
CSE250 “Virtual Assignment 7” Answer Key Spring 2022

(1) Draw the binary search tree that results from inserting the words of this sentence in
the order given, allowing duplicate keys. Use alphabetical order of lowercased words with the
lower words at left. Then show the results of deleting all three occurrences of the word ”the”,
one at a time. (It is OK to use either the inorder successor or predecessor for deletion, and
putting an equal key left or right, but please show each step separately on the relevant part
of the tree—you do not have to re-draw the whole tree each time. A virtual 12 + 9 = 21 pts.)

Answer: Up to the second occurrence of the, it must be:

draw

/ \

binary the

/ \ / \

search tree

/ \ / \

results that

/ \

from

\

inserting

Now for the duplicate the, the left-leaning strategy puts it as the right child of that, while the
right-leaning strategy makes it the left child of tree. Either is fine, and it isn’t even necessary
to be consistent—so long as the tree is legal, the 3 occurrences of the will be consecutive in
the inorder transversal, that’s fine. Let’s do the latter first and then the former:
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For the three deletions, it is interesting that whatever way you used to insert and whatever
order you delete them in, the only difference is whether you use the inorder predecessor or the
inorder successor as the “victim” when deleting the as the right child of draw (for the last
time, if you use the leaf or elbow the as victim first). In the predecessor case, the tree is
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In the other case, you get
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(2) For each task below labeled 1.–8., say which of the following best describes its running
time:

(a) Guaranteed O(1) time.

(b) Amortized O(1) time.

(c) Usually O(1) time.

(d) Guaranteed o(n) time.

(e) Usually o(n) time.

(f) Guaranteed O(n) time.



In all cases n denotes the number of items currently in the underlying data structure, and any
other parameters are stated. Note that the answer “o(n) time” can convey either O(log n)
time or O(

√
n) time, or other sub-linear times. The variable vec stands for a vector, dlist for

a doubly-linked list (not necessarily sorted), ba for a “BALBOADLL” data structure (assuming
it has just been newly created or refreshed, no deletions), arr for an ArrayBuffer (or the
SortedArray class in the ISR repository, same answers), bst for a BST—i.e. a basic binary
search tree without balance guarantee, itr for an iterator of the appropriate kind, comp for a
typical comparator function, and item for a typical item in the data structure. Justifications
are not required, but might help for partial credit. The tasks (for a virtual 8 × 3 = 24 pts.)
are:

1. For a BST iterator itr, the call itr.next() Answer: Amortized O(1) time, which is
stronger than saying Usually O(1) time.

2. dlist.pushRear(item); (equivalently, dlist.insert(item,dlist.end)) Answer: Al-
ways O(1) time, guaranteed, which is part of the theoretical advantage of linked lists
over vectors for adding/erasing data in already-known locations.

3. dlist.remove(itr); Answer: Guaranteed O(1) time, since just a few links need to be
spliced.

4. arr.remove(itr); where itr points in the middle of arr Answer: Guaranteed O(n)
time, and one can really not say better—this kind of surgery basically always “munges”
the array so it has to be re-allocated.

5. For a BALBOADLL iterator itr, the call itr.next() Answer: Guaranteed O(1) time.
(Technically, this presumes that when an array becomes empty, its node is spliced out of
the linked list, so that the iterator never has to waste time stepping thru empty nodes
when it has gone past the ened of a previous node’s array. In hash tables this becomes
a real issue with empty buckets.)

6. bst.find(item) Answer: In a “scraggly tree” this can take n steps, so it is not guar-
anteed o(n) time. But it is usually O(log n) time since “random data” makes fairly
balanced trees, and since the log(n) function is a case of “o(n),” this is Usually o(n)
time.

7. Preorder traversal of a BST. Answer: The full transversal is guaranteed O(n) time,
regardless of how scraggly the tree is.

8. For a BALBOADLL object ba and index j < n, the call ba(j). This supposes that
indexing is simulated by running down the linked list and adding up the length of each
constituent array until the sum goes over j, in which case the current array arr has the
jth overall element. If s was the sum before adding the size of that array, so s <= j,
then return arr(j - s). Answer: If there are r arrays, each about m ≈ n/r elements,
then you spend O(r) time using the sums to find the array where the element would
be. Then the indexed lookup in that array is O(1) more time. Presuming the tradeoff
is maintained so that r = o(n), for instance r ≈

√
n, this is Guaranteed o(n) time.



(3) Show how a binary search tree bst can implement indexing bst(j) in O(h) time,
where h is the height of the tree. In particular, if the tree is balanced—which I specify to
mean h ≤ 2 log2 n for a tree of n nodes overall—then this means indexing is in O(log n)
time. The needed wrinkle is that each Node has an extra field mySize: Int which maintains
the number of nodes in the subtree rooted at that node. So, for instance, the leaves are
exactly those nodes with mySize == 1, and that might be a quicker check than both left

and right being endSentinel (or being null in the text). And of course root.mySize equals
n itself—this would supersede the BST class needing to maintain a size field.

The particular case j = (n − 1)/2 when n is odd means that the middle element of such
a tree can be found in O(log n) time. Sketch your algorithm in Scala-like pseudocode and
explain why it has the desired time. As usual, you may presume that reading and comparing
fields of nodes are O(1)-time operations unto themselves. (A virtual 27 pts., making 72 on
the virtual set.)

Answer: This is well described as a recursive method bst(u,j) to find the node of index
j in the subtree rooted at u, presuming 0 ≤ j < u.mySize with zero-based indexing. We can
also suppose that the empty tree (or end sentinel) returns size 0. So take k to be the size of
the left subtree. If j = k, return u. If j < k, then the left child v cannot be the end sentinel
and node j must be in its subtree, so call bst(v,k-j). Else, the node must be in the right
subtree, so call bst(u.right,j-k-1).

def bst(j,u) = {

val ls = u.left.mySize

if (j == ls) u else if (j < ls) bst(ls-j, u.left) else bst(j-ls-1, u.right)

}

Assuming j is correctly in range, the recursion must bottom out with a “j = k” case before
it hits the end, and it descends by one level on each call. Hence it makes at most h recursive
calls (after the initial call to bst(j) = bst(root,j)). Because the mySize fields is maintained
rather than computed by traversal each time, the body of each call takes O(1) time for the
comparison and some basic operations, so the whole time is O(h).


