
CSE250 Week 8: Sorted Data Structures (ch. 13 and into 15)
 
But first, an excursion into design differences between Scala and C++ (with Java and Python in-
between) regarding which elements of data structures should be "first-class" objects.
 
Iterators and Ranges
 
When this course is taught in C++, the conceptual heart overlaps greatly with the domain of the ANSI 
C++ Standard Template Library (STL).  A glance at Wikipedia's article on STL sufficies to see why:
 
 

 
....

 
Now value semantics has already been a major topic in this course with Scala.  Generic programmimg 
is what I started exemplifying by having the ++= method coded in the trait ISR.scala using the API 
elements only, so that the same code will work with any data structure class that implements the API.  
Abstractness without loss of efficieincy is a general goal.  The Von Neumann Model means random 
access, in particular to fingered points of entry in data---and that is Scala's main bone of contention 
with STL.
 
A lot of the STL's ingredients have similar names in Scala:
 

 
Associative container means that lookup is by key rather than by an already-known index.  The ISR 
interface tries to have it both ways by using movable iterators in place of fixed indices.  But this needs 
iterators to be objects in their own right.  They are the key mediator of STL:

 

 

https://en.wikipedia.org/wiki/Standard_Template_Library


 
 

 
To say that iterators are first-class means that they can be stored in variables, operated on, passed as 
arguments, and (most particularly) tested for equality.  One distinguishing point of Scala is that 
functions are first-class: we've already been freely passing them as arguments either by name or in 
anonymous "rocket notation" form.  However:
 

• Scala does not natively provide first-class iterators.  
• Instead, an Iterator stands only for the data that it can produce.
• Moreover, Range is treated more as a first-class object.

 
Sorted data structures naturally give ranges:  stands for all data items whose key  satisfies a, b[ ] k

, where  is the key-comparison function.  The range of the whole data structure is a ≤  k ≤  b ≤

standardly [begin ... end), with the round paren indicating that the right-hand side is exclusive.  
The whole range in Scala is more implicit: it is whatever next() and hasNext give you from the 
moment the iterator is created.  
 
Iterators on Different Objects
 
In all languages we know, one can "wrap" the primitive notion of an index into an array into something 
that obeys the API of an interator.  This leads to the easiest illustration of the most common bug when 
using iterators in C++:
 

• Using iterators on different objects, say to merge one into the other, but forgetting which object 
two iterators are on when comparing them.

• Simply put, if itr1 is on index  of object 1 and itr2 is on index  of object 2, and you test m m

them for equality, you may think they are in the same place when they are not.
• Standard advice: have the iterator class maintain a reference to its host object as a field, and 

include that field when testing for equality.
• Still bug-prone.
• Scala averts this bug by making comparing iterators on different objects a compile-time error!  

Same with Nodes in different graph objects.
• But this requires special coding when you really want to do things with different objects...

 
 

 

 



Priority Queues
 
This is a kind of associative lookup in which the data item's key is a numerical priority and the item's 
body describes the associated task.  Instead of finding the item with a given key, you want to find the 
item with maximum key.  (Sometimes the highest priority item is represented as having the minimum 
key, so that sortedness is lowest-to-highest, but we'll follow the text.)  Here are the desired operations:
 

1. Find a highest-priority item (called peek or findMax)
2. Not just find but pop it.  In some data structures, this is a general remove.  
3. enqueue a new task with priority (can also call this add or append)  In some data structures, 

this requires an insert in the middle.
4. Test isEmpty, or more generally, compute the current size of the priority queue.

 
Now let's analyze how the choice of container data structure affects the timing for these operations.
 
 
I. Unsorted doubly-linked list 
 

1. Finding the max always requires searching the entire list of  items, for  time in all cases.n 𝛩 n( )

2. Once you find it, you can splice it out of the linked list in  additional time.  This is an O 1( )
advantage of linked lists over arrays, where splicing out an element can require re-jiggering the 
whole array (or leaving "holes" in it).

3. Can append or prepend in  time.  You'd like to prepend if the new task has relatively high O 1( )

priority, but still need to search entire list to check if it is highest.
4. Testing for the list being just the end-sentinel is  time.  Or you can maintain size on-the-fly, O 1( )

at the cost of an extra instruction per insert or remove to update the _size field.
 

 
II. Sorted doubly-linked list (text, section 13.1.2)
 

1. Now the max item is always in front, for  time.O 1( )

2. And removing it is a literal popFront, in  time.  The ideal situation?O 1( )

3. Alas, to preserve the sortedness invariant when inserting a new item, you need to find the 
place where it shouled go (findPlace).  

(a) In worst case, this requires searching all  items.n

(b) If the priorities are uniformly random, will find on average after comparing  items.  Still n / 2

.𝛩 n( )
(c) But if new items tend to have lower priorities---such as if priorities increase with time---

then the average enqueue time can be considerably less than  comparisons.n / 2

4. Testing for empty still  time.O 1( )
 
Thus we have a "lump-in-the-carpet" situation between 1 and 3: we can make either one  time but O 1( )

 

 



then the other becomes "  best possible" at least on average.  O n( )
 
 
III. Arrays (section 13.1.3)
 
Unsorted arrays don't help the search.  The one time-saving idea is that for removal, one can fill a 
"hole" in  time by moving the last item into its place.  O 1( )
 
This sets up the idea of various compromises involving multi-level data structures.  
 
 
IV. Array of Linked Lists ("AIOLI" code in /.../cse250/DataStructures/) 
 
 

 
1. The highest (or least, when priority is represented as minimum) element is 
theArray(0).begin which is identified in  time.O 1( )

2. Popping it from its list is  time.  But if the first list then becomes empty, then we need to O 1( )
remove the first array element too---in order to preserve the invariant that each list is nonempty 
(which we will rely on for binary search in part 3).  OK, for ArrayBuffer, maybe that is  O 1( )

 

 



time, perhaps amortized.  But if it is  time, "bummer..."O m( )

3. To find the place to insert a new item, use binary search on the array to find the row  where the i

new item should go, followed by linear search on list theArray(i).  This takes 
 time.  The actual insertion into the linked list is  time---that is why we are 𝛩 m  +  𝛩 r(log ) ( ) O 1( )

using the lists, not just the array.
4. INV 2, by avoiding "holes", ensures that testing isEmpty is always  time.O 1( )

 
By maintaining the data structure with a longish array and short lists, i.e.

• r ∼ nlog

• ,m ∼  n / nlog

we can achieve time  for each operation.O n(log )
 
That is, unless removal really takes  time best-possible, as could happen in the more general O m( )
setting where we can remove any element, not just the highest one.  Then the best tradeoff becomes 

, giving time for all.r =  m =  n O n

 
A different data structure called a heap, which we will be ready for after Chapter 16, guarantees 

 time with much less fuss-and-bother.  But it works only for the priority queue, not general 𝛩 n(log )
associative lookup, for which we will use binary search trees instead.
 
 
V. Linked List of Arrays
 
The following also shows a variant of "AIOLI" where the linked lists are all joined together.  This makes 
iteration thru the list quicker but makes the overall code trickier.
 
 

 

 



 

Here the order-  time shows up on insertion, and that does more to lock us into an  tradeoff.m O n

 
[Show code.]
 

 

 


