of two important symbols: the two-place predicate symbol
for identity, =, and the definite-description operator 7 (in
many Al and natural-language contexts, words such as
equal and the are used instead). These additions to the
representational power of the language also entail greater
deductive power.

Identity

Syntactically, the identity predicate can be defined by
adding the following to the definition of wiff:

(wff.=) If t; and ¢, are terms, then (¢; = ;) is a(n atomic)
well-formed proposition.

Often, (¢, # t;) is defined as an abbreviation for 1 (¢; = £).
Semantically (t; = tp) if and orly if I(¢;) = I(¢;). The
axiomatic formulation of predicate logic can then be ex-
tended by the following two axiom schemata:

(A6) Vv[v =v].

(A7) YV iVVo[(vy = ) = (p(vi¥) ©> di(vy/vi¥)],
where i(vo/v*) is the result of replacing v; for v, at
zero or more of the free occurrences of v; in ¢ where
v, would not be bound.

Descriptions

Definite Descriptions. Noun phrases such as

the first human on the Moon
the present King of France
the woman who wrote “The Story of an Hour”

can be treated as having the form
the x such that ¢(x).

Thus, the expressive capabilities of the first-order lan-
guage (and hence the deductive capabilities of first-order
logic) introduced here can be extended by introducing a
new variable-binding operator in addition to the quantifi-
ers. Unlike the quantifiers, which «are wff-producing oper-
ators, the definite description operator 7is a term-produc-
ing operator. The definition of term can be augmented as
follows:

(T5) If ¢ is a wif and v is an individual variable, then
1v[g] is a term.

There has been a great deal o controversy over the
semantics of such terms. The approach due to B. Russell
(1971) has become the standard logical one. According to
Russell’s analysis, sentences of the form (1x ¢(x)) should
not be treated as subject—predicate sentences; that is,
they should not be parsed as consisting of a noun phrase,
1x ¢(x), and a verb phrase, . Rather, they are to be ana-
lyzed as
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Ax[px) N Vylp(y) = y = x] N Plx)]
For instance, to use Russell’s famous example,
The present King of France is bald
is to be represented as

Jx[Present-King-of-France(x)
N\ Vy[Present-King-of-France(y) — y = x] /\ Bald(x)]

that is,

One and only one thing is a present King of France and
he is bald.

It is a consequence of this analysis that the sentence
comes out false, since there is no present King of France.
Similarly,

The book that Knuth wrote is interesting
is false, since Knuth has written more than one book; and

The winged horse captured by Bellerophon is named
“Pegasus”

is false, since the winged horse captured by Bellerophon
does not exist.

The addition to the axiomatic formulation of predicate
logic is straightforward: Simply add the axiom schema

(A8) Y(1v (V) < Tvy[p(v))
N Vvle(vy) — vy = viI A Plvpl

Semantically, Fpl(1ve)) if and only if

1. there is a unique element d € D such that d € I(p)
and

2. d e I(Y).

An alternative analysis, due to Strawson (1985) takes
Y(1x¢(x)) to be of subject—predicate form, but the interpre-
tation 7 is taken to be a partial function: Y(1x¢(x)) is nei-
ther true nor false on I if I(1x¢(x)) is undefined. That is, if
1x¢(x) does not denote a member of D (ie, if nothing satis-
fies the predicate ¢), then (1 x¢(x)) is truth-valueless (for
further discussion on truth-value gaps, see Lambert,
1969, 1970).

A third approach, stemming from work done by
Meinong (1960), takes W(1x¢(x)) to be of subject—predicate
form but chooses a universe of discourse that allows I to be
total by providing an object for each definition description.
This strategy can be made plausible if the universe of
discourse is taken to consist of the objects of thought and,
hence, is the most appropriate one for Al applications [for
details see Castafieda (1977), Parsons (1980), Rapaport
(1978, 1981, 1984, 1985a,b) and Routley (1979)].
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Indefinite Descriptions. A noun phrase such as
a person I met today

can be treated as having the ‘orm
an x such that ¢(x).

The indefinite description operator £, which is also vari-
able binding and term producing, can be added to predi-
cate logic in a manner similar to the addition of 7 (for
details, see Kaplan (1972) and Leisenring (1969)).

METATHEORETIC RESULTS

A few major metatheoretic results are worth mentioning
briefly. As is the case for propositional logic, predicate
logic is sound (all theorems are valid, ie, true on all inter-
pretations—in symbols: if ¢, then [=¢) and consistent (no
wif ¢ is such that both k¢ and F =1 ¢). And Gddel showed
that it is complete (all valid wffs are theorems—if |¢,
then F¢) (see COMPLETENESS).

Léwenheim (and, later, Skolem) (Kleene, 1950, p. 394)
showed that monadic first-order logic (ie, first-order logic
without relations) is decidable: for any wif ¢, if there is a
nonempty universe of discourse D and there is an inter-
pretation I whose range is D and that is such that Ere,
then there is an interpretatior: I’ whose range is the set of
all positive integers and that is such that F;.¢. However,
Church showed that the full first-order predicate calculus
is undecidable (for details, se2 Blumberg (1967), Church
(1956), and Jeffrey (1981)).

SECOND-ORDER LOGIC
If quantifiers are allowed to range over predicate vari-
ables, the resulting language allows the expression of
such propositions as

There is a relation that holds between Bill and Hector,

which would seem to be a logical consequence of

Bill is a student of Hector.

In symbols,
Student-of(Hector, Bill)
implies
3P P(Hec:or, Bill)
as well as

dx3y3P Pxy
In such a language, identity can be defined by

VaVylx = y © Volelx) « o(y)]]

And, if predicates can be quantified over, then they can be
the arguments of other, “higher-order” predicates. Thus,
for example, that a relation is reflexive can be expressed
as

VR[Reflexive(R) < VxRuxx]

with R appearing in both subject and predicate position.
Such a logic is termed second- or higher-order logic or the
extended predicate calculus.

Although second-order logic clearly has greater expres-
sive power than first-order logic, it also has some me-
tatheoretic disadvantages. For one thing, a form of Rus-
sell’s paradox can be developed:

Vo[Self-referential(p) < (@)l
implies, by V Elimination,

Self-referential (M Self-referential)
o 1 Self-referential( -1 Self-referential)

For another, one version of Gédel’s famous incompleteness
theorem is that second-order logic is incomplete: There
are true second-order wffs that are not theorems (for dis-
cussions of second-order logic, see Church (1956), Copi
(1979), Jeffrey (1981), Kleene (1950), and Kneebone
(1963, p. 110-118)).
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LOGIC PROGRAMMING

Logic programming can be broadly understood as the use
of logic to represent problems and problem-solving meth-
ods, together with the use of appropriate proof procedures
for the effective solution of those problems. For the most
part, logic programming today uses Horn-clause logic



