
CSE250 Week 13: Hash Tables (text ch. 22)
 
We have seen that a balanced binary search tree can provide all of find, insert, and remove in 

 time.  It can also support "fingers" (i.e., iterators that need not start at the beginning) and O n(log )

traversal in amortized  time per step in a definite and predictable order---namely, the sorted order O 1( )
of keys.  The ordering guarantees that if the data structure is allowed to have different items with the 
same key (thus functioning as a bag or multiset or even a multimap), then those items will be 
consecutive in the iteration order---though with some issues to beware of.  Plus, problem (3) of the 
"virtual A7" showed how balanced trees can support indexed access in  time.O n(log )
 
The "Holy Grail" of associative lookup is to get the three main operations in  time.  Various kinds of O 1( )
Hash Tables promise this, but bring more caveats.  Here is the basic idea:
 

• The issue with an array  is that if we know in advance the index  of an item, then we can A i

access it in  time as .  O 1( ) A i( )

• But if we don't know in advance,  may have no relation to the data of an item.  If we only have i

the item, including its key , this does not help us find it---and find takes  time in an k O n( )

unsorted array.
• If we only want to look up items, not care about their local relation to other items, then we don't 

care what the index  actually is.i

• Suppose we can associate  uniquely to the key  by a function  where  is quick to i k i =  h k( ) h

compute.  We need  where  is the size of the array.0 ≤  h k  <  m( ) m
• Then given any item we can find it as A(h(item.key)).

 
Counting the evaluation  as unit time, this works in  time.  Note that we have been comparing h k( ) O 1( )

keys and calling that unit time per comparison---we can suppose that computing  is just as quick as h k( )

a comparison and we only need to do it once.  The function  is called a hash function,  the hash h A
table, and the technique is called hashing.  One other note:
 

• It will not matter if some indices  are unused.  All we waste is some memory for making the i

array larger than perfect for  items---and we will begin with a kind of hashing where the array n

size  can be less than .m n
• Hence, inserting and removing need not involve re-allocating the array.
• "Holes" in the array---especially when left by removals---will still be a pain, however.
• Nor can we allow direct updates  because the new item might not have  as its A i = newItem( ) i

hash index.  We have to work only through the associative-lookup API.
 
 
Collisions and Kinds of Hashing
 
The next pressing issue---before the anticlimax of how to design a hash function, is, what if two 
different keys  and  make ?  We can expect such a hash collision to occur as soon as k k' h k = h k'( ) ( )

 

 



the number  of items becomes about , owing to the Birthday Paradox.  We don't want to n m
overwrite one item by another.  Two ideas:
 

1. Make  hold a (linked) list of items having the same hash index .  Then just store such A i( ) i
duplicate-hash items in the same list, and use the list's own find operation to find them.

2. Use a probing rule  to find an empty slot  at which to store the new item directly into the p i, t( ) i'

array.  Here  counts probes (the text uses , IMHO confusingly), and we regard the zeroth probe t j

 as being the original index .p i, 0  =  i( ) h k' = i( )
 
Method 1 is called chaining and is covered in section 22.2.  We can recycle the architecture of the 
"AIOLI" class to describe and implement it.

 

Chaining allows the load factor  to be greater than .  The text uses a field fillingFactor r =  
n

m
1

to represent it as a target for method 2 (which is called open addressing and covered in section 22.3) 
but does not otherwise define it.  We will recycle our notation  from AIOLI (and BALBOA) as on n, m, r

Assignment 5.  Then  is the average length of one of the linked lists.  Provided we choose  r m =  𝛩 n( )

(indeed, if saving array memory is not an issue, we can take  or even , especially when m =  n m >  n

we know in advance how big  is going to be), we will get  (usually).  That means the extra n r =  O 1( )

time for exhaustive search in a linked list with multiple items will still be .  Since adding and O 1( )

removing from a linked list takes  time, we get all three major operations in  time overall.O 1( ) O 1( )
 
Open addressing can do the same, but has extra quirks and caveats.  Let's table it for later.
 
 
Hash Functions
 
The last implementation detail is how to compute .  One niggle of nomenclature is that we h k( )

ultimately need , but we can enfore this after-the-fact by taking " ".  Then 0 ≤  h k  <  m( ) h k  m( ) mod

we can consider hash functions  to have arbitrary integer values and simplify thing by not having to h

consider " " to be part of their definition.  We can even allow negative integer values, hence not have m

 

 



to worry about overflows with Int, provided we note:
 

• Scala uses the rule that i % m has the same sign as i.  So it can be negative.
• We can use abs(i % m) but this reflects the modulus around .0

• A mathematical purist will prefer Math.floorMod(i,m), whose contract is to have the same 
sign as .  So if  its value is always between  and .m m >  0 0 m- 1

 
Thus, the hash-table class can do its own enforcement of the class invariant .  We can 0 ≤  h k  <  m( )

call  the primary hash code of the key  itself, and the actual index  the h k = i( ) 0 k i =  i m0 mod

secondary hash index, but it is usually OK to slur this distinction.  This leaves us free to consider 
arbitrary hash codes and functions for computing them.
 
Designing hash functions used to be a fun and creative topic---and still is in specialized, performance-
intensive applications.  Coverage would begin by noting that the simple idea of adding up the alphabet 
numbers or ASCII codes of the characters in a string, like h(life) = 12+9+6+5 = 32 (not 42) is a 
poor one, because it produces too many collisions.  The way of doing this in Hebrew called gematria 
partly does this but in more of a radix manner, using letters as digits, so it spreads out codes more.  In 
gematria, the code of "living" is 18 and the code of "Neron Kesar" is 666.  The Arabs had a similar way 
of using abajad numerals but they switched to a purely-radix idea called Arabic numerals which you 
may have heard of.  In general, you want the has code to involve some multiplications as well as 
additions, and ...
 
...well, Java took all the fun out of this by providing a built-in hashCode method, and Scala extends this 
automatically to any value type.  Except for performance-critical cases, such as chess programs, there 
is no need to do anything more clever.  The topic is anticlimactic.
 
The further effect of using hashCode is that one can hide implementation details from the client.  The 
need of the hash function to depend on how the client type (meaning what you use for the generic 
parameter "A") defines its keys used to force its presence to be visible at client scope.  I have done this 
anyway in the "ISR" framework: the line in Cardbox.scala to select a hash table forces a "client 
container" (such as FlowerCardbox or SynonymBox) to pass in different parameters from the single 
keyComp comparator (which worked for all the sorted data structures, but incompletely when it comes 
to matching whole items).
 
I could have harmonized the interface across the board by fixing a "designForSize" parameter  m

and requiring the client type to be a value type.  The latter not only makes hashCode automatic but 
also guarantees that equals can serve as an itemMatch function from keyComp.  (But then I would 
not have been so easily able to compose my data structures in a compound manner.)  But it is more 
useful to point out the differences first before saying how one could hide them.
 
 
 

 

 

https://en.wikipedia.org/wiki/Abjad_numerals


 
Implementing Hashing With Chaining 
 
I made the HashISR code by editing the previous AIOLI.scala file.  (It includes Iter#clone now.)
 
/** REQ: numSlots > 0; itemMatch should match whole items not just hash key

    Enforces CLASS INV that 0 <= ind < numSlots via Math.floorMod(hash, numSlots) 

    Note: as in Java, hashCode can be negative(!) and then % m would give index < 0.

 */

class HashISR[A](numSlots:Int, hashFun: A => Int, itemMatch: (A,A) => Boolean) 

                                                         extends ISR[A] { Outer =>

   var theTable: Array[DLLISR[A]] = Array.fill(numSlots)(new DLLISR[A](itemMatch))

   private var _size = 0

 
The iterator class Iter is compound: it uses both the hashed array index ind and the linked list's own 
iterator litr to locate an item.  The text actually does the same, in a way that is IMHO harder to read 
because the class is anonymous and the array index is (unnecessarily, IMPHO) generalized to be the 
first of two sub-iterators.  Plus it uses tuple syntax because it hard-wires the whole data structure to be 
a Map with distinct items.  Once you have the iterator class, the main operations are quick to code---
except for the Scala inner-class handling:
 
   def find(item: A): Iter = {

      //val ind = hashFun(item) % numSlots    //no!!

      val ind =  Math.floorMod(hashFun(item), numSlots)

      val litr = theTable(ind).find(item)

      if (litr.hasNext) {

         return new Iter(ind, litr)

      } else {

         return end

      }

   }

 
     def insert(item: A): Iter = {
      val ind = Math.floorMod(hashFun(item), numSlots)

      val thisList:DLLISR[A] = theTable(ind)

      val litr = thisList.insert(item, theTable(ind).begin.asInstanceOf[thisList.Iter])

      _size += 1

      return new Iter(ind, litr)

   }

 
   /** Cannot violate the CLASS INVs, so OK to use freely.

    */

 

 



   def remove(loc: Iter): A = {

      assert(loc.hasNext, "Attempt to remove past-end item")

      //needs the component loc.iat to be on a real element

      _size -= 1

      val thisList = theTable(loc.ind)   //val needed for Scala "stability"

      val tmp = thisList.remove(loc.iat.asInstanceOf[thisList.Iter])

      return tmp

   }

   def remove(item: A): A = {

      val itr = find(item)

      assert(itr.hasNext, s"Attempt to remove non-found item $item in HashISR\n")

      return remove(itr)

   }

 
When a "hash bucket" becomes empty after removal(s), we just leave the empty list in its slot.  Of 
course we don't contract the array---even just changing the size  would have chaotic effect on the m
entries.  
 
 
Iteration With Chaining
 
When using the list iterator as a component, we face the problem of advancing it to its own end 
position on an individual list.  Unless we are at the end of the last nonempty list in the whole table, we 
need to step it to the next element---which will be the first element of the next list that is nonempty.  This 
adjustment is done by a private helper method adjustBin() that is much like the text's nextBin() 
at the bottom of page 613 going to 614.  It is needed even to initialize an iterator, because we don't 
know whether slot 0 will be empty:
 
   def begin: Iter = {

      var itr = new Iter(0, theTable(0).begin)

      itr.adjustBin()   //puts on first element of whole data structure

      return itr        //or end if the whole container is empty

   }

   def end: Iter = new Iter(numSlots, theTable(numSlots-1).end)

 
The iterator class itself should enforce the invariant that the iterator is never at an "indeterminate 
position", meaning at the end of a list but not at the end of the data structure overall---which should 
involve the end position of the table itself, i.e., theTable.length (which we call ).m
 
   /** Iter adds three methods to standard Scala next() and hasNext for iterators.

       INV1: Iter is attached to the list node it designates, not its "pre"

       INV2: Iter is never at the end position of a chain.

 

 



       INV3: End iterator has ind==numSlots; then we don't care about liat

    */

   class Iter(var ind: Int, var liat: DLLISR[A]#Iter) extends Iterator[A] {

 
      /** Special Scala syntax allows using just parens to return the data item.

       */

      def apply(): A = {

         assert(hasNext, "Attempt to fetch item past end in HashISR\n")

         return liat()   //note re-use of DLLISR#Iter.apply() here

      }

 
The tricky part is stepping over "holes":
 
      private[HashISR] def adjustBin() = {      //like nextBin() in the text

         if (!liat.hasNext) {

            ind += 1

            while (ind < numSlots && theTable(ind).isEmpty) { ind += 1 }

            if (ind < numSlots) {

               liat = theTable(ind).begin

            }

         } //otherwise leaves at ind==numSlots end position, don't care about liat

      }

 
We call it mainly when stepping the iterator:
 
      def next(): A = {

         assert(hasNext, "Attempt to advance past end in HashISR\n")

         //if (liat.hasNext) {

            val ret = liat.next()

            adjustBin()

            return ret

 

 



        //} else {          //should we forgive a violation of INV2 here??

            //adjustBin()

            //return next()  //not infinite loop, but could lead to assertion violation

         //}

      }

 
      def hasNext: Boolean = liat.hasNext   //absolutely relies on INV2 holding

      //def hasNext: Boolean = { adjustBin(); liat.hasNext }  //"defensive driving"

 
 
Open Addressing
 
Chaining can allow  to grow without limit.  As the load factor  grows, performance will n r =  n / m

degrade, but not in a terrible or sudden manner.  Open-address hashing needs  and carries r <  1

more risks as  approaches .  The kind of risk depends on the probing rule :r 1 p i, t( )
 

• Linear probing, defined as  (or ), avoids an infinite loop p i, t  =  i + t m( ) mod =  i - t mmod

unless , but degrades performance more quickly.n = m

• Quadratic probing, most simply implemented as , tends to need fewer p i, t  =  i + t  m( ) 2 mod
probes than linear probing, but can have infinite loops unless a probe count is used.  The text 
uses a somewhat smarter probe function: .p i, t  =  i +  2t +  3t  m( ) 2 mod

• Two-level and multi-level hashing uses a second hash function (or more) in case of collisions.
• Cuckoo hashing (not in the text) is a two-hash scheme that keeps find and remove in 

guaranteed  time, at the cost of more disruption when inserting: items with other hash O 1( )
codes may get moved.

 
Open addressing needs a way to tell whether a slot is filled, truly empty, or "Xed" (the text says 
"REMOVED").  To illustrate why, here is a jocular but portentous example: Suppose Doc Smurf has 
hash code 6 while Lego Mario, Lego Luigi, Lego Bruno, and Lego Waldo all have the same 
hash index  in a table of size 32.  This could happen if the hash function made the last  bits depend 4 j

only on the first 4 chars and the table size  is a multiple of .  (For this reason, the text says to avoid m 2j

sizes near powers of , but this is more a fault of the hash function---and the larger reason for prime 2
sizes IMPHO has to do with quadratic probing.  Many chess programs use only power-of-2 table sizes.) 
 Inserting them in that order under linear probing gives:
 
0 : _

...

4 : Lego Mario

5 : Lego Luigi

6 : Doc Smurf

7 : Lego Bruno

8 : Lego Waldo

 

 



9 : _

 
Now suppose we removed Lego Bruno from the catalog.  If we replaced it by _ for empty, then we 
would "maroon" Lego Waldo and subsequently be unable to find Waldo.  But if we do
 
0 : _

...

4 : Lego Mario

5 : Lego Luigi

6 : Doc Smurf

7 : Xed

8 : Lego Waldo

9 : _

 
then Waldo is still in touch.  To implement this scheme without forcing the table client type to make a 
Boolean field for "Xed", or forcing the table class to "wrap" the client items in a class that has such a 
field, we can use null to mean empty and a default value A() or A.zombie to mean "Xed".  This is 
just as much needed with quadratic probing and multi-level hashing, though not with cuckoo hashing.  
We need an itemMatch call between a real item and a zombie to be legal but return false.  The code 
for find then becomes (caveat: not pasted from actual code):
 
   def find(item: A): Int = {   //returns index of slot found, m for not-found

      val ind = Math.floorMod(hashFun(item), numSlots)

      var t = 0

      var try = probe(ind,t)    // == ind on first use

      while ((!empty(try)) && (!itemMatch(item, A(try)))) {

         t += 1

         try = probe(ind,t)

      }

      if (empty(try)) return theTable.length else return try 

   }

    

We couldn't include a test for the hash code of the visited items being equal to that of the given item 
because we needed to keep going past Doc Smurf with a different code.  Nor do we need to test for 
"Xed" in a field-specific manner if we assure that item-matching a zombie will return false.  For the 
same reason, it is OK to overwrite a zombie when inserting:
 
   def insert(item: A): Int = {   //returns index of slot found, m for not-found

      val ind = Math.floorMod(hashFun(item), numSlots)

      var t = 0

      var try = probe(ind,t)    // == ind on first use

      while ((!empty(try)) && (!xed(try))) {

 

 



         t += 1

         try = probe(ind,t)

      }

      A(try) = item 

      return try    //this is like return new Iter(...) in the ISR convention

   }

 
The code for remove can call find, but must set the slot of a found item to "xed" (i.e., a zombie) rather 
than empty it.  The main drawback is that the call reduces the "actual" load factor  but not the n / m
"effective load factor."  And a case where quadratic probing goes loopy even with low effective load is:
 
0 : Lego Bruno

1 : _

2 : _

3 : _

4 : Lego Luigi

5 : Lego Mario

6 : _

7 : _

 
Where can we insert Lego Waldo?  The probe tries 
 

, 4

, 4 + 1  % 8 =  52

, 4 + 2  % 8 =  8 % 8 =  02

,4 + 3  % 8 =  13 % 8 =  52

, 4 + 4  % 8 =  20 % 8 =  42

,4 + 5  % 8 =  29 % 8 =  52

,4 + 6  % 8 =  40 % 8 =  02

,4 + 7  % 8 =  53 % 8 =  52

...
 
all stay blocked by existing elements, so you get an infinite loop unless you spend code steps to check 
a probe-count limit.  This problem---whose theory the mathematician Carl Friedrich Gauss did the most 
to delineate over 200 years ago---is reduced by making the table size  a prime number.  It still can m
bite hard when the effective load factor gets above 0.85 or so.  All these risks said, however, open 
addressing with well-judged load parameters is the fastest method in general practice.  
 
 
(Aside, FYI) Hashing in Chess Programs 
 

 

 



One special kind of hashing scheme worth mentioning en passant is when all data points will be 
combinations from of a limited set of possible "atomic features" .  Then you assign a fixed primary f

hash code  to each feature as a binary string.  The primary hash code of a data point  then becomeshf P

 
,h P  =  ⨁  h  ( ) f∈P f

 
which means taking the bitwise-XOR of hash codes of all the features present in .  Given a table size P

, the secondary hash converts  into a value in the range .  Quite often  for some m h P( ) 0.. m- 1 m = 2k

 and the secondary hash just takes  bits off either end or some other way.  Assuming the atomic hash k k

codes  use "truly random" bits, there is little danger of the "Lego" kind.hf

 
The basic features in a chess position  are the identity of a piece on a particular square, giving P

 atomic codes, plus whether White or Black is to move, whether each is still allowed to 12 × 64 =  768
castle kingside or queenside, and whether en passant captures are possible (13 more codes for 781 
total).  Each code is a 64-bit unsigned long int, as is .  If you allocate, say, 512MB to a chess h P( )

program's hash table, then at 16 bytes per entry (8 to store  itself, and 8 for the position's value h P( )

along with how recently in the search it was updated), you get 32M =  entries.  So the secondary 225

(i.e., actual) hash code has 25 bits.  This scheme was first used for chess, checkers, and Go by Albert 
Zobrist in 1969 and is named for him, but a more generic name is tabulation hashing. 
 

Since under 6,000 while chess programs search over a million positions per second even  =32M
on a single core, the birthday paradox hits instantly and collisions mushroom.  Some chess programs 
do limited probing, but they mostly take the "zeroth option" of open-address hashing: the new value 
simply overwrites the old.  The minimax process stops the propagation of almost all collisions.  It be 
like: a bad low value in a max-heap just sinks like a stone out of the picture.  With White and Black 
alternating moves, any extreme value (from a position where one side is a queen ahead, say) that 
overwrites a normal value gets similarly "minimaxed away" by one or the other.  But there have been 
times when a rogue value from a hash collision has propagated to the root of the search and made a 
chess program play a blunder.  The most famous case is #8 in this list, and I reproduced it in 2011.  I've 
found other positions that propagate hash collisions for multiple chess programs, notably this and this.  
The zeroth option of not handling collisions is OK in chess because "speed is king and nobody dies."
 
 
Iteration and Fingering Gotchas in Hash Tables (not in the text)
 
Iteration with open addressing is simpler than with chaining: the next() method must "step over 
zombies" as well as holes, but does not have the problem of intermediate end positions of lists.  Both 
forms have caveats beyond the immediately obvious one: the iteration order has no relation to sorted 
order or the order of insertion.
 

1. When you expand the capacity of an array, the elements generally have to be recopied but their 
sequence is preserved.  When you do this in a hash table, however, the "mod " values change m

 

 

https://thechessworld.com/articles/general-information/top-10-biggest-grandmaster-blunders-at-chess/
https://rjlipton.wpcomstaging.com/2012/05/04/digital-butterflies-and-prgs/
https://rjlipton.wpcomstaging.com/2018/02/16/a-coupe-of-duchamp/


in a way that makes elements jump around.  So you cannot rely on consistency of the iteration 
order unless the table size is absolutely fixed.

2. If you have multiple items sharing the same key, they will of course have the same hash code.  
But they need not be consecutive in the iteration order, even with chaining.  Items with different 
keys giving the same hash code may come between them in the linked list.  

3. Well, if those duplicate-key items are inserted at consecutive times, then their records will be 
consecutive in the linked list.  (The code of HashISR.scala reverses the time order because it 
prepends to the bucket's list.)

4. The code for the task in Assignment 6 works generically in any sorted data structure, but not 
when the SynonymBox implementation is changed to a hash table---unless we can rely on 
chaining being used and point 3 not being broken.  [Show demo code SynonymsISR.scala.]

5. And with open addressing, fuhgeddaboudit!
6. With chaining, we could re-program the task to skip over different-key items within the one hash 

bucket, thus searching the whole bucket.  The new code is not algorithmically generic, however, 
because at client level it relies on publicly identifying the bucket within the iteration.  (The Iter 
class does not expose the subsidiary DLLISR#Iter liat component and its own end position 
to the public.)

7. The re-programmed task could work with open addressing, because you could identify the 
probe sequence being searched as terminated by an empty slot, and thus treat it as if it were a 
chained-hash bucket list.  The only difference would be the extra cost of stepping over 
"zombies" and items like Doc Smurf with different keys in that sequence.  (If you understand 
how and why this works, then you can say you really understand open-address hashing.)

 
Despite some leeway in points 6 and 7, the essence is that hash tables are used mainly for strict Sets 
and Maps.  In fact, a map in Perl is called a "hash."  However you slice it, the fact that a hash table 
cannot be meaningfully sliced is a limitation on functionality.  The implementation of the default Set 
and Map in Scala seems to be the same as HashSet and HashMap on our systems ---and this 
accounts for Set and Map being divorced from the chunk of the Scala hierarchy that deals with 
Sequences.  Not even SortedSet and SortedMap seem to relate them, hmmm....  Those use a 
balanced binary search tree implementation, our last regular topic.
 
Footnote: Wikipedia https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree on BSTs versus 
hash tables:
 
[S]elf-balancing BSTs have a number of advantages and disadvantages over their main competitor, hash tables. 
One advantage of self-balancing BSTs is that they allow fast (indeed, asymptotically optimal) enumeration of the 
items in key order, which hash tables do not provide. One disadvantage is that their lookup algorithms get more 
complicated when there may be multiple items with the same key. Self-balancing BSTs have better worst-case 
lookup performance than hash tables (O(log n) compared to O(n)), but have worse average-case performance 
(O(log n) compared to O(1)).
 
We will see self-balancing AVL trees next.

 

 

https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

