
CSE250, Spring 2022 Assignment 5 Due Wed. Apr. 20, 11:59pm

Lectures and Reading:

The Second Prelim Exam will be on Friday, April 29. It will cover Chapters 12, 13,
15, 16, and 18, and focus on assignments through that date.

Reading: For next week, finish Chapter 16. Contrary to how I have skimmed over long
code examples in the text before, study the code in section 16.3 (pages 506–510) closely.
Similar code in the ISR framework would avoid such a hard separation of the notions of “key”
and “value” and thus might be simpler in parts. Then skip Chapter 17 (which might support
a compilers course), and go into Chapter 18. While reading 18, hark back to chapter 13, while
noting that 18 gives the signature implementation of a priority queue. The topics we will
emphasize regarding Chapter 18 are (i) how a heap enables compiling “top-ten (or so)” lists
in less time than the order-n log n needed for sorting, and (ii) how to quickly fix up a heap if
the priority value of one item suddenly changes.

——– Assignment 5, due Wed. Apr. 20 “midnight stretchy” as PDF on CSE Autograder ——–

(1) Let A be a data structure composed of a size-m array arr of linked lists, each of size
r. Let B be a data structure composed of a linked-list lis of r nodes, such that each node u

holds an array u.arr of size m. Both data structures have n = mr data items that are kept
globally sorted by key.1 The three main “ISR” operations have the following algorithms and
asymptotic running times:

� A.find(item): Do binary search on arr to find i such that
arr(i).head.key <= item.key < arr(i+1).head.key. It is vital to observe
that the implementation of binary search never evaluates the variable right, so it
does not bomb if i = m-1 so that i+1 is out of range of the array—we can treat the
algorithm as though that value were +∞. The implementation does not return i = m

out of range, so the final i is always a valid list. Then do sequential search of that list,
giving time Θ(log(m) + r).

� B.find(item): Do linear search to find the last node u such that u.arr[0].key <=

item.key. Then do binary search of that array. This gives time Θ(r + log(m)), which
in this notation is the same time as for data structure A.

� A.insert(item): Call findPlace(item) to find where the item should go—the only
difference from find being that it always returns an iterator to the location to insert
before, rather than end when no item matching item.key is found. Inserting into the
linked list at that point is just O(1) extra time, so the overall time stays Θ(log(m) + r).
Same for A.remove(item).

1In A this means: each linked list is sorted in nondescending order, and if 0 ≤ i < j < arr.size then
every item in the list arr(i) has key ≤ the key of every item in the list arr(j). In B this means each array
is sorted in nondescending order, and if node u comes before node v in the linked list, then every item in the
array for node u has key ≤ the key of every item in the array for node v. Pictures of these two data structures
are at the end of the lecture notes https://cse.buffalo.edu/ regan/cse250/CSE250Week8.pdf]

https://cse.buffalo.edu/~regan/cse250/CSE250Week8.pdf


� B.insert(item) and B.remove(item): Same Θ(r + log(m)) time to find where the
item is or should go, but inserting or removing in the middle of a size-m array takes
time Θ(m). Since Θ(m) has higher asymptotic order than Θ(logm), the time is now
Θ(r + m).

The questions are all about: when you have n data items, how do you want to choose r and
m subject to rm = n in order to minimize the time needed in the following situations. You may
suppose rm = n exactly; in practice it does not matter if the lengths of the individual linked
lists in A, or the individual arrays in B, differ by a few items. The choice of how r relates to
m, keeping their product the same, is called a tradeoff. In all cases, you are defining r = r(n)
and m = m(n) as functions of n, subject to their product being n, to minimize times like
Θ(r+log(m)) and Θ(r+m). A fact you may find helpful is that log( n

logn
) = (log n− log log n)

has the same asymptotic order as Θ(log n).

(a) Your application mainly uses just find, like the task of Assignment 6. (Note: regarding
B, the BALBOA and BALBOADLL implementations are currently configured optimally this
way, but regarding A, AIOLI and AIOLISLL are quite the opposite.)

(b) Your application does a lot of insertions and removals, and you are using data structure
A. What is the optimal tradeoff?

(c) Your application does a lot of insertions and removals, and you are using data structure
B. What is the optimal tradeoff now?

Also answer the following: In terms of asymptotic order, a data structure that gives time
Θ(
√
n) for an operation is slower than one giving time Θ(log n). What if, however, the concrete

times—putting principal constants in the same units of time—are 2
√
n in the former case and

8 log2(n) in the latter. Find the maximum value of n below which the former data structure
is concretely faster. (Here log2 means log to base 2. Points are 6 + 6 + 6 + 9 = 27 pts.)

(2) Modify the nonrecursive form of breadth-first search, given as classicBFS in my notes
https://cse.buffalo.edu/˜regan/cse250/CSE250Week9MWF.pdf, so that when the goal node
is found, the output also gives you a shortest path from start to goal. Use tuples so that
whenever a node v is visited, the first node u that v is visited from is preserved in the tuple.
Then say why the set of tuples you get efficiently gives you a path from goal back to start,
which you can then reverse to get your answer. (When goal is not found, of course, you get
no such path.)

[For some important chitchat, the text’s algorithm on page 481 accomplishes this task—
even when the edges have arbitrary weights—but is not efficient, as the text admits below
it. Put more bluntly, the algorithm is (IMPHO) bad, and if you find it hard to read, well so
do I. The same remarks extend to the maze-specific code on page 478. Your algorithm will,
however, work correctly only because all the edges have the same unit weight. The footnote
on page 481 takes the higher road, but Dijkstra’s algorithm is properly a subject for CSE331,
and in applications where you don’t have different weights, it’s overkill.]

Your answer need not be executable Scala code, but it should be “Scala-like” including
the use of sets of tuples (or alternatively, a Map) and the Queue[Node] data structure. (27
pts., broken as 18 for code and 9 for explanatory comments, giving 54 on the set.)

https://cse.buffalo.edu/~regan/cse250/CSE250Week9MWF.pdf

