
CSE250 Week 10: Trees (mostly...)

...But first, finishing the copnceptual content of Chapter 15

QuickSort

The text soft-pedals what other texts highlight as two conceptual novelties of this algorithm:

1. Analysis of a deterministic algorithm based on random distributions of data.
2. Randomizing the algorithm itself, to take "bad-luck data" out of the mix.

First, the basic D&C format of the algorithm: It selects an element p called the pivot from the array and
then the partition step first rearranges the elements to look like this:

 Here pv is the array index of the pivot element in the ultimate sorted order, which is what the
partition step computes. The elements to its right and left are not necessarily sorted already, but
they can be sorted in two recursive calls of quickSort: this is the D&C part. In the bad-luck case
where p happened to be chosen as the least element, we get pv=0 so pv-1 does not exist, whereupon
we get just one recursive call on indices pv+1=1 to hi=n-1. (The indices here are inclusive on both
ends.) In case p is unluckily picked as the largest element, things are similar in mirror image. At least
progress to termination is guaranteed, but the edge-cases have no "D&C advantage."

Overall, the execution has the following characteristics:

• It sorts an array in-place via swaps, without wholesale copying.
• Alternately, it can sort a (linked-)list via cell rearrangements, thus avoiding the appearance of

data copying, but this puts you in the simplest case of situation 1.
• It recurses on contiguous sub-ranges of the array (or rearranged pieces of the list), which again

helps it work in-place.
• The -time combination step happens before the recursive calls. So it is "D&C tail 𝛩 n()

recursive", which means that all the work happens on the way "going down the stack" (text, p484
middle) rather than on the way up as with MergeSort.

• The recursive calls are not guaranteed to be on sized subsets, where is a fixed n

c
c > 1

p elements > pelements ≤ p

lo hi

lo pv-1 pv+1 hipv

constant, let alone as with MergeSort. But can be argued to hold "most of the c = 2 c >
3

2

time", which is enough to give overall running time in most cases. "Bad luck", 𝛩 n n(log)

however, can yield cases where one of the two subsets steps down only to size or or n - 1 n - 2

so, which raises the absolute worst-case complexity to " .O n "2

The first four points make the time in the (good case of the) fifth point come with a low 𝛩 n n(log)
principal constant in practice. This is what puts the "Quick" into QuickSort. [And is how Sir C.A.R.
"Tony" Hoare more than made up for his "billion dollar blunder" of inventing the null reference.]

The partition step is prefaced by selecting one element p of the array as the pivot. We want p to
be as close to the median of the array as possible---but nobody knows how to compute the median in

 time to begin with. So we resort to various levels of guessing-and-hoping:O n()

a) Just pick p to be the first element in the array (or list).
b) Pick p to be the middle element of the array. (Not as friendly to lists.)
c) Pick p at random from the array. This is what creates a randomized algorithm.
d) Pick p to be the middle of three elements: usually the first, last, and middle.

Policy d) is called "Median-of-Three QuickSort" and is close to the most common policy. Policy a) is the
quickest when it doesn't run afoul of bad data---weirdly, data that is already almost-sorted counts as a
bad case here.

[Second half of lecture was a demo of code for MergeSort and QuickSort applied to the Fallows1898.txt
dictionary. Some highlights---and lowlights:

• The non-tail recursive code "merge1" for merge causes a StackOverflow, just as the text warns.
This is even though the array being sorted (after conversion to a List) has only 6,175 entries. It
is not an infinite-recursion error; my lecture actually showed that it was making progress just
before it bombed.

• The tail-recursive version "merge2"---as noted, basically identical to the text's code---works fine.
• QuickSort is about 4x quicker---when the pivot element is selected randomly.
• When the first element is used as the pivot, its time was similar to MergeSort. This is because

Fallows1898.txt is an example of data that is already nearly-sorted. Only some words, notably
"Vole", are out of place.

• Picking the middle element should have worked better, but didn't...hmmm...

The last bullet exemplifies why playing with code is a never-ending time sink unto itself. :-]

Trees

Abstractly speaking, a tree is a connected undirected graph with no cycles. Equivalently, is a T T

connected graph with nodes and edges, for some (finite) number . n n - 1 n

A rooted tree distinguishes one node as being the root. The root is usually portrayed as being r r
uppermost, i.e., trees "grow down"---like with genealogical trees. Then edges are regarded as radiating
away from the root, so that they become directed edges after all. (But, often we implement trees with
links going both ways---so don't insist on calling them directed graphs.) Here is a "general tree":

• Every node other than the root has exactly one edge to a node that is closer to . (In the u v r

case of shown, equals itself.) Then is called the parent of .u v r v u

• A node with no edges going away from (in the directed view we say: having no out-edges), is a r

leaf. Note that is a leaf, even though it is closer to than many other nodes.u r
• Every non-leaf node, including the root, is called an interior node.
• Every interior node has one or more children, meaning nodes connected by edges going w

away from the root. The node shown has just one child (which happens to be an interior w

node), while has three children (which all happen to be leaves). Fellow children of the same x
node are called siblings, and the terms descendant and ancestor have their familiar meanings
from genealogy.

• The valence of a node is its number of children. (The word degree is often used
interchangeably with valence, but technically they are equal only if the tree is regarded as a
directed graph.)

• A binary tree is one in which every interior node---including the root---has valence 2. A unary-
binary tree allows nodes of valence 1 too. Binary search trees (BSTs) are in fact unary-binary
trees.

• The depth of a node is the number of edges on the path from to the root. Nodes of equal u u
depth, whether siblings or not, are on the same level.

• The height of a node can be reckoned two ways: as the maximum distance to a leaf below , u u

r

u
w x

y

l

z

or (as the text says), the difference between the maximum depth in the tree and the depth of .u

• The height of the whole tree, however, is always the same as the maximum depth of a leaf. h

The height of the above tree is 3. The height of is above its own leaves, but overall. You x 1 2

can call in the above tree a "high leaf".u

Now for a notion that (IMHO strangely) does not have a standard name and which the text takes for
granted on page 494: A tree is "sequenced" if the children of every internal node are listed in
sequence. The sequence is usually written left-to-right. This specifies a unique layout for the tree in
two dimensions, as in the above diagram. The sequencing should not be confused with the different
traversal orders defined below. The sequencing determines those orders, but is not the same as them.

A path is a special case of a tree where there is one leaf at the end, the root at the beginning, and
every other node has one parent edge toward the root and one edge away from it. This is the graph of
a linked list. If you have a singly linked list, then each edge is directed away from the root. If you have
a doubly linked list, then it's an undirected path. (If you have a circularly linked list, then the graph is a
cycle, which is not a tree.)

Implementing Trees

As with lists, trees can be implemented via direct recursion without needing a separate concept of
Node. Immutable trees are done that way. But we will mainly use standard mutable trees with nodes.
Among them there are several choices:

1. Every node in the tree uses the same Node class, which has:
(a) a list (or other Sequence) of children; leaves have the empty list.
(b) optionally, a parent link.
(c) usually, a data item. Sometimes data is only in the leaves, or sometimes internal nodes

have a different kind of item (such as an operator) from the leaves.
(d) Associating data with edges, say in the form of a weight, is rarer, so unlike with general

r

u
w x

y

l

z

+

3 5

3 + 5 = 5 + 3 as a fact of math

-

3 - 5 ≠ 5 - 3

graphs there isn't usually a separate Edge class.
2. Leaves can use a separate Leaf class.
3. A binary tree usually specifies the children of a node as left and right rather than as a list.

The text puts null pointers in those fields for leaves, and for one of those fields in the case of a
unary node in a unary-binary tree. An alternative is to use a sentinel end node.

4. The "Circularly Linked Tree" or "CLR tree", used in the famous "MIT White Book" by Cormen,
Leiserson, and Rivest (and now Stein) and by the C++ Standard Template Library, makes the
root and the sentinel end node be parents of each other, too.

Traversals

1. Level order, which is what BFS does.
2. Preorder
3. Postorder --- not the same as mirror-image of preorder, still L to R.
4. Inorder (well-defined for binary and unary/binary trees).

Visualizations: Geeks for Geeks
https://www.programiz.com/dsa/tree-traversal
http://ceadserv1.nku.edu/longa/classes/mat385_resources/docs/traversal.htm

The labels in our starting diagram are in preorder, maybe the most natural default order. The Roman
alphabet starting with for root wraps into the Greek alphabet for the last five nodes.r

1. Level order is: . Note that this fixes a misleading aspect of the diagram: r s v w 𝛽 t u x y 𝛾 𝛿 𝜖 z 𝛼 x

should be brought up to "level 2" because it is connected to in level 1. BFS does not care about the w

layout of the tree, or whether you wanted to pretend that was on a level by itself. x

The other three orders all use the same "multiple-visitation order", depth-first and left-to-right.(Caveat:
DFS itself gives the visitation order which is frankly weird; "DFS order" often r s v w 𝛽 𝛾 𝛿 𝜖 x y z 𝛼 t u

r

u

w

x

y

z

t

s

v

𝛼

𝛽

𝛾 𝛿 𝜖

https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/

refers to the popping order , which we'll see is a mirror image of left-to-right r 𝛽 𝜖 𝛿 𝛾 w y 𝛼 z x v s u t
preorder.) The visitation order (Euler Tour) of the left-to-right transversal is:

 endr s t s u s r v r w x w y z y 𝛼 y w r 𝛽 𝛾 𝛽 𝛿 𝛽 𝜖 𝛽 r

Each node appears a number of times equal to its degree, which is its valence. The three major 1 +
traversal orders are subsequences in which each node appears once. The difference is when each
node is "expanded" or otherwise acted on. (Note: In the "CL&R Tree", the sentinel end node is the
parent of root as well as the null-saver of leaves, so it is natural to park there at the end.)

2. Preorder acts on the first visitation of each node:

 endr s t s u s r v r w x w y z y 𝛼 y w r 𝛽 𝛾 𝛽 𝛿 𝛽 𝜖 𝛽 r = r s t u v w x y z 𝛼 𝛽 𝛾 𝛿 𝜖

3. Postorder always acts on the last occurrence of each node:

 endr s t s u s r v r w x w y z y 𝛼 y w r 𝛽 𝛾 𝛽 𝛿 𝛽 𝜖 𝛽 r = t u s v x z 𝛼 y w 𝛾 𝛿 𝜖 𝛽 r

This is the logical order to use when evaluating expression trees. It is also why postfix notation (also
called reverse Polish notation (RPN) because this was expounded best by Polish logicians early in

r

u

w

x

y

z

t

s

v

𝛼

𝛽

𝛾 𝛿 𝜖

1

2

3 4

5
6

7

8

9
10

11

12 13 14

r

u

w

x
y

z

t

s

v

𝛼

𝛽

𝛾 𝛿 𝜖
1 2

3

4

5

6 7

8

9

10 11 12

13

14

the 20th Century, especially Jan Łukasiewicz (note cite of UB's recently-late John Corcoran), but he
worked right-to-left) is unambiguous without needing parentheses.

4. Inorder acts on one of the middle occurrences, whenever the valence is at least 2. In a pure binary
tree, every internal node appears exactly three times and so there is a unique middle occurrence. In
this example, we have three choices for and two for . One of them is:r 𝛽

 r s t s u s r v r w x w y z y 𝛼 y w r 𝛽 𝛾 𝛽 𝛿 𝛽 𝜖 𝛽 r = t s u v r x w z y 𝛼 𝛾 𝛿

In a unary-binary tree, we have a further wrinkle depending on whether we distinguish between the
child of a unary node (an "elbow") bending right or bending left. The other child is null in the text, or
(better, IMPHO) is the end sentinel in the CL&R tree. When the left-child is real, inorder goes there
first.

Definition: A binary search tree (BST) is a unary-binary tree with left-right specified elbow nodes
whose keys are sorted by inorder.

Binary Search Tree Visualization

r

u

w

x

y

z

t

s

v

𝛼

𝛽

𝛾

𝛿 𝜖1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

end

𝜁

Tree re-drawn so
that inorder ≡ L to R
"searchlight order"

https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
https://visualgo.net/en/bst

