1 1.3.8.

(c) p = "James is young" q = "James is strong" We can represent the given english statment as $p \wedge q$. The negation can be represented as: $\neg(p \wedge q) \equiv \neg p \vee \neg q$ [Apply DeMorgan's Law]. The negation can be expressed in english as: James is not young or James is not strong.

(d) p = "Rita will move to Oregon"

q = "Rita will move to Washington"

We can represent the given english statuent as $p \lor q$.

The negation can be represented as: $\neg(p \lor q) \equiv \neg p \land \neg q$ [Apply DeMorgan's Law].

The negation can be expressed in english as: Rita will not move to Oregon and Rita will not move to Washington.

2 1.3.10.

(b)

(d)

р	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$
0	0	0	1	1	1	1
1	0	0	0	1	0	1
0	1	0	1	0	1	1
1	1	0	1	0	0	1
0	0	1	1	1	1	1
1	0	1	0	1	1	1
0	1	1	1	1	1	1
1	1	1	1	1	1	1

Explanation: If p implies q and q implies r, then p should imply r because implication is transitive. In other words, if you have a chain of conditions where each condition causes the following condition, then the first condition should cause the last condition.

р	q	r	$p \lor q$	$p \rightarrow r$	$q \to r$	$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
0	0	0	0	1	1	1
1	0	0	1	0	1	1
0	1	0	1	1	0	1
1	1	0	1	0	0	1
0	0	1	0	1	1	1
1	0	1	1	1	1	1
0	1	1	1	1	1	1
1	1	1	1	1	1	1

Explanation: If p implies r, q implies p, and either p or q is true, then r is true. This follows because we can pick which of p or q is true and this variable must imply r since both p and q imply r. Therefore, r must be true.

There are three valid ways to do the next kind of problems: (1) truth table, (2) use equivalences, or (3) show they are true for exactly the same assignments. The latter two are harder but can save considerable work.

3 1.3.16.

Method (3): $p \leftrightarrow q$ is true exactly when p and q are both true or p and q are both false which is represented by $(p \land q) \lor (\neg p \land \neg q)$.

1.3.20

Method (1):

р	q	$p\oplus q$	$ eg (p \oplus q)$	$p \leftrightarrow q$
0	0	0	1	1
1	0	1	0	0
0	1	1	0	0
1	1	0	1	1

1.3.22

Method (2): $(p \to q) \land (p \to r)$ $\equiv (\neg p \lor q) \land (\neg p \lor r)$ [Convert $\to \text{to } \lor$] $\equiv \neg p \lor (q \land r)$ [Distributivity of \lor over \land] $\equiv p \to (q \land r)$ [Convert \lor to \to]

1.3.24

Method (2): $(p \to q) \lor (p \to r)$ $\equiv (\neg p \lor q) \lor (\neg p \lor r)$ [Convert $\to \text{to } \lor$] $\equiv (\neg p \lor \neg p) \lor (q \lor r)$ [Associativity and Communitivity of \lor] $\equiv \neg p \lor (q \lor r)$ [$\neg p \lor \neg p \equiv \neg p$] $\equiv p \to (q \lor r)$ [Convert \lor to \to]

4 NOR Problem

It suffices to show that $\neg p$ and $p \land q$ are equivalent to propositional formulas whose only operator is NOR.

Claim 1: $\neg p \equiv p$ NOR p.

р	$\neg p$	p NOR p
0	1	1
1	0	0

Claim 2: $p \land q \equiv (p \text{ NOR } p) \text{ NOR } (q \text{ NOR } q).$

p	q	$p \wedge q$	p NOR p	q NOR q	(p NOR p) NOR (q NOR q)
0	0	0	1	1	0
1	0	0	0	1	0
0	1	0	1	0	0
1	1	1	0	0	1