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LOGIC, PROPOSITIONAL

Propositional logic is the study of inferences that can be
made from propositions. Roughly, propositions are the
“meanings” or “thoughts” expressed by declarative sen-
tences (Church, 1956; Gale, 1967). Secondarily, it is also
the study of the representation of information by proposi-
tions. Other names for it are propositional calculus, sen-
tential logic, and—when its subject matter is taken to be
those things that can have truth values (ie, that are either
true or false)—it is often called truth-functional logic. The
bearers of truth values are sometimes considered to be
propositions, (declarative) sentences, or truth functions.
Typically, propositional logics are distinguished from
first-order logics by their lack of internal analysis of prop-
ositions (eg, they do not distinguish between subject and
predicate (see Loaic, PREDICATE). Such logics also exist for
other types of sentences (such as imperatives) and for
more than two truth values. For details, see the logics of
imperatives presented by Castafieda (1975) and Rescher
(1966), the many-valued logics discussed by Rescher
(1969), and the various Proceedings of the International
Symposium on Multiple-Valued Logic.
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The representational system of propositional logic is its
underlying language. This consists of propositions and
propositional (or, in the case of truth-functional proposi-
tional logic, truth-functional) connectives; a syntax that
specifies the grammar of propositions; and a semantics
that provides the “meanings” of propositions in terms of
their truth conditions. The deductive system of proposi-
tional logic consists of rules that only permit inferences
that lead from truths to truths (thereby preventing infer-
ences that would lead from truths to falsehoods). Its (de-
ductive) syntax consists of such rules and axioms, and its
semantics characterizes these rules in terms of truth val-
ues. (This entry is concerned primarily with truth-func-
tional propositional logic, except where indicated.)

LANGUAGE OF PROPOSITIONAL LOGIC

There are two kinds of propositions: atomic and molecular
(also called simple and compound). Molecular propositions
are formed from (one or more) atomic ones by means of
truth-functional connectives (or truth-functional opera-
tors). For instance,

Andrea is a philosopher
is atomic;
Andrea is a philosopher and Mike is not French
is molecular, formed from the two atomic propositions

Andrea is a philosopher
Mike is French

by the connective and and the connective (or operator)
not. But

Ruth believes that Marvin is a logician

is not molecular (rather, it is atomic), since the operator
Ruth believes that is not truth-functional. [A branch of
logic that does treat the latter proposition as molecular is
modal logic, in particular, doxastic modal logic (see Locic,
MODAL; BELIEF REPRESENTATION sYSTEMS).] In propositional
logic, atomic propositions are considered to be unanalyz-
able; the branch of nonmodal logic that analyzes atomic
propositions is called predicate logic (see Logic, PREDICATE).
In truth-functional propositional logic a molecular
proposition must be such that its truth value is a function
of the truth values of its atomic parts. The particular func-
tion is determined by the connectives. In addition to the
one-place “connective” or operator, negation (usually ex-
pressed in English by not or it is not the case that), there
are 16 two-place truth-functional connectives. Of these,
the most common are given in Table 1. For a list of others,
see Church (1956) and Schagrin, Rapaport, and Dipert
(1985). There are, of course, other n-place connectives (for
n # 2), for example, the three-place connective if . . . then
. . else (see Manna, 1974); but these are either trivial
(when n = 1) or (for n > 2) expressible in terms of two-
place connectives, as discussed below (Minimal Sets of
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Table 1. Common Two-Place Truth-Functional
Connectives

Conjunction and

Inclusive disjunction or

Material conditional if. . .then. . .

Material biconditional if and only if

Exclusive disjunction xor; ie, either . . .or. . .
but not both

Joint denial nand

Disjoint (or alternative) denial nor

Connectives). (For interesting generalizations of these
connectives as operators on sets of propositions, see Sha-
piro (1979) for a discussion in an Al context and McCaw-
ley (1981) for a discussion in a linguistic context.)

Syntax

A formal syntax for a language of propositional logic can
be presented by a recursive definition of well-formed prop-
osition. One such definition, using the most common con-
nectives, follows.

1. Theletters A, . . . ,Z and these letters subscripted
with positive-integer numerals (eg, A;, Bgr) are
well-formed (atomic) propositions.

2. If P and Q are well-formed propositions, then so are

P (the negation of P)

(P Q) (the conjunction of P with Q)

(P\v Q) (the inclusive disjunction of P with Q)

(P — Q) (the material conditional whose anteced-
ent is P and whose consequent is Q)

(P < Q) (the material biconditional of P with Q)

(P + Q (the exclusive disjunction of P with Q)

(P|Q) (the joint denial of P with Q)

(P | Q (the disjoint denial of P with Q)

3. Nothing else is a well-formed proposition.

The boldface letters in the second clause of this recursive
definition are metavariables ranging over propositions.
The outer parentheses in clause 2 prevent ambiguity. For
instance, P /A Q \/ R is ill-formed; instead, one must write
either (P N Q) v R) or (P N (Q \v R)), depending on
which is wanted. On occasion, parentheses can be dropped
for purposes of readability. Other systems can be defined
by using different symbols or by using different conven-
tions for disambiguation—such as precedence of connec-
tives.

There are several ways to express the connectives in
English, many of which have non-truth-functional conno-
tations; however, propositional logic studies only the
truth-functional properties of such phrases. Thus, proposi-
tional logic ignores the important distinctions between

Marie is a vice-president and Ben is a clerk

and

Marie is a vice-president but Ben is a clerk

(the latter suggesting, perhaps, that Ben is merely a clerk)
as well as the important distinctions between

I got into bed and I fell asleep
and
I fell asleep and I got into bed

(the latter suggesting, perhaps, that I sleepwalk).

There are also several other families of symbols used
for the connectives, most notably Polish (or prefix) nota-
tion. Polish notation has the advantage of not requiring
parentheses for disambiguation. The first five connectives
of clause 2 expressed in Polish notation are

NP
KPQ
APQ
CPQ
EPQ

As an example, the ambiguous proposition in infix nota-
tion discussed earlier cannot be written in Polish nota-
tion. Instead, one is forced to write either AKPQR or
KPAQR. (It is standard practice in Polish notation to use
the letters N, K, A, C, and E instead of the connective
symbols 1, /\, \/, —>, and <>, respectively. For a thorough
discussion of these notational issues, consult a standard
introductory textbook, such as Copi (1979), Schagrin, Ra-
paport, and Dipert (1985), and especially Schagrin (1979).

It is also important to recall that propositional logic
does not provide an analysis of the internal structure of
propositions; thus, it does not provide a way to represent
or reason about individuals or classes; that is the province
of first-order (or predicate) logic.

Semantics

The semantics of molecular propositions can be given by
means of the equivalences in Table 2.

The semantics can also be given by means of truth
tables. Typically, these have two sets of columns, one for
the atomic propositions (the “input”) and one for the mo-
lecular proposition (the “output”); and 2" rows, where n is

Table 2. Semantics of Molecular Propositions

-1 P is true

(P N\ Q) is true
(P \/ Q) is false
(P — Q) is true

(P < Q) is true
(P + Q) is true

(P|Q) is false
P | Q) istrue

if and only if
if and only if
if and only if
if and only if

if and only if
if and only if

if and only if
if and only if

P is false.

both of P and Q are true.

both of P and Q are false.

P is false or Q is true (or
both).

P and Q have the same
truth value.

P and Q have opposite
truth values.

both of P and Q are true.

both of P and Q are false.




Table 3. Sample Truth Tables
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Input Output | Input  Output | Input Output | Input Output
P P P Q PAQ|P Q@ PVvQ|P Q@ P—-Q
T F T T T T T T T T T
F T T F F T F T T F F

F T F F T T F T T
F F F F F F F F T

Table 4. Truth Table with Intermediate Computations

Input Computations Output
QlPvQ ®PAQ TPNQ | (PVQATERPAQ)

T T T T F F

T F T F T T

F T T F T T

F F F F T F

Table 5. Some Important Logical Equivalences

Double negation P is logically equivalent to P
Idempotency P is logically equivalent to PAP)
P is logically equivalent to PrvP
Commutative laws PAQ is logically equivalent to QNP
PvQ is logically equivalent to QvP
Associative laws (PA@QAR) is logically equivalent to (PAQAR)
PV QVR) islogically equivalent to PveVvR
Distributive laws PA@QVR) islogically equivalent to (PAQVEPAR)
PV QAR) islogically equivalent to PvNPVR)
De Morgan’s laws TAPAQ) is logically equivalent to PVvTQ
TPVQ is logically equivalent to COPATQ)
Contraposition P—-Q is logically equivalent to CQ—"1P)
Material conditional Pr—-9Q is logically equivalent to PV Q
P—-Q is logically equivalent to JPATQ)
Exportation (P> (@Q@— R)) is logically equivalent to (PAQ—-R)

the number of distinct atomic propositions, one for each
possible combination of truth values of the atomic proposi-
tions. Samples are given in Table 3 (T and F stand for true
and false, respectively).

Truth tables can also be used to compute the truth
values of more complicated molecular propositions. Some-
times this is done using a third set of columns for interme-
diate computations of “subpropositions,” as in Table 4.
(Algorithms for computing with truth tables are given in
Schagrin, Rapaport, and Dipert, 1985).

Two propositions are logically equivalent if they have
the same truth values for all possible combinations of
cruth values of their atomic parts. Table 5 lists some of the
important logical equivalences.

Minimal Sets of Connectives. The choice of which con-
nectives to use depends on one’s purposes. Generally, if
the language of propositional logic is to be used in a repre-
sentational system, especially one for natural language,
then a large set of connectives is appropriate. This permits
distinguishing between distinct but logically equivalent
propositions. However, for deductive purposes, a smaller
number of connectives is better, both because fewer infer-

ence rules are then needed and because metatheoretic
proofs about propositional logic then become easier.

It can be shown that all n-place truth-functional con-
nectives can be expressed using only negation and con-
junction, or else negation and disjunction, or else negation
and the material conditional. They can also all be ex-
pressed using only one connective, either joint denial or
disjoint denial. (For further discussion and proofs, see, eg,
Copi, 1979 and Mendelson, 1979.) Usually, a compromise
is found between the extremes of using all of the connec-
tives (for representational adequacy) and only one or two
(for elegance or metatheoretic simplicity): It is common to
use negation, disjunction, and conjunction to express a
proposition in either conjunctive normal form (CNF) or
disjunctive normal form (DNF). In the former a proposi-
tion is expressed as a (logically equivalent) conjunction of
disjunctions of atomic propositions and negations; in the
latter, as a (logically equivalent) disjunction of conjunc-
tions of atomic propositions and negations. For example,
the proposition

(P-QVQ—->RAQ)

is logically equivalent to the CNF proposition
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PV QVRIANPYIQVER
APyvQYV 1 RAPYQVER

as well as to the DNF proposition

APAQARVPATQATR)
vPATQARVEPAQAR)

Algorithms for converting a proposition into a logically
equivalent proposition in CNF or DNF may be found in
Copi (1979) and Schagrin, Rapaport, and Dipert (1985).

Tautologies, Contradictions, and Contingent Proposi-
tions. Propositions that are true for all possible combina-
tions of truth values of their atomic parts are called tau-
tologies; those that are false for all possible combinations
are called contradictions; and the others are said to be
contingent. For example, (P \ (P — Q) — Q) is a tautol-
ogy; (P A\ 11 P) is a contradiction; and (P — Q) is contin-
gent. Because of the semantics of negation, the negation
of a tautology is a contradiction, and vice versa. All tautol-
ogies are logically equivalent to each other, as are all
contradictions. This fact is of some significance for repre-
sentational issues since all tautologies clearly do not “say”
the same thing. For example, (P \y 7 P) and (P N\ (P —
Q)) — Q) are both tautologies and hence logically equiva-
lent; yet, in an important sense, they do not “mean” the
same thing.

The Paradox of the Material Conditional. There are other
limitations on the use of the language of propositional
logic as a representational system for natural-language
sentences. Most notably, the semantics of the material
conditional do not correspond to the ordinary English use
of if—then. For instance, (P /A -1 P) — Q) is a tautology
simply because its antecedent is a contradiction and,
hence, false. But a corresponding English sentence such
as“If1+1=2and1 + 1 # 2, then Bertrand Russell is the
Pope” does not seem to be true even though it is a tautol-
ogy. For this reason, such phenomena are called “para-
doxes of the material conditional.” Attempts to overcome
these “paradoxes” have generally taken the form of intro-
ducing new, non-truth-functional operators and connec-
tives whose semantics are closer to their natural-lan-
guage counterparts. The two main kinds of logic that have
been developed along these lines are modal logic and rele-
vance logic. (For the former, see Locic, MopaL, and Hughes
and Cresswell, 1968; for the latter, see Anderson and
Belnap, 1975.)

DEDUCTIVE SYSTEMS OF PROPOSITIONAL LOGIC

Syntax

A deductive system for any logic can be presented in one of
two ways: as an axiomatic system or by means of a natural
deduction system.

Axiomatic Propositional Logic. An axiomatic system
typically has several axioms (which ought to be tautolo-

gies) and a minimal number of rules of inference (which
ought to lead from truths to truths). To present proposi-
tional logic axiomatically, the well-formed propositions
(WFPs) are restricted here to those whose only connec-
tives are -1 and —. All WFPs of the following three tauto-
logical forms, called axiom schemata, may be taken as
axioms (others are possible; note, again, that boldface let-
ters are metavariables ranging over propositions):

(A1) (P —> (@ — P)) (confirmation of the consequent)

(A2) (P> Q->R)—>((P—-Q—(P—->R)
(self-distribution)

(A3) (P->"1Q—>Q—P) (contraposition)

There is one rule of inference:
(MP) From P and (P — Q), infer @ (modus ponens)

A proof of a WFP P, is a sequence Py, . . . , P, of WFPs
such that for each k(1 < k < n), either P, is an axiom or
there are i, j < k such that P; = (P;— P,). (Note: P; is not
merely logically equivalent to (P;— Py); it is (P;— P,).) A
theorem of our propositional logic is a WFP P such that
there is a proof of P (viz, Py, . . . ,P,_1, P). Finally, Pis
provable means: P is a theorem—the notation for this is:
+P. (Sometimes, the turnstile, , is subscripted by the
name of the system of logic of which P is a theorem.)

As an example, a proof of (P — P) is given in Table 6.
Comments, preceded by semicolons, are not formally part
of the proof. Note, however, that they would be formally
part of a proof that the proposition is a theorem of proposi-
tional logic, that is, of a proof that HP — P).

The notion of “proof” can be extended to “proof from
hypotheses,” where the hypotheses are nonlogical princi-
ples (or postulates) typically belonging to some particular
subject matter (eg, laws of physics or “world knowledge”).
They would not usually be tautologies. Formally, a se-
quence of WFPs Py, . . . , P, is a proof of P, from a set of
hypotheses H iff for all k (1 < k < n), either P} is an axiom,
or P, € H, or P, is inferred by (MP) from previous WFPs
in the sequence. The notation for this is: H+ P,; if H =
{H;, . . . ,H,}, then the notationis Hy, . . . ,H,FP,
[for complete details of an axiomatic propositional logic,
see Mendelson (1979) and Kleene (1950)].

A Natural Deduction System for Propositional Logic. A
natural deduction system typically has no axioms but has
several rules of inference, and it allows for the possibility
of introducing assumptions in the middle of a proof. These
can be viewed as “temporary axioms” that are “dis-
charged” when no longer needed.

To present propositional logic in this fashion, the WFPs
are restricted here to those whose only connectives are 7
and /\. The following may be used as rules of inference:

(a) From P and Q, infer (P \ Q).
(b) From P and Q, infer (Q /\ P).

(a) From (P /\ Q), infer P.
(b) From (P N\ @), infer Q.

(/\ Introduction)

(/\ Elimination)



Table 6. A Proof from Axioms
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1. (P> ((P—->P)—>P)—
P—->P->P)—
P->P)

2. P—>P—->P)

3. Po>((P-P)—>P)

4. (P> P->P)—->P->P)
5 P-P)

; this is an axiom, since it is a

; WFP with the form of axiom

; schema (A2), with P and R both
; replaced by P, and Q replaced
;by (P — PY

; (A1), with Q replaced by P

: (A1), with Q replaced by
;'(P—> Py

; from 3, 1 by (MP)

; from 2, 4 by (MP)

(1 Introduction)  Ifboth @ and -1 Q can be inferred from
an assumption P, then infer 1 P,

(-1 Elimination)  Ifboth Q and 7 Q can be inferred from
an assumption 11 P, then infer P.

A notion of subproofs is needed for the last two rules,
along with rules allowing propositions to be “sent” into
the subproofs and “returned” from them under certain
restrictions. Subproofs can be indicated by prefixing stars
to the lines of a subproof, where the number of stars indi-
cates the level of nesting of the subproof [for details, see
Schagrin, Rapaport, and Dipert (1985)]. As an example,
Table 7 contains a natural deduction proof of the argu-
ment

S(AAB),A+TB

Each line of the proof has a comment following the semico-
lon, and subproofs have “begin” and “end” comments;
these are not formally part of the proof, but they play the
same role that comments do in computer programs. For
details and for rules of inference for other connectives, see
Copi (1979); Kalish, Montague, and Mar (1980); Schagrin,
Rapaport, and Dipert (1985). Natural deduction systems
have been extensively investigated (see Szabo, 1969).

Al and Propositional Logic. Newell, Shaw, and Simon’s
Logic Theorist program (1963), considered by some to be
the first Al program, used a breadth-first search procedure

to prove theorems of propositional logic. It successfully
proved 38 of the first 52 theorems of Whitehead and Rus-
sell’s Principia Mathematica (1927). A successor program,
the General Problem Solver (Ernst and Newell, 1969;
Newell, Shaw, and Simon, 1960) used means-ends analy-
sis to solve problems in a variety of domains, including
propositional logic. Discussions of these programs may be
found in Barr and Feigenbaum (1981) and Slagle (1971).

Another important propositional logic program is
Wang’s algorithm, which is a more efficient method for
determining whether a given argument is valid than
using truth tables. This algorithm attempts to interpret
the premises of the argument as all true and the conclu-
sion as false. If it succeeds in this attempt, the argument
is shown to be invalid; if it fails, the argument is shown
to be valid. For details, see Schagrin, Rapaport and Di-
pert, 1985.

A rule of inference that has proved to be of importance
in AI and automated theorem proving, in part because
most of the introduction and elimination rules can be
shown to be instances of it, is

(Resolution) From (M P\/ Q) and (P \/ R), infer (Q\/ R)

For a discussion of Al systems that use propositional logic
inference techniques based on Resolution, see REsoLUTION;
THEOREM PROVING; as well as such Al texts as Manna (1974),
Nilsson (1971, 1980), Raphael (1976), Rich (1983), and
Winston (1984).

Table 7. A Natural-Deduction Proof

1. " (AAB) ; this is the first premise
2. A ; this is the second premise
: BEGIN subproof using 7 Introduction to prove 1 B
* 3. B : an assumption for use by ™ Introduction
* 4. A ; sent in from line 2 of main proof
: (similar to parameter passing in
; procedures)
* 5. (AAB) : N\ Introduction using lines 3, 4

* 6. 1(AANB) : sent in from line 1 of the main proof
* 7.71B : 71 Introduction, from lines 3, 5, 6

; END of subproof that proved 1 B by 1 Introduction
8. 1B : returned from line 7 of subproof

; (similar to a procedure returning a
; value)
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Semantics

An argument is any inference from hypotheses (or prem-
ises) to a conclusion. Thus, rules of inference are essen-
tially forms of argument. A rule of inference or an argu-
ment should never lead from truth to falsehood. To say
that a rule of inference or an argument is valid means: if
the hypotheses are true, then the conclusion must be true.
Validity, thus, can be construed as a notion of truth rela-
tive to the premises. An argument is said to be sound (in
one sense) iff it is valid and its hypotheses are, in fact,
true.

Truth tables can be used for semantic inference—as
opposed to the syntactic inference discussed in the pre-
vious section. Here, a truth table is constructed whose
“input” columns contain the premises and whose “output”
column contains the conclusion. The argument is valid iff
there is no line of the truth table with T in all premise
columns and F in the conclusion column.

Propositional logic is also said to be sound in the sense
that all of its theorems are tautologies. It is also complete:
all propositional tautologies are theorems of propositional
logic. There is a link between a proposition’s being a tau-
tology and an argument’s being valid: For any proof P,,
...,P,1+ P, there corresponds the material-condi-
tional proposition: (P; A\ - - - A P,_1) = P,). The former
is valid iff the latter is a tautology [for details on these
topics, see Mendelson (1979) and Kleene (1950)]. This fol-
lows (by soundness and completeness) from the Deduction
Theorem, which states that the former is valid iff the lat-
ter is a theorem. Finally, propositional logic is also decid-
able: There is an algorithm such that for any WFP, the
algorithm decides whether the WFP is a theorem (ie, one
can use a truth table to determine whether the WFP is a
tautology). However, the decidability of propositional
logic is an NP-complete problem and hence computa-
tionally “intractable”; this fact has been employed in
philosephical arguments to the effect that such logics are
not well-suited to computational models of rationality
(Cherniak, 1984).
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LOGO

LOGO is a programming language in the spirit of LISP
invented in the MIT AI Lab to teach mathematical con-
cepts to little children [see S. Papert, “Teaching Children
to be Mathematicians versus Teaching about Mathemat-
ics,” Int. J. Math. Educ. Sci. Technol. 3, 249-262 (1972)].
A program in LOGO manipulates a little device called the
“turtle.” This turtle moves on a large flat surface. With
two commands, PENUP and PENDOWN, it is possible to
create a trace of the turtle movements. The goal of a pro-
gram is usually to draw a certain figure; therefore, pro-
gramming in LOGO is referred to as “turtle geometry.”
Typically, commands would be FORWARD 100, RIGHT
60, and BACK 100. It is possible to define procedures. In
later research, LOGO has been used to help people learn
about powerful ideas and to study the acquisition of com-
putational skills by young children (see C. J. Solomon and
S. Papert, “A Case Study of a Young Child Doing Turtle
Graphics in LOGO,” Proceedings of the National Com-
puter Conference, AFIPS, pp. 1049-1056, 1976). More in-
formation can be found in the MIT AI Lab LOGO Memos.
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New Jersey Institute of
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LOOPS

LOOPS was one of the first multi-paradigm programming
environments. Developed at Xerox PARC in Interlisp, it
added an object-oriented programming system similar to
Smalltalk to the procedure-oriented programming of
LISP. It also incorporated access-oriented programming
allowing changes in objects to trigger computation (useful
for monitoring), rule-oriented programming often used for
simple expert systems, and a visual programming inter-
face that supported graphic exploration and modification
of program and data structures. The integration of para-
digms was designed to support the rapid development of
knowledge-based systems. [See M. Stefik, D. G. Bobrow, S.
Mittal, and L. Conway, “Knowledge Programming in
LOOPS: Report on an Experimental Course,” AI Maga-
zine 4(3), 3-13 (1983).] Recent versions of Common LISP
"stegrate CLOS (qv), a new standard object-oriented pro-
gramming substrate that carries over many of the ideas
from LOOPS.

Danier. G. BoBrow
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LUNAR 897

LOPS

An approach to program synthesis, based on transforma-
tion of logical formulas and guided by powerful fundamen-
tal strategies [see W. Bibel, “Syntax-Directed, Semantics-
Supported Program Synthesis,” Artif. Intell. 14, 243-261
(1980)]. A LISP implementation of this approach is pre-
sented in W. Bibel and K. M. Hérnig, “LOPS-—A System
Based on a Strategical Approach to Program Synthesis,”
in A. Biermann, G. Guiho, and Y. Kodratoff, eds., Auto-
matic Program Construction Techniques, MacMillan, New
York, 1984. A more elaborate and logic programming ori-
ented implementation is described in G. Neugebauer, B.
Fronhéfer, and C. Kreitz, “XPRTS—An Implementation
Tool for Program Synthesis,” in D. Metzing, ed., Proceed-
ings of the Thirteenth German Workshop on Artificial In-
telligence, Geseke, Germany, Sept. 1989, Informatik-
Fachberichte 216, Springer, Berlin, 1989, pp. 348-357.
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Technical University Munich

LUNAR

LUNAR is a natural language question-answering system
developed by W. Woods and his colleagues at BBN in the
early 1970s for the NASA Manned Spacecraft Center. The
system answered questions about the chemical composi-
tion of the Apollo 11 moon rocks. LUNAR was one of the
first successful natural language understanding systems
and pioneered the concept of natural language front ends
to databases. Its linguistic fluency was substantial: it han-
dled relative clauses, passive sentences, verb complement
constructions, complex quantification, and pronominal
references. It could specify and perform averaging calcula-
tions and included capabilities for both document re-
trieval and fact retrieval. LUNAR was demonstrated to
the public at the Second Annual Lunar Sciences Confer-
ence in Houston, Texas in 1971. [See W. A. Woods, R. M.
Kaplan, and B. Nash-Webber, The LUNAR Sciences Nat-
ural Language Information System: Final Report, BBN
Report No. 2378, Bolt, Beranek and Newman, Cambridge,
Mass., 1972 (available from NTIS as N72-28984); see also
W. A. Woods, “Progress in Natural Language Under-
standing: An Application to Lunar Geology,” AFIPS Con-
ference Proceedings, Vol. 42, National Computer Confer-
ence and Exposition, 1973; and W. A. Woods, Semantics
for a Question-Answering System, Garland Publishing
Co., New York, 1979.]
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