

ADTs (now in Chapter 7 but harking back to Chapter 6)

An Abstract Data Type (ADT) is more than just a "data object" or some objects combined into a "data
structure". It also specifies:

1. The operations provided to clients (end-clients and/or library coders) for building and
manipulating the objects;

2. Logical requirements and guaranteed properties of those operations; and
3. Efficiency specifications (at least relative) for those operations.

The text only mentions point 1 when it defines ADTs in its short section 7.1, but it addresses point 3
right away, and it covers point 2 first at the level of unit testing of individual pieces of code (section
7.7). I tend to approach point 2 first at the level of the whole ADT analytically, per what is called design
by contract. Here is a small example that is reflected accurately by the text's little box on
"Comparators" on page 143 in chapter 4. Scala inherits from Java an ADT called Comparator[T]
that requires the parametric type T to implement < and = comparisons. It provides an operation
x.compareTo(y) that is basically always implemented to have the results

x. compareTo y = ()

+1 if x > y
0 if x = y
-1 if x < y

However, the contract only guarantees that the value is a positive integer if and a negative x > y

integer if , not the specific integers and . You may be able to see this, including the Java x < y +1 -1

@Contract attribute, if you write a line of code with (say) true.compareTo(false) and hover over
the compareTo (or right-click it?) in your IDE. It is common---but risky---to use
bexp.compareTo(false) as a way of converting a Boolean expression to have value when false 0

and if true.+1

The one thing that an ADT is not supposed to specify is how the data type is implemented. That is the
"Abstract" aspect. The library designer must be free to change the implementation, so long as nothing
in the API or contract or complexity specs changes. (All three can be enhanced.) Achieving certain
promised combinations of logic and performance for a given API, however, often dictates much of the
implementation. That correspondence is the main subject of this course.

Set and Map as ADTs

The three most basic operations provided by all kinds of Set objects are creating sets by various
means, quick lookup of individual objects (i.e., testing whether a given object is in the set) and
traversing through all objects in the set. A Mutable Set adds operations to modify a Set after it is
created by adding and/or removing elements. It may---or may not---share implementation details with
the basic (immutable) Set. One key logical property in the contract for a Set is:

https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Design_by_contract

• A Set never has two copies of the same value. If the argument type A (which I will also call the

"client type" or the "foreground type") is a value type, it automatically has an equals
comparison defined, and the == operator calls it. Then the logical requirement "x is not the
same as y" for any two elements x,y in the Set is implemented as !x.equals(y).

If A is a reference type, things may default to reference equality. For a particular argument type such
as String, you can always put it in a "wrapper" class where you write your own (override of the
default) equals method. For instance (.../ScalaSamples/Sets.scala, modified a little from
https://stackoverflow.com/questions/7681183/how-can-i-define-a-custom-equality-operation-that-will-be-used-by-immutable-set)

case class MyString(val name: String) { //example of "composition not inheritance"

 override def equals(other: Any) = other match { //KWR: match used as a type-test

 case that: String => that.name.equalsIgnoreCase(this.name)

 case _ => false

 }

 override def hashCode = name.toUpperCase.hashCode

}

val mySet = Set(MyString("conservative"), MyString("conversative"), MyString("Conservative"))

mySet: ...immutable.Set[MyString] = Set(MyString("conservative"), MyString("conversative"))

Here are some further ADT properties of interest:

• If the foreground type A in Set[A] has < as well as ==, then is a traversal guaranteed to be in a
totally sorted order?

• If not, can we at least say that if a Set object foo is created the same way by two different lines
of code (or the same line at two different times in the execution, or by two different threads at the
same time), which then traverse the set, will the two transversals give the same sequence of
elements?

A Map is actually just a more useful kind of Set that returns a value when you successfully look up an
element. So Map[A,B] gives values of type B when you find an element of type A. The key logical
property of a Map is that the same element always gives the same value. You can emulate a
Set[A] s via a Map[A,Boolean] f such that for all objects a, if s.contains(a) then f(a) =
true, else f(a) = false.

The one downside of doing this is that with the Map, you have to store all the false values for the non-
elements, whereas with the Set, you can ingore non-elements entirely. Partly for this reason, Scala
actually builds-in the parenthesis syntax you'd expect for maps directly into the Set API, so you can
write s(a) instead of s.contains(a). The parens in turn are short for what is formally the apply

https://stackoverflow.com/questions/7681183/how-can-i-define-a-custom-equality-operation-that-will-be-used-by-immutable-set

method. [There is actually an internal difference in how s.contains(a) and s(a) are implemented
in the Scala library, but we can ignore it.] Apart from this difference, implementations of Map follow
almost all the same issues as implementationf of Set.

Time Complexity and O-Notation

The number will generally stand for "the total number of unit-size data points." When we have a n

single main container, such as a List or Array or Set or Map, we identify with the container's .size. n

Even when the individual data objects have varying sizes, such as with String lines of different
lengths, this is still often an accurate assumption (maybe blank lines offset long ones).

Sometimes " " is sub-divided. In our case, we have an array of lines, where each line is a list of n m

(variable) length . We can think of as approximately equal to here, but part of the reality with ℓ n m × ℓ

a long file like JustHamlet.txt---where all the lines are cut off at 80 chars---is that . ℓ ≪ m

Depending on the context, we might regard as being the " ". One thing for sure: if you use m n

operations on the lines that collectively take time proportional to , it will be a bigger time hit than if m2

you do operations within each line that take time proportional to . ℓ2

We also have a dictionary of size words about. If the best we could say was that each N = 460, 000

lookup of a word took time of order , things could get slow. But happily the Set data structure (in N

Scala) fulfils a contract that the lookup time is of order "vanishingly less than" . N

The concepts "time at most order-of", "time proportional to", and "vanishingly smaller than" are
necessarily rough. We can, however, give a precise mathematical definition of them in a way that
incorporates their roughness:

The key definition is: Given two numerical functions and ,f n() g n()

• if there are constants and such that for all , .f n = O g n() (()) c n0 n ≥ n0 f n ≤ c ⋅ g n() ()

• if and .f n = 𝛩 g n() (()) f n = O g n() (()) g n = O f n() (())

• if the limit of goes to 0 as goes to infinity.f n = o g n() (()) f n / g n() () n

That referred to my C++ text in 2014. Here is a mod of the chart I showed in class instead:

My lecture then covered extensive examples of curves, tradeoffs, and the role of the principal constant
in the graphs of Jim Marshall from a course at Sarah Lawrence:
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

