
CSE250 Week 11: Binary Search Trees

All binary search trees (BSTs) maintain the invariant that the keys of the items they store are sorted by
inorder. Given a set of items, a BST holding those items may have many possible shapes. But once n
the tree is laid out, the keys must appear in sorted order of the inorder transversal. (The only
exception is that items with equal keys can appear in any order so long as they stay consecutive in the
transversal. Applications like Assignment 6 would rely on this.)

IMHO, the most valuable helper function for the tree is the next() function of this transversal. We code
it first as a helper function inorderSuccessor using nodes, and then the iterator simply uses that
helper. The rules for the inorder successor of a node are:v u

1. If has a right subtree, then is the minimum node (a.k.a. the leftmost node or the "minChild") u v
in that subtree.

2. Else, is the first ancestor of reached by going up a left-child link in the upward path.v u

The first node in the inorder transversal is the min-node of the tree. Is it obtained by applying Rule 1 to

 the root? No, because the root usually has both left and right subtrees and then the successor is u =
not in the right subtree. The root is usually somewhere in the middle of the inorder transversal anyway.
The proper jumping-off point is the end node, and then Rule 1 does work: the "CL&R Tree" is rigged so
that the right child of end is root, and the begin node is indeed the leftmost node of the "sub"tree
rooted at root.

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1 2 3 4 5 6 7 8

9 10 11 12 13

14 15 16 17 18 19

i

e

When we reach node , we have a further dilemma: Is the leftmost node in its right subtree the isthmus s

node or the leaf ? Well, is in the right subtree of , so its key does not compare less-than the key i k k i

of , so the correct answer must be . How can we determine that based just on the tree? It helps to i i
have another helper function (note: BSTISR.scala makes it private):

def leftmostBelow(x: Node) = if (x.left == endSentinel) x else leftmostBelow(x.left)

Since i.left = endSentinel, the call leftmostBelow(s.right), which is the same as
leftmostBelow(i), immediately returns i. Next, leftmostBelow(i.right) returns k.

Thus the inorder transversal proceeds What about the successor of the leaf ? s i k j l→ → → → l

 It has no right subtree, so we go up. We follow right-child links until we step from to the root. Thus s

the successor is the root. The next node is the leaf , quite a swoop in two calls.m

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1 2 3 4 5 6 7 8

9 10 11 12 13

14 15 16 17 18 19

i

e

isthmus nodei =
elbow nodee =

i2

l

s

j

k

m

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1 2 3 4 5 6 7 8

9 10 11 12 13

14 15 16 17 18 19

i

e

isthmus nodei =
elbow nodee =

i2

l

s

j

k

m

f

We continue in this manner, until (in this example tree) we get to the second isthmus , whose right i2

child is the "elbow" . That node has a left subtree, so iterating leftmostBelow(i2.right) finds e

the leaf . Then after three more calls, we find that itself is the last node in the transversal. What is m e

the successor of ? We follow right-child links all the way up to the root, but in the CL&R tree, root e

counts as a left-child of end. So the successor of is end. This is actually what we want: the iteration e

goes to the end position, and then (if we deem it safe), we can cycle around again. Here is the code
(because root is also a right-child of end, we word a helper negatively):

 private def isNotLeftChild(u: Node) = (u != u.parent.left)

 private def inorderSuccessor(x: Node): Node = {

 if (x.right != endSentinel) {

 return leftmostBelow(x.right)

 } //else

 var y = x

 while (isNotLeftChild(y)) {

 y = y.parent

 }

 return y.parent

 }

The text does this a different way, inside the anonymous iterator implementation at the bottom of
page 507. It uses a Stack to save upcoming upward steps on the fly while executing the downward
step pushRunLeft in place of my leftmostBelow. This is recursive code; the above is iterative
code. Besides the limitation that the text builds the whole traversal---you can't easily place an iterator
into the middle of the tree---it seems not to realize that this code can be re-used by the removal method.

Inside the Iter class, we call it by:

 def next(): A = {

 assert(hasNext, "Attempt to advance past end")

 val ret = at.item //this needs a temporary

 at = Outer.inorderSuccessor(at)

 return ret

 }

The need for Outer. here is a Scala technicality going with the "{ Outer = >" ending to the opening
line of the BSTISR class.

You could also code a prev() method to iterate in the other direction with the help of an
inorderPredecessor method. The rules are mirror-image, e.g., if a node has a left subtree, then u

the predecessor is the maximum child in that subtree. Actually, this is what the text does while coding
the routine for removal (which it calls as the -= operator). But we can do removal in mirror image---
many other texts say to remove the right-subtree's minChild instead, and that is exactly what we can
re-use inorderSuccessor for.

[Wednesday's lecture ended here with some Q&A and a preview demo of the BST code.]

But let's see the code for insertion (+= in the text) and find first. The following code for find is fairly
similar to that in the text, modulo the difference that the text explicitly separates the key and value in its
TreeMap class. (IMPHO this creates lots of "tuple clutter" in the code.) One global similarity is that the
text uses a comparator-type function rather than a lessThan (in either < or <= forms), and both our
code exploits this to finish right when an equal comparison is found:

 def find(item: A): Iter = {

 if (root.item == null) { //i.e., tree is empty

 return end

 } //else

 var rover = root

 while (rover != endSentinel) {

 val c = keyComp(item, rover.item)

 if (c == 0) {

 return new Iter(rover)

 } else if (c < 0) {

 rover = rover.left

 } else {

 rover = rover.right

 }

 } //control here means not found

 return end

 }

Nothing could seem more natural---and yet there is a drawback for our desire to iterate on equal-key
items. Suppose our tree came out like this:

The above code stops at the noun form of mean. Then the iterator going forward will catch the verb
form, but will miss the entries for the adjectival forms---and there are two of them. The idea for the fix is
that the first occurrence of a key will always be leftward of the uppermost one found. So we change the
code to read:

 if (c == 0) {

 while (rover.left != endSentinel && keyComp(item,rover.left.item) == 0) {

 rover = rover.left

 }

 return new Iter(rover)

 } ...

Finally, note that the text's get method uses the convention of returning None if the item i is not found,
Some(i) when found. This code instead returns an iterator itr such that itr.hasNext means the
item was found (so itr() will return it), otherwise itr is end.

Insertion

Insertion actually benefits from an iterator helper function that, however, is unsafe to use publicly:

 type I = Iter

 def begin = new Iter(inorderSuccessor(endSentinel)) //per above discussion

 def end: Iter = new Iter(endSentinel) //And double links help here: O(1) time

 /** REQ: Node of loc is a leaf or elbow, and insertion will keep sortedness

 Note that we make private so that the REQ need only be enforced internally.

 */

end

root root.parent = end

19

mean

mean

mean
mean

(a.)

(a.)

(n.)

(v.)

 private def insert(item: A, loc: Iter, leftward: Boolean): Iter = {

 assert((leftward && loc.at.left == endSentinel)

 || (loc.at.right == endSentinel && !leftward),

 "Attempt to munge an existing node while inserting below " + loc())

 if (leftward) {

 loc.at.left = new Node(item, endSentinel, endSentinel, loc.at)

 return new Iter(loc.at.left)

 } else {

 loc.at.right = new Node(item, endSentinel, endSentinel, loc.at)

 return new Iter(loc.at.right)

 }

 }

 /** Public version needed for consistency with ISR trait, but use insert(item)

 */

 def insert(item: A, loc: Iter):Iter = insert(item, loc, loc.at.left==endSentinel)

The new node is always a leaf, and the leftward argument tells whether it is intended to be a left
child or right child of the parent node.

The reason this is unsafe is that inserting an arbitrary element can break the sortedness invariant.
Let's suppose our tree currently holds integer keys. Suppose we have an iterator to the isthmus node
with key 5. We cannot insert a right-child there. The only left-children we can insert must have keys
between 4 and 5. If we want to insert, say, 13.5 as a key, it must go elsewhere.

The insertion routine must find the place where the key of the given item can go. There is a special
case when the tree is empty because the root node pre-exists with a null item.

 def insert(item: A): Iter = {

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

13.5

 if (isEmpty) {

 assert(root.item == null, "Null not replaced in BST")

 root.item = item

 _size += 1

 return new Iter(root)

 } //else

The next problem compared to find is that the sequence of comparisons is terminated by rover
becoming the end sentinel (or becoming null in the text), but then it forgets the node it came from,
which is where we want to insert. So we run a "trailer pointer" called parent (in the text too):

 var parent = root //can't trust parent link of rover: could be endSentinel

 var wasLeft = keyComp(item, root.item) < 0 //dupe keys "tend to append"

 //var wasLeft = keyComp(item, root.item) <= 0 //dupe keys "tend to prepend"

 var rover = (if (wasLeft) root.left else root.right)

 while (rover != endSentinel) {

 parent = rover

 wasLeft = (keyComp(item, rover.item) < 0)

 //wasLeft = (keyComp(item, rover.item) <= 0)

 rover = (if (wasLeft) rover.left else rover.right)

 }

 _size += 1 //we have found a place to insert and whether left or right

 return insert(item, new Iter(parent), wasLeft)

 }

There is one more wrinkle related to, but not as critical as, the issue above with find and the issue
with binary search in arrays with intervals of equal-key items. When we are inserting an item with a key

 that already exists in the tree, we have a choice of placing physically before or after in k = k2 1 k2 k1

the tree. If we move left only on strict inequality, we will place equal-key items rightward. Moving left
on equals will always make the new item first in the range.

Removal

The first logical contrast to note is a general fact about sorted sequences---not necessarily from trees:

• Inserting an arbitrary element into a sorted sequence can break the sortedness.
• But removing an element from a sorted sequence still always leaves it sorted.

So it is fine to have an iterator version of remove, with the iterator having been placed by a call to find

(more code re-use).

 /** Return full item removed, if "item" is a dummy.

 If not found, return original dummy item.

 */

 def remove(item: A): A = {

 val itr = find(item)

 if (!itr.hasNext) { return item } //and do nothing, == how text treats "-="

 //else

 return remove(itr)

 }

Now we encounter a physical fact about trees:

• It is super-easy to remove an item in a leaf---just delete the leaf node.
• It is easy to remove an item in an isthmus or elbow node . The single subtree of becomes

the
v v

new subtree of the parent node of .u v

• But a full binary node cannot be snipped out.w

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

13.5

8' ?

However, a fact we encountered about the inorder transversal comes to our aid: The successor of v w
is always a leaf or isthmus or elbow node---in particular, it never has a left subtree. If it did have a left
subtree, the actual successor would have been in there. The text actually uses a mirror-image fact: the
inorder predecessor of always has an empty right subtree. (If it did, the successor of would have v w v

been in that subtree, and so wouldn't be .) In either case we can:w

1. Swap the items of nodes and .w v

2. Delete the "victim" node , which now has the item that was in which we want to remove.v w

The call to inorderSuccessor does the work of findVictim in the text; the body of findVictim
in the text actually does what you could code as inorderPredecessor. The code below needs more
lines because of the special-case treatment of root as well as the presence of endSentinel and
parent links. It recurses on itself once the victim node is found, because the victim node has an
empty subtree so that the recursion cannot fall through to the bottom again.

/** Removing any Node is always legal by the sortedness invariant, but full binary

 nodes requires swapping value with the inorderSuccessor before deleting its node.

 Note that the operation of searching for the node with item to remove is in other code.

 The code has to do extra work because it uses endSentinel not null links as in the text.

 */

def remove(loc: Iter): A = {

 assert(loc.hasNext, "Attempt to remove past-end Node of unfound item")

 _size -= 1 //we will always delete something

 val tmp = loc() //we will remove this item but not necessarily its node

 if (loc.at == root) { //we treat it specially

 if (_size == 0) {

 root.item = null.asInstanceOf[A]

 return tmp

 } else if (root.left == endSentinel) {

root
root.parent = end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

w

v

v'

 root = root.right

 root.parent = endSentinel

 endSentinel.parent = root

 endSentinel.left = root

 endSentinel.right = root

 return tmp

 } else if (root.right == endSentinel) {

 root = root.left

 root.parent = endSentinel

 endSentinel.parent = root

 endSentinel.left = root

 endSentinel.right = root

 return tmp

 } else {

 //we do nothing now because the root will not be moved.

 }

 } //no "else" here: we want the fall-through if loc.at == root == a full internal node

 //the next two tests are redundant but handling needs loc.at.parent to be real node.

 if (loc.at.left == endSentinel) { //its right subtree becomes parent's new subtree

 val parent = loc.at.parent

 if (loc.at.right != endSentinel) { loc.at.right.parent = parent }

 if (loc.at == parent.left) {

 parent.left = loc.at.right //and this overwrites loc.at, so loc becomes invalid

 } else {

 parent.right = loc.at.right

 }

 } else if (loc.at.right == endSentinel) { //its left subtree becomes parent's new subtree

 val parent = loc.at.parent

 if (loc.at.left != endSentinel) { loc.at.left.parent = parent }

 if (loc.at == parent.left) {

 parent.left = loc.at.left

 } else {

 parent.left = loc.at.left

 }

 } else { //loc.at is a full binary node. But this means its successor is not.

 //So after swapping in that node's value, we can remove it with one more call.

 val u = inorderSuccessor(loc.at) //which is "findVictim" in the text

 loc.at.item = u.item //tree being mutable is very helpful here

 return remove(new Iter(u)) //recursion is safe because it won't fall thru to else

 }

 //control here means we were in one of the easier cases and loc.at is already spliced out.

 return tmp

}

Issues With Simple Binary Search Trees

The main issue is similar to that with Quicksort: if the data arrives already in (nearly-)sorted order, you
will get an unbalanced tree giving at-worst performance per call to find (likewise insert and O n()

remove), and hence possibly needing time to build a tree of elements. Traversal would still O n2 n

be time total, and amortized time per call, but calling find at-will times could take the O n() O 1() n

worst-case -time total. (Note that the list of synonyms can have words from all over the O n2

alphabet, so that part of the task really does require random access to the whole data structure. It is
not a neatly streaming task...)

The text does not actually define exactly when a tree is balanced. The colloquial definition is that its
height is " " in regard to the total size . I prefer specifying the principal constant in the " " to O n(log) n O

be 2: A binary search tree of nodes is balanced if its height is at most . n 2 nlog2

There are two main strategies for preserving well-balanced trees.

1. Maintain balance after each insertion and removal by doing extra work in the form of rotations
as-needed.

2. Periodically refresh the tree. This is a painful time extra operation when needed, but is O n()

like the resize policy already used for arrays: it is amortized by being needed only after linearly
many quick operations.

The text covers strategy 1 in chapter 21 in the form of AVL Trees. I've put the code for strategy 2 into
BSTISR.scala, but have not yet specified how to manage it.

root
root.parent = end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

w

v

v'

