
CSE250 Week 11: Binary Search Trees
 
All binary search trees (BSTs) maintain the invariant that the keys of the items they store are sorted by 
inorder.  Given a set of  items, a BST holding those items may have many possible shapes.  But once n
the tree is laid out, the keys must appear in sorted order of the inorder transversal.  (The only 
exception is that items with equal keys can appear in any order so long as they stay consecutive in the 
transversal.  Applications like Assignment 6 would rely on this.)
 

 
IMHO, the most valuable helper function for the tree is the next() function of this transversal.  We code 
it first as a helper function inorderSuccessor using nodes, and then the iterator simply uses that 
helper.  The rules for the inorder successor  of a node  are:v u
 

1. If  has a right subtree, then  is the minimum node (a.k.a. the leftmost node or the "minChild") u v
in that subtree.

2. Else,  is the first ancestor of  reached by going up a left-child link in the upward path.v u

 
The first node in the inorder transversal is the min-node of the tree.  Is it obtained by applying Rule 1 to 

 the root?  No, because the root usually has both left and right subtrees and then the successor is u =
not in the right subtree.  The root is usually somewhere in the middle of the inorder transversal anyway.  
The proper jumping-off point is the end node, and then Rule 1 does work: the "CL&R Tree" is rigged so 
that the right child of end is root, and the begin node is indeed the leftmost node of the "sub"tree 
rooted at root.  
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When we reach node , we have a further dilemma: Is the leftmost node in its right subtree the isthmus s

node  or the leaf ?  Well,  is in the right subtree of , so its key does not compare less-than the key i k k i

of , so the correct answer must be .  How can we determine that based just on the tree?  It helps to i i
have another helper function (note: BSTISR.scala makes it private):
 
def leftmostBelow(x: Node) = if (x.left == endSentinel) x else leftmostBelow(x.left)

 
Since i.left = endSentinel, the call leftmostBelow(s.right), which is the same as 
leftmostBelow(i), immediately returns i.  Next, leftmostBelow(i.right) returns k.
 
Thus the inorder transversal proceeds ...  ...  What about the successor of the leaf ?  s i k j l→ → → → l

 It has no right subtree, so we go up.  We follow right-child links until we step from  to the root.  Thus s

the successor is the root.   The next node is the leaf , quite a swoop in two calls.m
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We continue in this manner, until (in this example tree) we get to the second isthmus , whose right i2

child is the "elbow" .  That node has a left subtree, so iterating leftmostBelow(i2.right) finds e

the leaf .  Then after three more calls, we find that  itself is the last node in the transversal.  What is m e

the successor of ?  We follow right-child links all the way up to the root, but in the CL&R tree, root e

counts as a left-child of end.  So the successor of  is end.  This is actually what we want: the iteration e

goes to the end position, and then (if we deem it safe), we can cycle around again.  Here is the code 
(because root is also a right-child of end, we word a helper negatively):
 
   private def isNotLeftChild(u: Node) = (u != u.parent.left)

 
   private def inorderSuccessor(x: Node): Node = {

      if (x.right != endSentinel) {

         return leftmostBelow(x.right)

      } //else

      var y = x

      while (isNotLeftChild(y)) {

         y = y.parent

      }

      return y.parent

   }

 
The text does this a different way, inside the anonymous iterator implementation at the bottom of 
page 507.  It uses a Stack to save upcoming upward steps on the fly while executing the downward 
step pushRunLeft in place of my leftmostBelow.  This is recursive code; the above is iterative 
code.  Besides the limitation that the text builds the whole traversal---you can't easily place an iterator 
into the middle of the tree---it seems not to realize that this code can be re-used by the removal method.
 
Inside the Iter class, we call it by:
 
      def next(): A = {

         assert(hasNext, "Attempt to advance past end")

         val ret = at.item   //this needs a temporary

         at = Outer.inorderSuccessor(at)

         return ret

      }

 
The need for Outer. here is a Scala technicality going with the "{ Outer = >" ending to the opening 
line of the BSTISR class.  
 
You could also code a prev() method to iterate in the other direction with the help of an 
inorderPredecessor method.  The rules are mirror-image, e.g., if a node  has a left subtree, then u

 

 



the predecessor is the maximum child in that subtree.  Actually, this is what the text does while coding 
the routine for removal (which it calls as the -= operator).  But we can do removal in mirror image---
many other texts say to remove the right-subtree's minChild instead, and that is exactly what we can 
re-use inorderSuccessor for.  
 
[Wednesday's lecture ended here with some Q&A and a preview demo of the BST code.]
 
But let's see the code for insertion (+= in the text) and find first.  The following code for find is fairly 
similar to that in the text, modulo the difference that the text explicitly separates the key and value in its 
TreeMap class.  (IMPHO this creates lots of "tuple clutter" in the code.)  One global similarity is that the 
text uses a comparator-type function rather than a lessThan (in either < or <= forms), and both our 
code exploits this to finish right when an equal comparison is found:  
 
   def find(item: A): Iter = {

      if (root.item == null) {  //i.e., tree is empty

         return end

      } //else

      var rover = root

      while (rover != endSentinel) {

         val c = keyComp(item, rover.item)

         if (c == 0) {

            return new Iter(rover)

         } else if (c < 0) {

            rover = rover.left

         } else {

            rover = rover.right

         }

      } //control here means not found

      return end

   }

 
Nothing could seem more natural---and yet there is a drawback for our desire to iterate on equal-key 
items.  Suppose our tree came out like this:  
 

 

 



The above code stops at the noun form of mean.  Then the iterator going forward will catch the verb 
form, but will miss the entries for the adjectival forms---and there are two of them.  The idea for the fix is 
that the first occurrence of a key will always be leftward of the uppermost one found.  So we change the 
code to read:
 
      if (c == 0) {

         while (rover.left != endSentinel && keyComp(item,rover.left.item) == 0) {

            rover = rover.left

         }

         return new Iter(rover)

      } ...
 
Finally, note that the text's get method uses the convention of returning None if the item i is not found, 
Some(i) when found.  This code instead returns an iterator itr such that itr.hasNext means the 
item was found (so itr() will return it), otherwise itr is end.  
 
Insertion
 
Insertion actually benefits from an iterator helper function that, however, is unsafe to use publicly:
 
   type I = Iter

   def begin = new Iter(inorderSuccessor(endSentinel))  //per above discussion

   def end: Iter = new Iter(endSentinel)   //And double links help here: O(1) time

 
 
   /** REQ: Node of loc is a leaf or elbow, and insertion will keep sortedness

       Note that we make private so that the REQ need only be enforced internally.

    */
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   private def insert(item: A, loc: Iter, leftward: Boolean): Iter = {

      assert((leftward && loc.at.left == endSentinel) 

              || (loc.at.right == endSentinel && !leftward),

              "Attempt to munge an existing node while inserting below " + loc())

      if (leftward) {

         loc.at.left = new Node(item, endSentinel, endSentinel, loc.at)

         return new Iter(loc.at.left)

      } else {

         loc.at.right = new Node(item, endSentinel, endSentinel, loc.at)

         return new Iter(loc.at.right)

      }

   }

 
   /** Public version needed for consistency with ISR trait, but use insert(item)

    */

   def insert(item: A, loc: Iter):Iter = insert(item, loc, loc.at.left==endSentinel)

 
The new node is always a leaf, and the leftward argument tells whether it is intended to be a left 
child or right child of the parent node.
 
The reason this is unsafe is that inserting an arbitrary element can break the sortedness invariant.  
Let's suppose our tree currently holds integer keys.  Suppose we have an iterator to the isthmus node 
with key 5.  We cannot insert a right-child there.  The only left-children we can insert must have keys 
between 4 and 5.  If we want to insert, say, 13.5 as a key, it must go elsewhere.

 
The insertion routine must find the place where the key of the given item can go.  There is a special 
case when the tree is empty because the root node pre-exists with a null item.
 
   def insert(item: A): Iter = {

 

 

end

root
root.parent = end

all end links go to root
all children not
shown go to end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

13.5



      if (isEmpty) {

         assert(root.item == null, "Null not replaced in BST")

         root.item = item

         _size += 1

         return new Iter(root)

      } //else

 
The next problem compared to find is that the sequence of comparisons is terminated by rover 
becoming the end sentinel (or becoming null in the text), but then it forgets the node it came from, 
which is where we want to insert.  So we run a "trailer pointer" called parent (in the text too):
 
      var parent = root  //can't trust parent link of rover: could be endSentinel

      var wasLeft = keyComp(item, root.item) < 0      //dupe keys "tend to append"

      //var wasLeft = keyComp(item, root.item) <= 0   //dupe keys "tend to prepend"

 
      var rover = (if (wasLeft) root.left else root.right)

      while (rover != endSentinel) {

         parent = rover

         wasLeft = (keyComp(item, rover.item) < 0)

         //wasLeft = (keyComp(item, rover.item) <= 0)

         rover = (if (wasLeft) rover.left else rover.right)

      }

      _size += 1    //we have found a place to insert and whether left or right

      return insert(item, new Iter(parent), wasLeft)

   }

 
There is one more wrinkle related to, but not as critical as, the issue above with find and the issue 
with binary search in arrays with intervals of equal-key items.  When we are inserting an item with a key 

 that already exists in the tree, we have a choice of placing  physically before or after  in k  =  k2 1 k2 k1

the tree.  If we move left only on strict inequality, we will place equal-key items rightward.  Moving left 
on equals will always make the new item first in the range.
 

 

 



 
 
Removal
 
The first logical contrast to note is a general fact about sorted sequences---not necessarily from trees:
 

• Inserting an arbitrary element into a sorted sequence can break the sortedness.
• But removing an element from a sorted sequence still always leaves it sorted.

 
So it is fine to have an iterator version of remove, with the iterator having been placed by a call to find
 
(more code re-use).  
 
   /** Return full item removed, if "item" is a dummy.  

       If not found, return original dummy item.

    */

   def remove(item: A): A = {

      val itr = find(item)

      if (!itr.hasNext) { return item }  //and do nothing, == how text treats "-="

      //else

      return remove(itr)

   }

 
 
Now we encounter a physical fact about trees:
 

• It is super-easy to remove an item in a leaf---just delete the leaf node.
• It is easy to remove an item in an isthmus or elbow node .  The single subtree of  becomes 

the 
v v

new subtree of the parent node  of .u v

• But a full binary node  cannot be snipped out.w
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However, a fact we encountered about the inorder transversal comes to our aid: The successor  of  v w
is always a leaf or isthmus or elbow node---in particular, it never has a left subtree.  If it did have a left 
subtree, the actual successor would have been in there.  The text actually uses a mirror-image fact: the 
inorder predecessor  of  always has an empty right subtree.  (If it did, the successor of  would have v w v

been in that subtree, and so wouldn't be .)  In either case we can:w
 

1. Swap the items of nodes  and .w v

2. Delete the "victim" node , which now has the item that was in  which we want to remove.v w
 
The call to inorderSuccessor does the work of findVictim in the text; the body of findVictim 
in the text actually does what you could code as inorderPredecessor.  The code below needs more 
lines because of the special-case treatment of root as well as the presence of endSentinel and 
parent links.  It recurses on itself once the victim node is found, because the victim node has an 
empty subtree so that the recursion cannot fall through to the bottom again.
 
/** Removing any Node is always legal by the sortedness invariant, but full binary

    nodes requires swapping value with the inorderSuccessor before deleting its node.

    Note that the operation of searching for the node with item to remove is in other code.

    The code has to do extra work because it uses endSentinel not null links as in the text.

 */

def remove(loc: Iter): A = {

   assert(loc.hasNext, "Attempt to remove past-end Node of unfound item")

   _size -= 1        //we will always delete something

   val tmp = loc()   //we will remove this item but not necessarily its node

   if (loc.at == root) {   //we treat it specially

      if (_size == 0) {

         root.item = null.asInstanceOf[A]

         return tmp

      } else if (root.left == endSentinel) {
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         root = root.right

         root.parent = endSentinel

         endSentinel.parent = root

         endSentinel.left = root

         endSentinel.right = root

         return tmp

      } else if (root.right == endSentinel) {

         root = root.left

         root.parent = endSentinel

         endSentinel.parent = root

         endSentinel.left = root

         endSentinel.right = root

         return tmp

      } else {

         //we do nothing now because the root will not be moved.

      }

   }     //no "else" here: we want the fall-through if loc.at == root == a full internal node

         //the next two tests are redundant but handling needs loc.at.parent to be real node.

   if (loc.at.left == endSentinel) {   //its right subtree becomes parent's new subtree

      val parent = loc.at.parent

      if (loc.at.right != endSentinel) { loc.at.right.parent = parent }

      if (loc.at == parent.left) {

         parent.left = loc.at.right    //and this overwrites loc.at, so loc becomes invalid

      } else {

         parent.right = loc.at.right

      }

   } else if (loc.at.right == endSentinel) {  //its left subtree becomes parent's new subtree

      val parent = loc.at.parent

      if (loc.at.left != endSentinel) { loc.at.left.parent = parent }

      if (loc.at == parent.left) {

         parent.left = loc.at.left

      } else {

         parent.left = loc.at.left

      }

   } else {    //loc.at is a full binary node.  But this means its successor is not.

               //So after swapping in that node's value, we can remove it with one more call.

      val u = inorderSuccessor(loc.at) //which is "findVictim" in the text

      loc.at.item = u.item             //tree being mutable is very helpful here

      return remove(new Iter(u))       //recursion is safe because it won't fall thru to else

   }

   //control here means we were in one of the easier cases and loc.at is already spliced out.

   return tmp 

}

 

 



 
 

 
 
Issues With Simple Binary Search Trees
 
The main issue is similar to that with Quicksort: if the data arrives already in (nearly-)sorted order, you 
will get an unbalanced tree giving at-worst  performance per call to find (likewise insert and O n( )

remove), and hence possibly needing  time to build a tree of  elements.  Traversal would still O n2 n

be  time total, and amortized  time per call, but calling find at-will  times could take the O n( ) O 1( ) n

worst-case -time total.  (Note that the list of synonyms can have words from all over the O n2

alphabet, so that part of the task really does require random access to the whole data structure.  It is 
not a neatly streaming task...)
 
The text does not actually define exactly when a tree is balanced.  The colloquial definition is that its 
height is " " in regard to the total size .  I prefer specifying the principal constant in the " " to O n(log ) n O

be 2: A binary search tree of  nodes is balanced if its height is at most .  n 2 nlog2

 
There are two main strategies for preserving well-balanced trees.  
 

1. Maintain balance after each insertion and removal by doing extra work in the form of rotations 
as-needed.

2. Periodically refresh the tree.  This is a painful  time extra operation when needed, but is O n( )

like the resize policy already used for arrays: it is amortized by being needed only after linearly 
many quick operations.

 
The text covers strategy 1 in chapter 21 in the form of AVL Trees.  I've put the code for strategy 2 into 
BSTISR.scala, but have not yet specified how to manage it.
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