
CSE250, Spring 2022 Assignment 2 Due Wed. Mar. 2, 11:59pm

Lectures and Reading:

Chapter 6 is the place where the “Scala features...” part of the course transitions to the
subject of data structures in general, which is the main content of the course. Focus on
sections 6.2 and 6.3. Skim section 6.4 on “Buffers”—this section is mainly the laundry-list
of operations on page 199, a few of which were covered in the example during Chapter 2
involving prepending and appending with arrays and lists. (Regarding that example and the
timing analysis that followed, note the opening paragraph of section 6.1.1, where the text
says: “This means that ‘updates’ can be made without making complete copies...the new
object will share as much memory as possible with the original.” This is what my Week 2
notes diagrammed.) By Monday we will already be into Chapter 7, which segues into the first
numerical content of this course, O-notation. To supplement the text’s short coverage of that,
please read—really view—over the weekend these materials in the “Other Resources” section
of the course webpage:

� https://cse.buffalo.edu/˜regan/cse250/order-notationhandout.pdf (a 2-page quick refer-
ence)

� http://science.slc.edu/˜jmarshall/courses/2002/spring/cs50/BigO/index.html

� https://slideplayer.com/slide/2811606/ (updated link for Grunschlag slides).

Then focus on sections 7.5–7.7, but skip the ‘RPN’ example in section 7.8. I tend to place
“unit testing” into the vision of design by contract, emphasizing “requires” and “ensures”
over spot-placed assertions, but we will need the latter to test the former anyway.

Then: Chapters 8–11 are skipped. Note that Chapter 7 introduces ADTs but the first
chapter-scope example is Chapter 12. Suddenly by the end of next week we will be 2/3 of the
way through this long text! But chapters 12, 13, 15, 16, 18, and 21–22 will be taken much
more slowly, a week or more each for the meat of the course. Anyway, sections 12.1–12.3 (just
4 pages) include a conceptual recap of what was laid out in week 2 on lists and arrays. So
please include them in the reading for Friday 3/4 and Monday 3/7, before the First Prelim
Exam on Wednesday, 3/9.

———- Assignment 2, due Mar. 2 “midnight stretchy” on CSE Autograder ———-

Brief Task Statement:

We will extend the Assignment 1 code to separate words and punctuation, and then
consider when and whether hyphens should be regarded as part of a long word or as separating
two shorter words. The first task is to write a method tokenize that converts each line of
the input text file into a list whose strings are either a single non-alphanumeric character, or
a word of alphanumeric characters (including the apostrophe). Show how using this method
changes the answers on the Assignment 1 test files Gettysburg.txt and JustHamlet.txt

away from the words “battle-field” and “comical-historical-pastoral” to something else.

https://cse.buffalo.edu/~regan/cse250/order-notationhandout.pdf
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
https://slideplayer.com/slide/2811606/
https://en.wikipedia.org/wiki/Design_by_contract


Then write a method dehyphenate that works on each line separately and implements
this policy, using a supplied dictionary file wordsDWYL.txt read as a set of words: If the
hyphenated word is in the dictionary without the hyphen, like “battlefield,” then remove
the hyphen and count it as one word. Else, if the hyphenated parts are in the dictionary as
separate words, leave them as separate words (while deleting the hyphen). Else, undo this part
of what tokenize did by making it one long word with the hyphen(s) after all. Test whether
your code works as-intended on the triple-hyphenated word “comical-historical-pastoral” even
though your code only considers two hyphenated words at a time. (It is OK for your code
to give dubious results when not all three words are in the dictionary. Note also that this
is actually “tragical-comical-historical-pastoral” in Hamlet but the first word is hyphenated
over the line in JustHamlet.txt. It is AOK to ignore this—don’t try to combine lines. In
fact, although JustHamlet.txt ends many lines with a double-dash, this is the only case of
a word being hyphenated across a line. You may ignore words hyphenated across lines in all
tests, even if you get pieces that aren’t words.)

Thanks to coincidental feature of the dictionary as downloaded from (my ScalaSamples

folder or) https://github.com/dwyl/english-words (it appears as “words.txt” but please
give it the above name referencing the parent website https://github.com/dwyl for “Do
What You Love”), your run on JustHamlet.txt will seem to have given a wrong answer by
failing to remove an obvious hyphen. Before consulting the dictionary to see why, convince
yourself that the bug does not happen because Shakespeare’s hyphenated word appears first
on an indented line. To fix the issue, make your storage of the dictionary non-case-sensitive. In
an essay portion, say how much smaller this made your set object (if at all—and why if at all),
after including the above discussion of how your dehyphenate method handles hyphenated
chains of more than two words.

File(s) to Submit: One .zip file of the project root folder consisting of at least the following:

� MaxWords.scala (Yes, same file.) Location can be anwhere unique in the project but
not in a package.

� A file essay2.txt in your project root folder, which must be the destination for input
and output.

� A file output.txt of output from your program, on both Gettysburg.txt and
JustHamlet.txt. (You can do separate runs rather than combine into one run, making
sure you set the append option true when opening output.txt for output.)

� Optionally, other (small) text files you used for testing, again in the project root folder.

Do not submit your copy of wordsDWYL.txt; this will be supplied as a base file. See specific
directions next. We will do other “hidden tests” of our own. The points are 30 for a working
version of tokenize, 30 for dehyphenate, 30 for the whole code, and 18 for the essay answers,
making 108 pts. total. Manual grading with subdivided credit will be used, including some
allowance for coding style and economy.

Specific Directions and Ground Rules (or Ground-Rules, or Groundrules)



� No pre-given code, but you may adopt some or all of the Assignment 1 answer-key code.

� Your first order of business should be to convert matrix from being type
Array[Array[String]] to type Array[List[String]]. This should require only a few
changes in declaration and use(s) of .toList. (It may seem strange to continue using
array-style indexing with lists, but that’s OK—especially since the lists are relatively
short lines of text.)

� Thou shalt not use screen input for filenames, or for anything in a submitted file. (But
screen output is OK—it will show up in the feedback.)

� The last line of your output.txt output must have the Assignment 1 form typified by

The word of longest length 35 is List.tabulate(10)(_+1).zip(answers) in line 91, column 3

(Of course, your answers themselves will change—depending on the stage of your code,
it might be Javascript-like in line 85, column 15.)

� It is no longer OK to keep punctuation marks that touch your words and count them in
the length. The apostrophe ’ counts as a letter character, so you should have doesn’t,
not doesn :: ’ :: t in your lists. Hyphens should be separated by your tokenizer.
E.g., mustn’t-do is tokenized as mustn’t :: - :: do, and then depending on whether
mustn’t is in the dictionary, left that way or joined into one word again by dehyphenate.

� OK if your tokenize itself does the entire file, or takes each line fed to it separately.

� You must enable a command-line argument for passing test files as on Assignment 1.
This excludes the dictionary file.

� The dictionary must ultimately be read as val dictFile = "../wordsDWYL.txt"

one level outside your project root folder. (In IntelliJ on Windows, this level is
.../Users/<you>/IdeaProjects/.)

� The dictionary should be read in as a Set[String]; initially via the given code line
val dict = Source.fromFile(dictFile).getLines().toSet but you will want to
change this in the final steps of the project.

� Both tokenize and dehyphenate must use the match ... case ... mechanism of
Scala. At least one of them must use the :: operator “on the left-hand side”—that is,
between case and =>. (In the other you may “punt” match to a corner of the code.)

� You may not use java.util.StringTokenizer or any third-party tokenizing code.

� Beware this curveball: The char ’-’ is not the same as the string "-". Scala however
allows trying to equate them, with only a warning that the answer is always false.

Essay Q1: Give at least two different examples of how your code handles triple-
hyphenated words. One of them can instead be how it handles a word followed by a double-
dash, like the end of lines in JustHamlet.txt. You should want to leave the word separate,
but other behavior is OK if your essay calls attention to it here.

Essay Q2: How much does your Set of the dictionary words shrink (if at all) when you
create it all lowercase? Can you make your code find out exactly why that happens?


