
CSE250 Week 12: Heaps---for more than just Priority Queues

A heap is a full binary tree, minus some subset of leaves from right-to-left, whose comparable keys
obey the invariant that if is a child of , then .key ⩽ .key. u v u v

This defines a max-heap and means that root.key is always the largest value in the heap (not
necessarily uniquely). There is a corresponding notion of min-heap where the root holds the least
value and children compare ⩾ their parents. Unlike in a BST:

(a) the left-to-right layout does not matter to the heap's operation or meaning;
(b) the up/down sortedness is too weak to help you find a key in less than linear time.

By (a), we may as well suppose the tree is laid out so that the leaves in the bottom level fill in left-to-
right. The text uses the standard term complete tree for this, but I prefer "raster tree" to connote that
the tree fills in level-by-level going down and left-to-right in each level.

The signature implementation of a heap is an array with elements. Happily, the text defines the n

version that does not use cell 0 of the array. In ancient times, there was no special support for the swap
 operation, so it was further convenient to use cell 0 as swap space. Then:

• Nodes are identified with indices in , treated inclusively in an array of size u, v, … 1… n[] n

, and being the root;n+ 1 1

• The parent of a non-root node is always (integer division).v u = v / 2

• The left child of a non-leaf node has index , while the right-child (if present) has .u 2u 2u+ 1
• To facilitate adding and removing elements---and optimize memory usage generally---the array

has a fixed size (so can be up to) with the current maintained as a field or c n c - 1 n+ 1
variable end apart from the array.

Example (different from the text's)

• Insert 86: it "bubbles up" to the position currently occupied by 84..
• Then pop 97. The right-hand 55 key which got swapped into the last position is first lifted to the

root. Then it "sinks down" (like a stone, says the text), always swapping with the larger child, so
that 91 is the new max and it settles where 59 was.

Note that keys can jump around after a pop. But the time is never worse than proportional to the height
of the tree, which by its enforced balance is .O n(log)

If we add 5 more elements, we will make a full binary tree and (since) also fill the capacity of c = 32
the array. If we add one more element, we will have to double the size of the array and recopy the
elements. The ethic with heaps, in my (ancient) experience, is to right-size them to begin with, because
the idea is that they use memory in-place without using temporary storage for copying (like QuickSort
versus MergeSort). [Important note: this meaning of heap is not related to that of the "system heap",
whose ethic is to be expandable without the layout regularity needed for values on the "system stack"
(which really is organized like a stack).]

Coding Heaps

max

9791

63

84
17

6

11

55

7

44

32 9

59

372626

55

23

42

86

3321 5 33 1125 19

_, 97, 91, 84, 55, 59, 63, 17, 26, 42, 26, 37, 44, 55, 6, 11, 7, 23, 25, 19, 21, 5, 33, 11, 32, 9, 33, []

0 1 ... end=27n = 26 capacity c = 32

_, 97, 91, 86, 55, 59, 84, 17, 26, 42, 26, 37, 44, 63, 6, 11, 7, 23, 25, 19, 21, 5, 33, 11, 32, 9, 33, 55 []

end=28
_, 91, 59, 86, 55, 55, 84, 17, 26, 42, 26, 37, 44, 63, 6, 11, 7, 23, 25, 19, 21, 5, 33, 11, 32, 9, , []

end=26

91

This time I'll use several more helper functions than the text does. Scala seems not to have low-level
support for fast swap like C/C++ implementations do, so we'll use heap(0) like the text does. (What
follows is not real code inside a Heap or PriorityQueue class.)

def swap(heap,i,j): Unit = { //REQ: 1 <= i,j <= n < end

 heap(0) = heap(i)

 heap(i) = heap(j)

 heap(j) = heap(0)

}

Some texts define left(u) = 2u and right(u) = 2u+1 and parent(u) = u/2, but this does
not much matter. Here are the two most important helpers, not used as-such in the text.

def fixDown(u: Int): Unit = {

 var st = u //"stone" in text. Note var needed in Scala for val params

 while (st < (end+1)/2) {

 val gc = if (keyComp(heap(2*st),heap(2*st+1)) > 0 || 2*st+1 >= end)

 2*st else 2*st+1

 if (keyComp(heap(st), heap(gc)) < 0) {

 swap(st,gc)

 st = gc

 } else {

 return

 }

 } //must allow for leftChild in-bounds but rightChild >= end where

} //it could have a garbage value

def fixUp(u): Unit

 var bubble = u //note bubble > = 2 means parent exists and is bubble/2

 while (bubble >= 2 && keyComp(heap(bubble),heap(bubble/2)) > 0) {

 swap(bubble,bubble/2)

 bubble = bubble / 2 //integer division

 }

}

Side note: If one could store a "plus infinity" value in cell 0 as a sentinel value, then one could
marginally simplify and speed the while loop by removing the bubble >= 2 check. Since 1 / 2 = 0
with integer division, the loop would stop at the root anyway. But modern branched execution mostly
negates the supposed gain, which was dubious even in ancient times.

Now we can quickly code the main operations. Because both fixDown and fixUp run in O n(log)

time, so do these operations.

def enqueue(item): Unit = {

 if (end >= capacity) { ... } //blah-blah...

 heap(end) = item

 fixUp(end)

 end += 1

}

def pop(): A = { //dequeue in text and Scala generally

 val ret = heap(1)

 swap(1,end-1) //sometimes it is useful to put max there

 end -= 1 //must be done first

 fixDown(1)

 return ret

}

Making and Sorting Heaps (not all in the text)

To create a heap from an array arr of items in any order, one can create an empty heap and enqueue
the items one by one. That would take time on the whole, using repeated calls to fixUp. O n n(log)

There is a quicker way to make a heap directly from arr, assuming there is at least one unused cell n
at the end. (Well, not having to make this assumption is the main reason other authorities define heaps
with the root in cell 0. The version with u <- end/2 was OK too.)

def makeHeap(arr: Array[A], n: Int): Unit = { //REQ: arr(n) exists and is empty

 arr(n) = arr(0)

 end = n+1 //keep end with this value

 for (u <- (end-1)/2 to 1 by -1) { //INV: Sub-heaps rooted at v > u are valid

 fixDown(u) //now INV holds for u too

 }

}

Theorem (not in the text): makeHeap runs in time.O n()

Proof. Consider the full binary tree case . The worst possible thing that can happen is n = 2 - 1h+1

that fixDown has to swap once for every internal node just above the leaves, twice for each node in
the level above, three times for the next level, up to times for the root. Putting , h m = 2 ≈ n / 4h-1

this worst-case time adds up to

. m*1 + *2 + *3 + *4 + ⋯ + 1*h
m

2

m

4

m

8

This is order-of times the sum . This sum converges even when is allowed to go to infinity, 2m ∑
h

i=1

i

2i
h

so the time is . O m = O n() () ☒

After building the heap, the max element can be read off immediately (hence in time) but the next O 1()
elements may not be so immediate. Still, we can state:

Corollary: A priority queue from unsorted items can be built in time and operated in n O n() O n(log)
time per operation.

Corollary: For any , the top items in an arbitrary unsorted array of items can be found in k k n

 time. O n + k n(log)

When , this beats the time for sorting the array and outputting the top elements. k = o n() 𝛩 n n(log) k

Often is regarded as a constant, such as for generating "Top Ten" lists.k

The case gives us the whole sorted array. We can get it neatly by:k = n

max

63

84
17

6

11

55

7

44

32 9

59

372626

55

23

42

86

3321 5 33 1125 19

 makeHeap(arr, n)

 while(!isEmpty) {

 pop()

 }

By the behavior of pop() always putting the popped element past the end, the result of iterating it is a
fully sorted array, done entirely in-place. This is HeapSort. It, too, runs in time. The 𝛩 n n(log)
observed downside compared to QuickSort is that it tends to make more swaps on randomly generated
cases of arrays. For HeapSort, one does not need makeHeap to run in time (so the text is OK to O n()

ignore that detail)---but it helps.

Heaps With External Updates (not in the text)

The real usefulness of coding fixDown and fixUp as helpers is to model dynamic updates. For
example, priorities of jobs can change suddenly owing to external events. We want to quickly re-
constitute a legal heap with the changed key value(s). When the changes are one-at-a-time, the
operations we need are simple:

• If the key of item increases, we need a call to heap.fixUp(u).u

• If the key of decreases, we need to do heap.fixDown(u).u

Thus, an individual update can be handled in time at worst---and often much better, when no O n(log)
actual swap is needed or maybe just one. This is good enough to call the updates "on-the-fly."

The main challenge is the following: how to communicate the change to the item in the heap that needs
it?

• We cannot say the item is "node " because the update will change the index value of . u u

• We cannot count on finding the item associatively, because in a heap that is time.𝛩 n()
• Even if we make the heap array merely store a reference to the main object which we keep in an

associative container (so we can find it by a key such as its name which may be different from its
priority value), we still have to notify the heap to do a corresponding update.

• If we try to keep an iterator on the item, we'll have to update inside it whenever a swap is u

made.
• One idea is that the heap can store references to items that are maintained elsewhere.
• We still have to communicate the results of a swap to those items, so they need to keep the

actual index in the heap. See:

https://stackoverflow.com/questions/46996064/how-to-update-elements-within-a-heap-priority-queue

https://stackoverflow.com/questions/46996064/how-to-update-elements-within-a-heap-priority-queue

