
 
CSE250 Week 14: Balanced Binary Search Trees And Other Trees (text ch. 21; 19 & 20 parts)
 
The idea of tree balancing is is to expend additional work on many insertions (less so on removals) to 
keep the tree compact on-the-fly.  This increases the principal constant but the asymptotic order stays 

.  Indeed, self-balancing BSTs guarantee  time for all of find, insert, and remove. O n(log ) O n(log )

 Generally, they balance the heights of the left and right subtrees at any node.  This is often, but not 
always, accompanied by a similar balance in the size of the subtrees, meaning their total number of 
nodes.  The heights are what matters most to the find operation.
 
Rotations
 
The key extra operation is rotation, which can be left or right at a node .  Rotations are employed by w

several balancing schemes.  The basic idea is that if  is the left child of , then the right subtree of  u w u

would be legal as the left subtree of .  So we can do a right rotation as follows:w
 

 
A left rotation at  in the right-hand diagram would invert the process. It is more interesting to see the u

effect of a left rotation at  in the original tree:w
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For code, let's look again at the first diagram.
 

Here , , and  all change their parent links, w.parent changes whichever link(s) went to w to go u v w

to u instead, u.right becomes w, and w.left becomes v.  Only u and w can change their heights.  
The code simply executes this:
 
   private def rotateRight(w: Node): Unit = {

      assert(w != endSentinel, "Attempt to rotate at end")

      var u = w.left

      assert(u != endSentinel, "Attempt to updraft an empty left child")

      var v = u.right   //OK if this is endSentinel

      var p = w.parent  //OK if w is root and p is endSentinel

      //first link u to p, twice if it becomes new root.

      if (w == p.left) { p.left = u }

      if (w == p.right) { p.right = u }

      u.parent = p

      u.right = w

      w.parent = u

      w.left = v

      v.parent = w

      w.height = 1 + Math.max(v.height,w.right.height)

      u.height = 1 + Math.max(u.left.height, w.height)

      root = endSentinel.left

   }

 
The last line is curious, but it is possible that  was the root and  got rotated into its place.  The earlier w u

code will then take  to be the end sentinel and make  to be both its left and right child.  Since the p u
invariant that root is endSentinel.left (as well as endSentinel.right)  is not otherwise 
disturbed, we might as well just re-enforce it rather than test for w ≡ root.  
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The code for rotateLeft is mirror-image: just switch uses of left and right.  There must at least be 
the two real nodes  and  in the tree, else an exception is raised.  w u
 
It is interesting to see the effect of a left rotation at  followed by a right rotation at :u w
 

 
Visually, what happened is the "inner grandchild"  of the root  got hoisted up to be the new root, and v w

the children of  become its inner grandchildren.  Some animations, e.g. David Galles at the University v
of San Francisco's Data Structure Visualizations, show this sequence as one operation.  You could call 
this "left hoist" and code it separately in a way that saves a couple of link changes over code that 
composes two rotations, and similarly code "right hoist" in mirror image.  But this was not considered a 
big deal even before we had parallel-execution processor cores.
 
 
AVL Trees
 
The first scheme for using rotations to preserve balance in trees was devised by the Soviet 
mathematicians Georgy Adelson-Velsky (who was also a chess programmer) and Evgenii Landis in 
1962.  It enforces at each node  the balance condition  that the heights of the left and right u B u( )

subtrees of  differ by at most .  This ensures that the height of a whole tree of  nodes is at most u 1 n

about , which is well within our  limit for being "balanced."1.44 nlog2 2 nlog2( )

 
An important base case happens with just three nodes:
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https://www.cs.usfca.edu/~galles/visualization/Algorithms.html


 
The text in chapter 21 seems to switch away from how in chapter 16 it defined the height of a leaf to be 

 (see Fig. 1 on page 494, say).  If the height of the leaf  is  then the height of  is .  Then in order to 0 t 0 u 1

say that the node  is unbalanced (i.e.,  is false), we would have to say that the "height of null" is w B w( )

.  The text also (wisely, IMPHO) switches to using a bottom sentinel node it calls AVLEmpty, which is -1

much the same as how we've been already using endSentinel in the "CL&R tree."  It gives this node 
a height of  and thus switches over to giving leaves a height of .  We will do the same.  Then  0 1 u

counts as height , and the right child of ---which exists in the form of endSentinel---has height .  2 w 0

So  does indeed fail, and we fix it by the right rotation shown.B w( )
 
There is a further wrinkle that the text and several other sources I find seem to duck.  (I've always 
taught red-black trees before even when the text did AVL.  In fact, RBTs are the implementations used 
by Scala too, but the fact is heralded more in the C++ Standard Template Library.)  Suppose we just 
now inserted .  The height of  has become  in our new reckoning, but before we inserted , it was .  t w 3 t 2

After the rotation, the height of the new root  is again .  This implies that the heights of all nodes  u 2 p

above  will not change from before the insertion, nor those of any other nodes.  On the presumption u

that the balance condition  held in all other nodes, we do not need to do any further work.  If  were B p( ) t
a right child, we get the double-rotation scenario:
 

 
Here again, the height of the root reverts to what it was before the insertion, so we can stop.  This also 
holds when the first imbalance is discovered higher up in the tree.  We can state:
 
AVL Insertion Lemma.  One insertion into an AVL tree requires at most two rotations to re-balance the 
tree.  (Alternatively you can say: one rotation or one "hoist.")
 
Proof Sketch: The base case reasoning extends to general cases because the heights of the 
(subtrees 
rooted at the) other child  of , the other child  of , and any children of , will not change in either x w t u v
rotation.  The text shows this by abstracting those trees as triangles in the diagrams.  Suppose the new 
insertion went left at  (the case of going right is mirror-image).  Then we need to rotate when w
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 before the insertion and when  will increase after it.  There are two u. height = x. height + 1 u. height
subcases, one giving the single rotation and one for the hoist.  In both subcases, the goal completing 
the proof is:
 

The height of the node (  or ) replacing  after the insertion is the same as what the height u v w

of  was before the insertion.  Thus no further heights of subtrees are changed.w
 
 

1. After the insertion, .  Since  is the first unbalanced node, this means t. height ≥  v. height w

 or .  Either way, if the insertion caused the t. height =  v. height t. height =  v. height + 1

height of  to go up too, then the height of the root above  is unchanged from before the t t

insertion, and the height of the root above  remains the same.  If the insertion went below , v v

the fact that the height of the root  above  being the same as  above  works here too.u v w v

 
2. After the insertion, .  This is when we need the double rotation.  But v. height =  t. height + 1

the essence is that the first of these two rotations sets up subcase 1 with  in place of ,  in v u u

place of , and the right child  of  playing the new "inner grandchild" role.  So the logic of t b v

subcase 1 finished the job. ☒

 
 
AVL Removal
 
Unfortunately, the case of removing an element is not so nice---it can require  rotations.  A O n(log )
concrete example where rotations percolate all the way to the root is the tree obtained by inserting 8, 5, 
9, 3, 6, 11, 2, 4, 7, 10, 12, 1 in that order and then removing 10 (using the inorder predecessor as the 
"victim" as the Galles visualization does).  
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https://stackoverflow.com/questions/13367981/what-is-the-minimum-sized-avl-tree-where-a-deletion-causes-2-rotations


The text's code for insertion is recursive on immutable nodes, so it uses the policy of computing 
 new nodes along the path of insertion and stitching them into the tree.  It implicitly uses this O  n(log )

theorem by how it needs to change the height only for the new editions of those nodes that are involved 
in the one or two rotations.  It is IMPHO hard to read at first go.  The way removals can need  O n(log )
rotations is apparent in the text only from the recursive use of rotate in recursive calls to removeMax 
in line 107 on page 592.  
 
Thus, when rotating after a removal, one needs to continue checking balance going up the tree via 
parent links.  Although this is unnecessary after an insertion, the steps of checking balances are cheap--
-the fact that further imbalances won't happen still saves considerable time.  Hence, we can code a 
single "fix-up" routine to use both after insertion and after deletion.  This makes the following code 
mode modular than in the text.
 
Code for AVL Rebalancing
 
The following is taken from the functioning file BSTAVL.scala, our last addition to the "ISR" repository.
 
/** AVL rebalancing routine.  Code works from bottom up procedurally.

    Math fact: after insert, an "else" branch with rotation will be taken only once.

    But after a deletion of an elbow or leaf, rotations can need to propagate.

 */

private def fixUp(w: Node): Unit = {

   if (w == endSentinel) return     //we fixed the root and recursed on root.parent

   //else

   w.height = 1 + Math.max(w.left.height, w.right.height)   //now propagate updates

   if (Math.abs(w.left.height - w.right.height) <= 1) {     //nothing to do here

      fixUp(w.parent)

   } else if (w.left.height - w.right.height > 1) {

      val u = w.left

      if (u.left.height >= u.right.height) {  //single-rotation case

         rotateRight(w)                       //makes u the new root of subtree

         fixUp(u.parent)

      } else {                                //double-rotation case

         val v = u.right

         rotateLeft(u)

         rotateRight(w)                       //now v is root where w was

         fixUp(v.parent)

      }

 
   //--------------Rest of the code is merely mirror-image------------------------

 
   } else {                                   //w.right.height - w.left.height > 1

 

 



      val u = w.right

      if (u.right.height >= u.left.height) {  //single-rotation case

         rotateLeft(w)                        //makes u the new root of subtree 

         fixUp(u.parent)

      } else {                                //double-rotation case

         val v = u.left

         rotateRight(u)

         rotateLeft(w)                       //now v is root where w was

         fixUp(v.parent)

      }

   }

}

 
That's it.  It may seem weird that there is no statement updating the height of any node.  The essence 
is that the calls of rotateRight and rotateLeft already update the heights of the pivot node of the 
rotation and its left or right child that rotates with it, while no other node changes its height.  In fact, the 
code does not need to maintain the total numerical height, only whether the difference 

 at a node  is , , , or "unbalanced".  Thus, an AVL tree needs 
2 
u. left. height -  u. right. height u -1 0 +1

extra bits of "state" information per node. 
 
The changes to insert and remove are straightforward, but the former has a subtle point.  The latter 
only needs showing the part of the code that de-links the "victim" node, and we just need to put in calls 
to fixUp:
 
def remove(loc: Iter): A = {

   ...

   if (loc.at.left == endSentinel) {   //its right subtree -> parent's new subtree

      val parent = loc.at.parent

      if (loc.at.right != endSentinel) { loc.at.right.parent = parent }

      if (loc.at == parent.left) {

         parent.left = loc.at.right    //overwrites loc.at, so loc becomes invalid

      } else {

         parent.right = loc.at.right

      }

      fixUp(parent)

   } else if (loc.at.right == endSentinel) { //left subtree -> parent's new subtree

      val parent = loc.at.parent

      if (loc.at.left != endSentinel) { loc.at.left.parent = parent }

      if (loc.at == parent.left) {

         parent.left = loc.at.left

      } else {

         parent.left = loc.at.left

 

 



      }

      fixUp(parent)

   } else {

      ...

   }

}

 
The call to insert returns an iterator, and the burning question is whether the iterator remains valid 
after nodes might get shifted around by fixUp:
 
/** REQ: Node of loc is a leaf or elbow, and insertion will not violate sortedness

    Note that we make this private so that the REQ need only be enforced internally.

 */

private def insert(item: A, loc: Iter, leftward: Boolean): Iter = {

   assert((leftward && loc.at.left == endSentinel) 

             || (loc.at.right == endSentinel && !leftward),

           "Attempt to munge an existing node while inserting below " + loc())

   if (leftward) {

      loc.at.left = new Node(item, endSentinel, endSentinel, loc.at, 1)

      val itr = new Iter(loc.at.left)

      if (loc.at.right == endSentinel) { loc.at.height = 2 }    //base case

      fixUp(loc.at)

      return itr      //is this robust if the parent rotates right?

   } else {

      loc.at.right = new Node(item, endSentinel, endSentinel, loc.at, 1)

      val itr = new Iter(loc.at.right)

      if (loc.at.left == endSentinel) { loc.at.height = 2 }     //base case

      fixUp(loc.at)

      return itr      //still pointing to the new item?

   }

}

 
The answer is yes, because the rotations do not re-allocate any nodes.  The objects for the nodes 
preserve their place in memory.  The nodes move about in our diagrams because their links change but 
they do not actually migrate to new locations---not even like what happens to an array when it changes 
its capacity.  So they do not invalidate the iterator itr created before the call.  (This still feels more 
"squishy" in Scala, IMPHO, compared to C++ where the address-of operator & is explicit.) 
 
 
 
 
 

 

 



Performance and Comparison With Other Trees
 
AVL Theorem: The height of an AVL tree of  nodes is at most .  Thus find, insert, n 1.44... nlog2

and remove all run in guaranteed  time, and an AVL tree can be built from  items in O n(log ) n

 time regardless of the order of inserting the items.O n n( log )
 
This avoids the worst-case danger with basic BSTs.  But there is basically no performance gain over 
the average-case performance of BSTs, such as if you "shuffle" chunks of data points before inserting 
them.  If the time to build the data structure really matters (such as when it is trying to compete 
concretely with making a heap in  time), or if a lot of removals and insertions will alternate, then O n( )
the extra time for rotations will be noticeable.  
 
Scala's TreeSet and TreeMap, which double as the implementations of SortedSet and SortedMap, 
use a red-black tree, as does the C++ Standard Template Library.  A red-black tree (RBT) needs only 

extra bit of state information per node : whether  is "red" or "black".  The RBT maintains the 1 u u
following invariants:
 

1. For any node , every path from  down to a leaf has the same number of black nodes.  Put u u

another way, the "black heights" of the two children of  are exactly balanced.u
2. No red node can be a parent of a red node.  (The root is always black.)

 
These invariants imply that a path down from the root can never have more red nodes than black 
nodes.  Thus the worst imbalance is having one path having just  black nodes, and another alternating k

 black and  red.  In consequence:k k
 
RBT Theorem: The height of a red-black tree of  nodes is never more than .  n 2 n + 1log2( )

 
This is right at the limit of our concrete definition of "balanced" and means that the worse-case  RBT 
performance of find has a larger principal constant than in an AVL tree.  The appeal of RBTs is that 
insertions and removals typically need fewer rotations to maintain the two invariants.  In particular, 
inserting a red leaf of a black node needs no further action.  (The code is a little more complicated than 
for AVL, however.)
 
The splay tree does more rotations than either AVL or RBT and does them even after find.  The point 
is that those rotations move frequently-accessed elements closer to the root, so that the time to consult 
them again via find will move toward being  rather than merely . (Their main co-inventor, O 1( ) O n(log )
Daniel Sleator of CMU, went on to found the Internet Chess Club 30 years ago.) 
 
The tango tree tries to work concretely faster in a streaming environment.  There are other similar 
attempts to improve on AVL and RBT, but they all share a common drawback of linked structures.
 
 

 

 



Paging Improvements on Linked Structures...  (text ch. 19 is only skin-deep)
 
Pun here on "paging" meaning "calling for" and on memory paging.  The basic points is that linked lists, 
linked trees, and even hash tables do not assure contiguity of large chunks of data in memory.  This 
affects the frequency of needing to load new memory pages while providing what clients see as the 
ability to demand "full random access" to data.  
 

• A linked list might give good paging performance when freshly created with consecutive nodes 
and their items being allocated in adjacent memory cells.  But as soon as nodes from other 
areas of system memory are inserted and/or some nodes get spliced out, performance can 
degrade.  (Until, that is, "mirrored" garbage collection copies all reachable data afresh.)

• A BST subtree at a node  has a consecutive subsequence of items in sorted order.  That u
subtree might all fit in one page.  

• Similar considerations apply to a chunk of buckets in a hash table with chaining, so long as one 
does not rely on a predetermined order of the elements, and to open addressing with linear 
probing.  But with quadratic probing, a probe sequence of a "bucket" can quickly jump out of an 
interval of the hash array.

 
Simply using a sorted array gives optimal paging performance when taking chunks of it at a time.  But 
having a single large sorted array is uweildy for insertions and deletions.  The popular middle-grounds 
for giving good scalable memory performance are hybrids of linked structures and pretty large pieces of 
arrays---way larger than what textbooks describe for simplicity.
 

• "AIOLI" and "BALBOA" are such hybrids.  (Well, they will be if we have time to cover their cases 
with the target size  of their linked lists being greater than .)r 1

• B-Trees.  Covered only as a sidebar in the text at the very end of chapter 19.  Hmmmmm....
 
 
Trees for Spatial Data (Ch. 20, if time allows)
 

• Quadtrees for efficiently abstracting 2D image data.
• Cousins for quadtrees for higher-dimensional images.
• ...

 

 

 


