
CSE250 Week 4: ADTs and Performance Measures
 
But first: the idea of Matchable Structure (sprinkled in chs. 2-4 and 15)
 
This concept is best explained operationally, IMHO:
 

• Constants are matchable, variables are not.
• Variables inside other matchable structures can be declared and assigned in the act of a match.
• Tuples have matchable structure.
• Lists have matchable structure, but arrays do not (at least not directly).
• None and Some(x) are matchable structure for whether a value exists.  If so, the value is 

assigned to x.
• Nil and x :: rest are matchable structure for whether a List is empty or not.  In the 

nonempty case, the first element is assigned to x and the rest of the list to rest.
• Strings do not have directly matchable structure, but you can use their headOption method to 

return None from the empty string and Some(c) otherwise, where c is the first char in the string--
-and the tail method gives the rest of the string.

• Case classes provide matchable structure for their arguments.
• But inheritance hierarchies do not---this is not like Java instanceof or Python isinstance or 

C++ dynamic_cast.  Not even when the arguments are val.  
• A variable by itself matches anything; underscore _ by itself is the way of saying the default case 

when you don't care about the value.
 
Matchable structure is used in the match .. case .. => .. expression, which replaces the switch 
statement in C/C++/Java or JavaScript.  Python 3.10 (2021) just adopted match .. case.  Here are 
some examples (file CaseExamples.scala in the ScalaSamples folder):
 
Matching on constants (classic switch statement):
 
   def isVowel(c: Char) = c match {

      case 'a' => true

      case 'e' => true

      case 'i' => true

      case 'o' => true

      case 'u' => true

      case _ => false

   }

 
The cases aree sequential but there is no fall-through of the bodies (in C/C++/Java terms, it's as if each 
body ends with an automatic break).  Cases treated the same way can be grouped with | on the same 
line---which might help you write methods that take care of more cases:
 

 

 



   def isVowel2(c: Char) = c match {

      case 'a' | 'A' | 'e' | 'E' | 'i' | 'I' | 'o' | 'O' | 'u' | 'U' | 'y' | 'Y' => true

      case _ => false

   }

 
Matching on the Option[A] parametric case-class (here with type A = Char):
 
   def vowelsIn(str: String): List[Boolean] = str.headOption match {

      case None => Nil

      case Some(c) => isVowel2(c) :: vowelsIn(str.tail)

   }

 
   println("Which chars in \"AnyRef\" are vowels? " + vowelsIn("AnyRef"))

 
Note that this method produced a list but did not match on the list.  Here are ones that do:
 
Matching on Lists
 
The cubeRoots example from Week 2 was a simple one-pass recursion over a list cubesL.  It could 
have been written as a mapping via cubesL.map(x = > scala.math.pow(x,1/3.0)) since it 
just works on each element separately.   More substantial is when the list elements are compounded 
into a final total.  These examples are in ListSums.scala:
 
   def sumList(lis: List[Int]): Int = lis match {

      case Nil => 0

      case x :: xs => x + sumList(xs)

   }

 
This produces just a single number, the sum.  Suppose we want all the partial sums.  Here is an 
example of a list and its corresponding list of partial sums:
 
      List(1, 3, 6, 2, 5, 4, 2, 1, 9, 6, 4, 8)

      List(1, 4,10,12,17,21,23,24,33,39,43,51)

 
Now we want to update the partial sum with each element from the list.  We could use an external 
variable for that (a "global") but if we want to encapsulate the partial sums within the method, we can 
make it a second parameter that gets passed.  The basic idea is called Accumulator Passing Style.  
(I have not found it called as-such in our text, but the term was used and briefly taught in CSE116 
recently.)  
 
 /** List of prefix sums of an integer list, beginning with the first element

     Initial call should have psum=0.

  */

 

 



   def prefSums(lis: List[Int], psum: Int): List[Int] = lis match {

      case Nil => Nil

      case x :: xs => (x+psum) :: prefSums(xs, psum+x)

   }  //Recursion Invariant: sumList(lis) = psum+x+sumList(xs)

 
Note that the accumulator parameter psum is increased by x in the recursive call.  This preserves the 
invariant that psum always equals the sum of the elements that have been seen so far.  To establish 
this invariant, the initial call needs to be with psum = 0.  (Or, if you really want to add the list sum onto 
another value, amke the initial call with that value.)  
 
Here is a case of using two accumulator parameters:  
 
/** List all maximal sequences of decreasing-length words in a list of strings.

    Using accumulators for both the phrase and the length enables the simplest kind of match.

    Because first word always begins a new chain, we want to begin with a super-high length #

 */

   def decreasingPhrases(words: List[String], phrase: String, lastWordLen: Int): List[String]

   = words match {

      case Nil => if (phrase == "") Nil else phrase::Nil

      case wd :: rest => if (wd.length >= lastWordLen) {   //decreasing phrase stopped

         phrase :: decreasingPhrases(rest, wd, wd.length)  //wd may begin new phrase

      } else if (phrase == "") {                           //skipping this test would leave

         decreasingPhrases(rest, wd, wd.length)            //an extra space out front

      } else {                                             //because of the recursion below.

         decreasingPhrases(rest, phrase + " " + wd, wd.length)

      }

   }

 
   val line = "The quick brown fox jumped over the lazy dog's back"

   val decreasingPhraseList = decreasingPhrases(line.split(" ").toList, "", 9999)

 
This yields "The" :: "quick" :: "brown fox" :: "jumped over the" :: "lazy" :: 
"dog's back" :: Nil .
 
Matching on Tuples
 
A match on a fixed-size tuple is just a combination of matches on the individual components.  Here is a 
simple-minded example that uses matching to treat cases of zero specially (back to 
CaseExamples.scala for this one):
 
   def numberType(tup: (Double,Double)): String = tup match {

      case (0.0, 0.0) => "the origin"

      case (_,   0.0) => "nonzero real number"

 

 



      case (0.0, _)   => "nonzero pure imaginary number"

      case (_, _)     => "mixed complex number"

   }

 
Here the underscore is a "throwaway widlcard"---its value is not retrievable, and in the last case could 
be a clash of different values anyway.  We could always get the values by tup._1 and tup._2 
anyway, so the use of the lone underscore _ is a way of saying "don't-care."  [Remark: It is problematic 
to match on the floating-point zero that has been computed---as we saw with the "...E-16" values in 
the cubeRoots example---but matching on a constructed 0.0 field (especially when it is a val 
constructor argument kept constant) is generally OK.]  
 
Now for an example that combines matching on tuples, lists, and on an accumulator parameter that is 
actively involved in the match.  An accumulator parameter can embody a notion of "State", as in the 
"State Design Pattern."  A recent CSE116 had an example with "Hulk" being in a state of calm or 
"angry" (the latter becoming a state of being big and green, too).  On assignment 2, you can use the 
idea of Hulk being "alpha"---i.e., in the mode of building up alphanumeric characters---and stopping 
only when a non-alpha character is reached.  In the following similar numerical example, the hulking up 
of an integer sum gets stopped when the sum goes over a given threshold, and the process starts 
again from zero ("Bruce Banner").
 
def thresholdSums(ell: List[Int], threshold: Int, psum: Int): List[Int] = (ell,psum) match {

   case (Nil,0) => Nil         // no more elements to add

   case (Nil,p) => p :: Nil    // psum :: Nil would be equivalent

   case (x :: xs, p) => if (x+p >= threshold) {

      (x+p) :: thresholdSums(xs, threshold, 0)

   } else {

      thresholdSums(xs, threshold, p+x)    // INVARIANT: psum < threshold in any call

   }

}

 
Here is a trace of a run of this code on List(1, 3, 6, 2, 5, 4, 2, 1, 9, 6, 4, 8) with threshold 10:
 
thresholdSums(1::3::6::2::5::4::2::1::9::6::4::8::Nil,  10,  0) 
thresholdSums(3::6::2::5::4::2::1::9::6::4::8::Nil,  10,  1) 
thresholdSums(6::2::5::4::2::1::9::6::4::8::Nil,  10,  4)     since 6+4 ⩾ 10
10 :: thresholdSums(2::5::4::2::1::9::6::4::8::Nil,  10,  0)

10 :: thresholdSums(5::4::2::1::9::6::4::8::Nil,  10,  2)

10 :: thresholdSums(4::2::1::9::6::4::8::Nil,  10,  7)        since 4+7 ⩾ 10
10 :: 11 :: thresholdSums(2::1::9::6::4::8::Nil,  10,  0)

10 :: 11 :: thresholdSums(1::9::6::4::8::Nil,  10,  2)

10 :: 11 :: thresholdSums(9::6::4::8::Nil,  10,  3)           since 9+3 ⩾ 10
10 :: 11 :: 12 :: thresholdSums(6::4::8::Nil,  10,  0)

10 :: 11 :: 12 :: thresholdSums(4::8::Nil,  10,  6)           since 6+4 ⩾ 10

 

 



10 :: 11 :: 12 :: 10 :: thresholdSums(8::Nil,  10,  0)

10 :: 11 :: 12 :: 10 :: thresholdSums(Nil,  10,  8)           now in a base case

10 :: 11 :: 12 :: 10 :: 8 :: Nil           

 
 So we got List(10, 11, 12, 10, 8) as the final answer.  If there hasd not been a final 8, we 
would have ended with the base case thresholdSums(Nil,  10,  0).  Then we don't want to 
attach a useless 0 onto the list, so we use the first case of the match to make that not happen.
 
Matching on Case Classes
 
The match on None and Some(c) already comes from a special case class.  The simplest kind of this 
is how Scala implements "enum"s.  It is legal for case classes to inherit from a trait, and the text's 
example on page 136 is improved by making it a sealed trait:
 
sealed trait StreetLightColor

 
case object Red extends StreetLightColor     //case object since there is only one "Red"

case object Yellow extends StreetLightColor

case object Green extends StreetLightColor

 
class StreetLight(private var _color: StreetLightColor) {

   def color = _color

 
   def cycle: Unit = _color match {   //this is a mutator procedure

      case Green => _color = Yellow   //here Yellow is a zero-parameter constructor call

      case Yellow => _color = Red     //that constructs an object of type StreetLightColor

      case Red => _color = Green

   }

}

 
object StreetLight extends App {

   val light = new StreetLight(Red)

   for (i <- 0 until 4) {   //4 is exclusive

      light.cycle

   }

   println("After 4 cycles starting from Red, the light ended up " + light.color)

}

 
Note that because there are no parameters to match, not like c in Some(c), there is only one possible 
object of each color, Red, Yellow, or Green.  Hence their declarations say case object not case 
class, and then they can have no constructor arguments nor parentheses () at all.  Saying 
sealed tells the Scala compiler that there are no more possible StreetLightColor options other 
than those in this one file.  This allows the compiler to avoid having to "cycle" through the match cases 

 

 



when executing a call to cycle---instead it can create a direct jump table for whichever color the light 
is at the moment.  
 
The one bad thing about this code structure is that the names Red, Yellow, and Green are dumped 
into the top-level namespace.  They could clash with the same names being used in other 
enumerations, such as Rainbow.  This issue happens with enums in the C/C++/Java world too, which 
is a reason why C++ has namespace and Java leans more on packages.  Coding the colors as fixed 
integer fields of a class StreetLightColor (as the text shows first) would disable the advantage of 
matchable structure.  That is why Scala provides a way to have the name protection and use the same 
match syntax:
 
object StreetLightColor extends Enumeration {

   val Red, Yellow, Green = Value      //order doesn't matter; Value is special syntax.

}

 
The only difference to the client is that the color type is now StreetLightColor.Value, which is an 
example of an inner class in Scala. The client code needs an extra statement import 
StreetLightColor._ to use the color-class names without the prefix StreetLightColor. But 
outside the client, the prefix prevents the "global namespace" from being "polluted."
 
 
ADTs (now in Chapter 7 but harking back to Chapter 6)
 
An Abstract Data Type (ADT) is more than just a "data object" or some objects combined into a "data 
structure".  It also specifies:
 

1. The operations provided to clients (end-clients and/or library coders) for building and 
manipulating the objects;

2. Logical requirements and guaranteed properties of those operations; and
3. Efficiency specifications (at least relative) for those operations.

 
The text only mentions point 1 when it defines ADTs in its short section 7.1, but it addresses point 3 
right away, and it covers point 2 first at the level of unit testing of individual pieces of code (section 
7.7).  I tend to approach point 2 first at the level of the whole ADT analytically, per what is called design 
by contract.  Here is a small example that is reflected accurately by the text's little box on 
"Comparators" on page 143 in chapter 4.  Scala inherits from Java an ADT called Comparator[T] 
that requires the parametric type T to implement < and = comparisons.  It provides an operation 
x.compareTo(y) that is basically always implemented to have the results
 

x. compareTo y  =  ( )

+1 if x >  y
0 if x =  y
-1 if x <  y

 

 

 

https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract


However, the contract only guarantees that the value is a positive integer if  and a negative x >  y

integer if , not the specific integers  and .  You may be able to see this, including the Java x <  y +1 -1

@Contract attribute, if you write a line of code with (say) true.compareTo(false) and hover over 
the compareTo (or right-click it?) in your IDE.  It is common---but risky---to use 
bexp.compareTo(false) as a way of converting a Boolean expression to have value  when false 0

and  if true.+1

 
The one thing that an ADT is not supposed to specify is how the data type is implemented.  That is the 
"Abstract" aspect.  The library designer must be free to change the implementation, so long as nothing 
in the API or contract or complexity specs changes.  (All three can be enhanced.)  Achieving certain 
promised combinations of logic and performance for a given API, however, often dictates much of the 
implementation.  That correspondence is the main subject of this course.
 
Set and Map as ADTs
 
The three most basic operations provided by all kinds of Set objects are creating sets by various 
means, quick lookup of individual objects (i.e., testing whether a given object is in the set) and 
traversing through all objects in the set.  A Mutable Set adds operations to modify a Set after it is 
created by adding and/or removing elements.  It may---or may not---share implementation details with 
the basic (immutable) Set.  One key logical property in the contract for a Set is:
 

• A Set never has two copies of the same value.  This may require the argument type A (which 
I will also call the "client type" or the "foreground type") to implement == as value equality or 
otherwise have an equals comparison, so that the logical requirement "x is not the same as y" 
for any two elements x,y in the Set is implemented as !x.equals(y).

 
Here are some further properties of interest:
 

• If the foreground type A in Set[A] has < as well as ==, then is a traversal guaranteed to be in a 
totally sorted order?

• If not, can we at least say that if a Set object foo is created the same way by two different lines 
of code (or the same line at two different times in the execution, or by two different threads at the 
same time), which then traverse the set, will the two transversals give the same sequence of 
elements?

 
A Map is actually just a more useful kind of Set that returns a value when you successfully look up an 
element.  So Map[A,B] gives values of type B when you find an element of type A.  The key logical 
property of a Map is that the same element always gives the same value.
 
Time Complexity and O-Notation
 
[This will come during Monday's lecture, using the materials given on Assignment 2.]

 

 


