
Efficiency, Reliability, and Design

Efficiency, Reliability, and Design
CSE250 Lecture Notes Weeks 3–4+

Kenneth W. Regan
University at Buffalo (SUNY)

September 20, 2010

Efficiency, Reliability, and Design

Efficiency and Reliability

Historically, a tradeoff.

But both are helped by declarativeness.

Means representing concepts, categories, and logical properties
directly in code, rather than in your brain (only).

Examples: classes for category nouns, const for logical constants,
separate functions for separate operations, exception classes (in
Java) for particular errors. . .

Representing properties is a current challenge. . .

. . . Hence burden currently falls on comments, assertions,
annotations, invariants, and requires/ensures. . . (Lectures will
have examples along lines of pp166–170 and Ch. 7.)

Efficiency, Reliability, and Design

Examples of the Tradeoff

Named functions versus assembler or “spaghetti code.”

Use of goto considered harmful—though good for optimizing some
loops.

Recursive functions are often easier to reason about (ch. 7), but
have high calling overheads (less so on newer compilers?).

Strict expression semantics (as in Java) impedes some
optimizations.

Greater indirection, as in Java, loses some time but reduces code
dependencies.

Use of objects and high-level coding constructs in general. . .

Smarter compiler technology is reducing all these drawbacks—and C++
templates were designed to eliminate the last!

Efficiency, Reliability, and Design

Walking And Chewing Gum At The Same Time. . .

A “mini” case is returning a value and causing a change in data at the
same time. Some authorities warn against it, and avoiding its pitfalls is
a main idea of “Functional Languages” (to come in CSE305). Examples:

1 return elements->at(rearItem++); //implicitly pops it

2 while(getline(*INFILEp,line)) { ... //reads and tests

3

out += sq->pop() + " " + sq->pop(); //which pop is first?

The last is bad because the order of the two changes in one expression is
not defined in C++. Java does mandate left-to-right order here, but
even so such expressions are considered Programmer Errors.

The first two, however, are fine. Indeed they are common idioms. When
we define “glorified pointers” called iterators, we will use *itr++ all the
time—and this is just a direct translation of Java’s next() operator.

Efficiency, Reliability, and Design

Program and Design Efficiencies

Program efficiencies usually make at most a constant-factor
difference in running time. E.g. if you save 3 statements in a
for(int i = 0; i < n; i++) loop that originally had 14
statements, then your new running time in the loop is 11/14 of the
old running time.

Smarter compilation also usually saves at most a constant factor.
Ditto faster processors, or doubling the number of cores!

For statements not within loops the savings is just an additive
constant.

Hence to distinguish greater efficiencies that result from good
design, it is convenient to have a notation that ignores constant
factors and additive terms.

Efficiency, Reliability, and Design

Big-O Notation

Suppose that on problems with n data items (counting chars or small
ints/doubles), your program takes at most t(n) steps. Let g(n) stand for
a performance target. Then

t(n) = O(g(n)),

meaning your program design achieves the target, if there are constants
c > 0 and n0 ≥ 0 such that:

for all n ≥ n0, t(n) ≤ cg(n).

Here c is called “the constant in the O” and should be estimated and
minimized as well, even though “t = O(g)” does not depend on it.
Having n0 be not excessive is also important. (Often we think of “c” as
being ≥ 1.)

Efficiency, Reliability, and Design

Principal Constant

Actually, the value of c which you use to satisfy the definition of
O-notation is hard to make best-possible. So I say a particular
choice is “reported.”

E.g. g(n) = n2, t(n) = 5n2 + 20n− 10.

If you “report” c = 10, then since 5n2 + 20n− 10 ≤ 10n2 whenever
5n2 − 20n+ 10 ≥ 0, so you get n0 = (20 +

√
400− 200)/10 up to

int, = 3.

But if you try c = 6, you get the bigger n0 = (20 +
√

400− 160)/2
up to int, = 18.

You can do it with c = 5.1, or any c = 5 + ε, but ironically you can
never satisfy the definition with c = 5 exactly!

Still 5, the coefficient of the leading term, is “the truth,” so we call
it the principal constant .

Did related examples on the blackboard instead.

Efficiency, Reliability, and Design

Extra Notation Ω,Θ, o (not in text)

If f(n) = O(g(n)), then we can also write g(n) = Ω(f(n)). In full
this means that there are c > 0 and n0 such that

for all n ≥ n0, g(n) ≥ 1

c
f(n).

Compare f = O(g) meaning . . . f(n) ≤ cg(n).

If it goes in reverse, so that g(n) = O(f(n)) as well, then we say
g(n) and f(n) have the same growth order , and we write
g(n) = Θ(f(n)).

If limn−→∞ f(n)/g(n) = 0, then we can say something even stronger
than “f = O(g).” We write f = o(g) to signify that f has a strictly
lower growth rate.

Efficiency, Reliability, and Design

Analogy to <, =, >

The real numbers enjoy a property called trichotomy: for all a, b,
either a < b or a = b or a > b.

Functions f, g : N −→ N do not, e.g. f(n) = bn2 sinnc and
g(n) = n [a quick hand-drawn graph was enough to show this in
class].

However, the British mathematicians Hardy and Littlewood proved
that for all real-number functions f, g built up from +,−, ∗, / and
exp, log only ,

f = o(g) or f = Θ(g) or g = o(f).

Thus common functions fall into a nice linear order by growth rate
(see chart from text).

Efficiency, Reliability, and Design

Extra Slide—looking ahead. . .

The notion of “trichotomy” is generally useful for reasoning about
custom-made < comparisons that are compound or not even
numeric.
If you test x < y and y < x and both of those return false, are
you allowed to deduce that x == y?
The K-W text does this with binary search trees at the bottom of
page 471. It can do so because that code requires that all items in
the tree be distinct.
When you infer “==” from the < and > tests failing, you are said to
be “assuming trichotomy.”
An example where you can’t [which was mentioned in class prior to
this slide] is the relation “southwest of” for two Point objects
p1,p2 as defined by

bool operator<(Point p1, Point p2) {

return p1.x < p2.x && p1.y < p2.y;

}

This operator could be a friend of the Point class/struct and thus be
able to access its private .x, .y fields. But it does not define a total
order!—if p1 is “northwest” of p2, they’re <> without being ==!

Efficiency, Reliability, and Design

L’Hôpital’s Rule and Little-oh

When f = o(g), sometimes it’s not immediately obvious that
limn−→∞ f(n)/g(n) = 0.

E.g. f(n) = n3, g(n) = 2n. In that case use L’Hôpital’s Rule: If
f(n) and g(n) both go to ∞ or to 0, then

lim
n−→∞

f(n)

g(n)
= lim

n−→∞

f ′(n)

g′(n)

provided the latter limit exists at all.

Here f ′(n) = 3n2 and g′(n) = 2n(ln 2), and we still don’t know. So
iterate: f ′′(n) = 6n, g′′(n) = 2n(ln 2)2; f ′′′(n) = 6,
g′′′(n) = 2n(ln 2)3.

Now it’s obvious that limn−→∞ f
′′′(n)/g′′′(n) = 0. Working

backwards, the Rule means the same is true of lim f ′′(n)/g′′(n),
lim f ′(n)/g′(n), and finally lim f(n)/g(n), so f = o(g).

Efficiency, Reliability, and Design

The Factorial Case

The function f(n) = n! comes up in sorting and problems involving
permutations.

It’s bigger than 2n. How much bigger?

Stirling’s Formula

n! =
√

2πn(
n

e
)n + g(n),

where g(n)/n! −→ 0 (so we can “asymptotically ignore” g(n)).

The “
√
n” in front prevents us from making a simpler “Theta”

relation. However:

log n! = n(log(n)− log(e)) +
1

2
(log n+ log(2π))

= Θ(n log n).

This rigorous Θ relation can be used to prove that any method of
sorting n items via comparisons must take Ω(n log n) time.

It also justifies the “hazy” notation “n! ≈ 2n logn.”

Efficiency, Reliability, and Design

Intuitive Meaning of Growth Comparisons

Let g(n) stand for an exact performance target, f(n) for some other
definite function, t(n) for the actual running time of your program, and
u(n) for a rival methodology.

1 t(n) = Θ(f(n)) means, “I know the asymptotic performance of my
program pretty well.”

2 t(n) = O(g(n)) means: your methodology is fine, and you can
probably tweak your code with constant-factor improvements
and/or better hardware to make your exact target.

3 t(n) = o(u(n)) means: your program will eventually slay its rival.

4 u(n) = Ω(f(n)) means: f(n) is a growth lower bound on the innate
capability of the (other) design.

Example of the last: sorting via comparisons needs time Ω(n log n).
Proving other believed examples is the hardest problem in theoretical
computer science, prize $1,000,000.

Efficiency, Reliability, and Design

Tradeoff (aka. Crossover) Points

But when t(n) = o(u(n)), don’t get cocky: for “small n” the other
program may still beat you.

[Show chart from text again, but this time note that the
lower-growing functions are actually higher at the left end.]

Interestingly, this purely-math phenomenon shows up in real code.

[Show demo of Insertion Sort with u(n) = Θ(n2), versus recursive
Merge Sort with t(n) = Θ(n log n). . .]

[. . . But aaaaaaaarrrghhh!, computers today are so freakin’ fast that
I can no longer show the tradeoff with a millisecond timer!—at
least iterating the code just once. . .]

Note Merge Sort is “asymptotically best-possible”—but other
Θ(n log n) sorts (to come in Ch. 10) tend to beat its
implementations on the principal constant.

[Given definite time functions t(n) and u(n), calculating the (last)
crossover point n1 is like finding “n0” to verify O-notation.]

Efficiency, Reliability, and Design

Reliability Factors

The text covers many good software-design and coding factors in
chapters 1–2 and 7, and throughout. . .

Several should be familiar from previous CS courses.

Of all we will emphasize:
Modularity

and (my umbrella term)
Logic Commenting.

Commenting is called annotating when comments are in a standard
format that a postprocessor (e.g. javadoc), or even the compiler
itself, can analyze.

The text @nnotates parameter names. . . we will try to systematize
other logical properties of methods and classes and relationships.

Efficiency, Reliability, and Design

Modularity

Definition is hard to pin down.

Abstraction and Information Hiding are key (sect. 1.2).

ADTs (sect. 1.4) are necessary but not sufficient:

The “Zillions of Little Classes” problem. . .
Coupling of classes. . .
Inheritance can make code non-modular.

A stab at a definition: modularity is the organization of code into
components so that dependencies among components are sparse,
and implementations of components can be changed without
affecting neighbors.

Efficiency, Reliability, and Design

Modularity and Testing: Classes

Example: bigint.h by Rossi-Vinokur, and my
FibonacciTimes.cpp client.

Can switch implementation from RossiBigInt to VinBigInt by
changing a single C++ typedef line.

(It might be even better if the implementations were in separate files
and the switch line were in a separate “gateway” file. . .)

[Demo in class of running times and then tracking down a
Segmentation fault error.]

Rotating the two modules gave some confidence that the fault was
not in either class.

A “stub” (text, pp156–157) can be for a whole class or package as
well as a function or method. The empty body doesn’t give the
same confidence as an alternative implementation, but it can help
for testing other code, and is important in prototyping .

Efficiency, Reliability, and Design

Modularity and Testing: Functions

The FibonacciTimes.cpp client has several different ways of
computing big Fibonacci numbers.

One was unusable for big numbers (double-branch recursion), but
single-branch recursion and a non-recursive function were fine.

Fault disappeared when the non-recursive version was used.

This exonerated the big-int classes completely, and pinned trouble
on the recursion.

Turns out asking for 50,000 recursions (to get the 100,000th
Fibonacci number) exhausted the memory map for simultaneous
activaton frames on timberlake—the limit for this method seems
to be in the 41,000s (it varies).

Case where a seg-fault was not a bad pointer.

Ironic that the “dumb” function could do well over 50,000—indeed
millions—of recursions to compute F30 with no fault. . . because no
more than 29 were activated at any one time.

Efficiency, Reliability, and Design

Logic Comments: Why?

Not all important properties and relationships can be expressed or
enforced by code statements themselves.
Even something as simple as fib n needing n ≥ 0:

Enforcing by declaring n as unsigned rather than int is discouraged.
(E.g. in Microsoft .NET, uint32 is not “CLS-compliant.”) Mixing
int and unsigned can be a pain. . .
Hey, “n” is a command-line argument: the user CAN type ”-1”!
The langauge Ada in the 1980s tried to standardize this by having a
subtype natural of the integers, but that didn’t stop an Ariane
rocket control program from malfunctioning when the underlying
hardware wordsize was doubled (and exceptions left on). . .
. . . and it wouldn’t have helped the loss of a Mars probe because one
team thought units were kph, the other mph!

Undecidability results (CSE396) may mean that sentient beings
will never escape the need for ad-hoc logic comments.
Hence current emphasis on writing them. . . and even systematizing
them.

Efficiency, Reliability, and Design

Requires, Ensures, Maintains

REQ and ENS are the same as PRE and POST, but emphasizing
communication between methods.

REQ is also more specific to methods than what the text calls a
“requirements specification” on pp68–69.
The names come from Bertrand Meyer’s “Design By Contract” and
Eiffel language.

Class invariants (CLASS INV) are properties maintained by a class
that are essential for its interpretation and run-time operation.

Loop invariants (LOOP INV) are features that stay constant while
other things change in a loop.

Recursion invariants (REC INV) hold between recursive calls.

AOK to abbreviate these three to just INV.

Efficiency, Reliability, and Design

LOOP INV and PRE + POST

A loop invariant abbreviates PRE and POST for a loop body—but may
be more useful during the body too. E.g. for Insertion Sort:

for (int i = 1; i < n; i++) {

// LOOP INV: vec[0..i) is sorted.

[body]

}

abbreviates

for (int i = 1; i < n; i++) {

// PRE: vec[0..i) is sorted.

[body]

// POST: vec[0..i+1) is sorted

}

LOOP INV should be true as the loop is entered.
Truth on exit (e.g. for i = n) should imply the goal.

Efficiency, Reliability, and Design

Checking Logic By Assertions

“Simple” properties can be checked at runtime by assertions
assert(e) where e is a Boolean expression.

at top of a method for REQ/PRE;
at bottom for ENS/POST.
on constructor exit for a CLASS INV, or anytime.

Example: merge(left,right,target) requires

target.size() == left.size() + right.size()

(or with “>=” in place of “==”).

Easier to assert this with vector than with raw C/C++ arrays.

REQ: left and right are sorted
ENS: target is sorted.
Checking these assertions takes an extra Θ(n) time—on each call!

mergeSort(left), mergeSort(right) yield a REC INV.

Efficiency, Reliability, and Design

Class Invariants

Can be brief, expressing just the most important, least-obvious points.
Examples:

StringStack.cpp: top designates the first free space above the top
element.

With vector and other STL containers: begin() indexes the first
element, but end() always means one place past the last element.

Just like “0” and “n” in a for(int i = 0; i < n; i++){...} loop.

My CPUTimer.h timer class maintains duplicate copies timestamp
and prevStamp of the last clock reading. . .

. . . so that the very first line in the new-reading method gets the
time, which overwrites timestamp.
You need the difference of two clock readings to measure a duration.

