
CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4
Inheritance, Memory Management, and Library Design in C++

Kenneth W. Regan
University at Buffalo (SUNY)

Weeks 5–7+

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

C++ Subclasses vs. Java

class Derived extends Base {...
class Derived: public Base {...

C++ also has : private {..., which screens out base-class methods.
However, it violates general subtyping principles and is frowned upon.
(Compare text, p190.)

C++ makes you think harder about visibility of non-public data to
subclasses, because C++ lacks Java’s default/package visibility.
Liberally making data protected can allow alien subclasses to violate
INVs of the base class.

Example: top in class StringStack.

So let’s examine communication when base data is private.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Base and Derived Constructors

As with Java, base-class constructors must be called first—and the
system will do so even if you don’t.

Java: must call super(...) in first line in ctor body.

C++: must call base-class ctor first in initializer list. E.g.:

class Stack: public List {

public

Stack(int maxSize) : List(maxSize) { ...}

Without that, compiler would insert a call to List(), which might
cause havoc. . .

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Havoc

If you declare a constructor with parameters, then this disables the
zero-parameter ctor. . . unless you define it too!

So if List() is disabled, you get a compile-time error message, with
templates maybe screenfuls. . .

If List() is not disabled, it will compile. . . which is usually far
worse.

Hence, always insert the base call, and always define a constructor.

And use explicit with single-parameter ctors, else a typo
int sz = myStack = size; when you meant
int sz = myStack.size();

will compile, and will re-construct myStack to empty data of that
size!

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Private Base Class Instance Variables

Need to be initialized by the base-class ctor call.

Having a protected setter method for them in the base class is
better than having “protected” data, since the base-class designer
writes the body and can monitor CLASS INVs.

An “alien” subclass who overrides the protected method still can
get its green hands on the crucial data.

C++ friend requires the base-class designer to know the names of
the friends in advance, so they are “terrestrial.” Good for
emulating Java package-visibility, but use sparingly. . .

Can friend global functions/operators as well as classes, e.g.
operator<< in LinkArg.h is outside the class but allowed to see
the private data.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Overriding

The only difference from Java is that an overriding method must
have the exact same return type, whereas Java has allowed a
subclass return type since 2005.

The main hitch is how this relaxation would interact with const

return types. For general reasons we will try to avoid them.
You can assign or pass a non-const return value to a const variable
or parameter, but not vice-versa.

And of course, to allow overriding the base-class method must be
marked virtual (and the derived method almost-always is too).

Pointer (or reference) variable + virtual = Java behavior, else you
get static binding . (Not to be confused with static members.)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Constructors in Declarations and Expressions

Base* bp; //pointer declaration

Base* bbp = new Base(); //pointer init on heap

Base bv; //value *construction* if 0-param ctor

//Base bv(); //looks like 0-ary function dec.

Base foo() {...; return Base();} //return Base; is error

Base* foo(){...; return new Base();} //OK, heap obj persists

//Base* bar() { Base b; return &b; } //"dangling pointer"!

cout << Base(); //OK if ostream& operator<<(ostream&, Base)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Static and Dynamic Binding

class Derived: public Base {

int newField;

public:

explicit Derived(int x) : Base(), newField(x) { ... }

virtual void meth() { ... } //overrides Base::meth

};

Derived dv(3);//OK

bv = dv; //VALUE LOSS, bv has no newField.

bv.meth() //hence value variables give only static binding!

bp = &dv; //no problem, newField still accessible

bp->meth() //OK, calls override if meth() is virtual

(*bp).meth() //Same: pointer variable not "." is what matters

See HelloWorld.cpp also for cases involving C++ reference variables,
but we will prefer pointer variables.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Translating Java instanceof

Suppose we have a Base* pointer bp, which may-or-may-not be hold ing
a Derived object. In Java we can tell by testing:

if (bp instanceof Derived) { ...

In C++ this is a two-step process:

Derived* dp = dynamic_cast<Derived*>(bp);

if (dp) { ...

If bp is holding a Derived object, the cast succeeds and dp holds the
same object. If not, then dp is a NULL pointer and the test if (dp) fails.

See text pp205–206. Lecture demo with RealFn.h and Newton.cpp

includes a meaty example with how the str() methods decide when to
introduce parentheses.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Overloading and Un-Shadowing

Overloading rules are (basically) same as Java.

Can overload where the only difference is that a parameter or the
return is const!

Ditto register and volatile and other C++ type qualifiers.

A ginormous error message ending with the words “. . . discards
qualifiers” usually means you violated a rule of const.

E.g. you took a const variable and tried to call a non-const method
or assign it to a non-const variable, or made a const method call a
non-const method from the same class.

If a method meth would have been an override except for the
absence of virtual, it creates an overload that shadows the
base-class method.

Can still invoke base-class method as Base::meth(...), which
translates Java super.meth(...) (example: IntList2.java).

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Overloading Operators

In C++ we can overload operators via their long-form names such as:

operator== e.g. operator==(a,b) is a == b

operator= (long form in member-syntax only)
operator<< with cout, different meaning from shifting
operator++ is prefix; postfix is operator++(int)

operator[] arrp->operator[](i) is (*arrp)[i]

operator() (*fp)(x) is same as fp->operator()(x)

operator* overload de-referencing for iterator class
operator-> can even override this! but not member-access .

The whole Standard Template Library syntax is based on overloading
the last five!
In an OS course you may overload operator new and operator delete.

We’ve also mentioned conversion operators operator Bar for other types Bar,

but will ignore them.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Object Scopes and Lifetimes

Globals and Statics: “eternal”

should guard names by class:: or namespace::
a using declaration unguards the latter.

Locals, including all value objects.

Constructed w/o “new” on the system stack.
Are reclaimed when their declaring function/method (incl. main)
exits.
No need to delete.

Heap Objects

constructed via new

held by pointers, but themselves nameless
exist after their activation frame exits
In C++, need explicit delete-ion when no longer wanted.

(Web Objects persist even after main/applet exits.)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Reclaiming, Deleting, Copying

Reclaiming a pointer variable p does not reclaim the object obj it
points to. That needs delete(p).

As covered before, p itself is a value object, whose value is an
address—while obj can be a heap object or a value object (even
another pointer!).

Reclaiming an object obj activates its destructor .

Every class starts off with a default destructor , which does nothing
more than reclaim all of its fields.

but this does not delete any pointer fields it may have.

Copying a pointer variable does not copy the object it points to.

Copying an object obj by-default copies its fields. “Shallow Copy”
but does not copy the objects any pointer fields may point to.

Every class Foo starts off with a default copy constructor
Foo(const Foo& other) and a default operator=(const Foo&

rhs), which do shallow copy.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Memory management and the “Big Three”

Simplified “Rule of 3”: A class Foo is non-reclaimable when it has one
or more fields that are pointers, or containers of pointers. Then it
should define the following three members ([...] means optional):

1 [virtual] ~Foo() { ... } //destructor
2 Foo(const Foo& copyMe) [: <inits>] { ... } //copy ctor
3 Foo& operator=(const Foo& copyMe) { ... } //assignment

The field vector<string>* elements; in the StringQueue or
StringStack class is such a pointer field.
A “raw array” field also counts as a pointer field.
A vector field (without the *), however, counts as a value field.
The vector will be reclaimed automatically.
A vector of pointers, however, counts as a container-of-pointers
field, and may need further action.
Motivation for destructor is to free up memory when objects are no
longer needed.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Default and “Skin-Deep” Big Three

So-called “default” versions of the “big 3” always exist:

The default destructor reclaims each field.

But, reclaiming a pointer leaves the object it points to untouched.

The default copy-constructor copies each field, but not any objects
“further down” that they point to.

The default assignment operator assigns each field individually.

For each value field, these actions will recursively call the
corresponding “big 3” of the class the field belongs to.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Default and “Skin-Deep”—cont’d

The “skin-deep” destructor calls delete on every pointer field.
Value fields need not be mentioned—they get reclaimed (too).

For every pointer field Bar* p; the skin-deep copy-ctor does an
initialization p(new Bar(*(copyMe.p))) (this is doable without
friend-ing because it is inside the class).

And the skin-deep operator= does *p = *(copyMe.p); for every
such field.

The skin-deep destructor is correct for Queue and is inherited by
Deque:

virtual ~Queue<T>() { delete elements; }

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Problem with the skin-deep/“Next Hop” Destructor

Calls delete on every pointer field.

(Calls delete[] on raw-array fields, cf. KW::vector p251.)

Other fields do not have to be mentioned—they still get reclaimed
automatically.

Looks logical! But do we want to code it? Consider the “swath” of an
object, defined as follows:

Primitive object (int etc.): itself.

Value class/struct object: itself + the swaths of all fields.

Vector-or-array: itself + the swaths of all elements.

Pointer: itself + the swath of whatever it points at.

If everyone has a next-hop destructor, delete will wipe the entire
swath!. . .

(. . . except for “double indirection,” when a pointer points at a
pointer, e.g. Cell** nextLink = &next;)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Responsibility For Destruction

Consider a (templated!) Cell class for a linked list:

template <typename I> //I = Item_Type in text

class Cell { //cf. "Node" on p255

friend class LinkedList<I>; //reason needed is below

I data;

Cell<I>* next;

public:

Cell(I dataItem, Cell<I>* nextPtr)

: data(dataItem), next(nextPtr)

{ }

//virtual ~Cell() { delete(next); } //next-hop, bad here.

virtual ~Cell() { } //omit virtual for "true structs"

};

With next-hop destruction, each Cell would “Delete Thy Neighbor”!
Rather, a LinkedList class that manages the cells should do it. . .

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

When not to delete: Shared Data

If two objects have the same sub-object in their swaths, and the
former deletes it, it “munges” the latter!
Example: The Newton.cpp client for RealFn.h builds function
objects that share subterms, rather than always making new ones.
It could have had this:

MonicFn* x = new X();

MonicFn* log2x = new Log(2.0, x);

MonicFn* ps2 = new Times(new Constant(40.0), new Times(log2x,log2x));

MonicFn* xx = new Times(x, x);

If deleting xx whacked x, then log2x and hence ps2 would get
corrupted.
Can be solved by having each object monitor its reference count ,
but what a hassle!. . .
. . . a main reason newer languages are adopting garbage
collection—but can you do it “in a heartbeat”?

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

A Linked List Destructor (cf. text, p273)

template <typename I>

class LinkedList {

Cell<I>* head;

public:

...

virtual ~LinkedList() { // INV: head = next cell to delete

while (head != NULL) { // by INV, means no more to delete

Cell<I>* curr = head; //delete(head) would Invalidate head

head = head->next; //needs friending

delete(curr);

}

}

...

};

(Aside: An auto_ptr type deletes neighbors, and could destruct the
Cells after delete(head); Still managed by LinkedList so OK.)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Linked-List Destructor (cont’d)

As in the text, this traverses the list and deletes in forward order.

Works unchanged for doubly-linked list and DNode–the extra prev

pointers are themselves value objects and are simply reclaimed .

If Cell were nested inside LinkedList, we wouldn’t need to repeat
the template parameter I

Text puts DNode into a separate file and does manual inclusion “in
mid-code”; we disagree with this and will code nested classes
“literally.”

Also IMHO, destructor should be virtual whenever a class might
be subclassed, even if no virtual methods are present. This is wider
than what the text says on p200. (NB: The new C++ sealed

keyword, which is like Java final, seems not to exist for g++ on
timberlake yet.)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Deeper, Deep, and Deepest Copy

Deepest copy clones all non-const fields in the swath of an object.
The “next-hop” copy-constructor clones all pointer fields, e.g.:

class Foo {

Bar x;

const Haw c;

const Haw& d;

Delta* dp;

public:

Foo(...) : ... { ... }

Foo(const Foo& other)

: x(other.x)

, c(other.c) //OK to *initialize* a constant, copies c?

, d(other.d) //definitely does not copy d

, dp(new Delta(*(other.dp))) //invokes Delta copy ctor!

{ }

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Parameter Passing and Copying

int meth(Foo arg) Value parameter, copies passed-in Foo obj.

int meth(const Foo arg) Constant value parameter, guarantees
arg can’t be assigned or mutated in body of Foo, but copies obj in
the call (unless optimization settings intervene?).

int meth(const Foo& arg) Constant reference parameter, same
as above but guarantees that obj is not copied.

int meth(Foo& arg) Reference parameter, avoids copying obj,
and allows the body of meth to modify the original of obj.

Some authorities hold that only void methods should have reference
parameters, as was the rule in the programming language Ada used
by the US DoD in the 1980s and 1990s.

int meth(Foo* arg) Pointer parameter, copies only the pointer,
and allows body of meth to modify the original obj.

int meth(const Foo* arg) Pointer to constant data, similar
effect to a const reference but with pointer syntax inside the body.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

“Next-Hop” Assignment Operator

Continuing the same class Foo. . .

Foo& operator=(const Foo& rhs) {

x = rhs.x;

//! c = rhs.c; d = rhs.d; //cannot *assign* to const

dp = new Delta(*(rhs.dp)); //again invokes Delta c-ctor

return *this; //allows chained assignments

} //such as obj1 = obj2 = obj3;

Note that the constant-reference parameter in both the copy-ctor
and operator= averts premature copying of the argument object.

The above will produce deepest copy if all objects in the swath do
this, (again excepting double-indirection).

But should they?

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Managed Copy by LinkedList

Back inside our templated LinkedList<I> class:

LinkedList<I>(const LinkedList<I>& other)

: head(other.head ? new Cell<I>(*(other.head)) : NULL)

{

Cell<I>* curr = other.head->next; //current cell to copy

Cell<I>* target = this->head; //INV: copied up to target

while (curr != NULL) {

target->next = new Cell<I>(*curr); //use Cell copy ctor

//target->next = new Cell<I>(curr->data, NULL); //also OK

target = target->next;

curr = curr->next;

}

}

LinkedList<I>& operator=(const LinkedList<I>& other) {

head = (other.head ? new Cell<I>(*(other.head)) : NULL);

[repeat above body!---?] [what about deleting old Cells??]

}

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

LinkedList Copy Ctor—cont’d

As the text notes on p250, maintaining sizeable duplicate code for
operator= is yucky.

The text code for operator= invokes the copy-constructor to create
a new list, swaps it with this, and finally deletes the old self.

Another idea is to “factor” the common while-loop code into a
separate private method—but that still leaves the task of
destructing the old cells linked from head.

Because we did not have Cell “Copy Thy Neighbor,” and because
the data field of Cell is a value, the default Cell copy ctor is fine.
If it had I* data, then we would have to define a different Cell
copy ctor too.

Also note the assumption that the client for I can copy the data.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

When are the “Big Three” Needed?

Basically when a class allocates a pointer to (non-const) data.

An override of operator= is also needed whenever a class has a
“member const” field. . .
. . . unless you want to forbid assignments altogether—since any
attempt to use the default operator= will generate a compile error
on the attempt to assign a constant field.

Example of member const: a maxSize limit that is tailored for an
object at construction, rather than set for the class as a whole.
A static const field is fixed for the whole class, and not copied by
the default operator=, so no problem.
The function-objects in RealFn.h have all-const fields, including
const Foo* const pointers. Hence no assignments allowed.

To forbid cloning, one can disable the copy ctor and operator= by
declaring them private.

The iostream library does this with streams.
But if the client for I in Cell<I> does this, screenfuls of template
errors—if you’re lucky!

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

When They’re Not Needed—“Value Classes”

If any pointer fields point to data that the class does not “own” or
“manage,” then no responsibility to copy or delete it.

If all other fields are value declarations, we have a “value class.”

A “value class” can have a simple constructor that initializes each
field, and the default “Big Three” are fine for it.

Example: a typical iterator class. E.g. FlexArray<T>::iterator
(Fall 2010) can have the constructor (assuming its fields are called
myFlex,whichNode,localIndex):

iterator(FlexArray<T>* myFlex, //ref to parent container

Node<T>* whichNode, //ctor itself is private,

size_t localIndex) //called by public begin(),

: myFlex(myFlex), whichNode(whichNode), //end(),rbegin()..

localIndex(localIndex) { }

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

What Templates Mean

Suppose Item is a client type for Foo<I>.

Formally Foo is a compile-time function that takes a type
parameter and returns a class, here Foo<Item>.
So read it as “Foo-of-Item,” just like we read “f(x)” as “f -of-x.”
Thus generally called parametric polymorphism.
Not Foo “Has-A” Item (certainly not “Is-A” either way); maybe
one can say Foo<Item> is Foo “Serving” Item.

UML diagram (text p776) shows tandem with Foo bigger.

For a container class like vector, the reading “vector-of-Item” or
“vector-serving-Item” is especially apt.
Template classes can have more than 1 parameter, and parameters
can also be objects as in ordinary function parameters, e.g.
template <typename I, int maxSize> class Stack { ...

Creates separate Stack<Item,s> classes for each size s. (Compare
passing maxSize as a constructor argument.) Solves “member const”
problem but bloats code! Dilemma meatier with function-objects. . .

Functions and methods can be templated individually. . .

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Kinds of Containers

Container: a class that manages a collection of items.

One-at-a-time access (e.g. stack, queue, heap)
Sequential, can “go inside,” rewind, re-read (list)
Random-Access (array)
Key-access (dictionary, hash-table?)

Sorted or Unsorted?

Modern focus is not on the classical name of the data-structure, but the
kind of access/iteration it allows, and what asymptotic performance
guarantees it offers.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Iterators for Containers

An iterator is a “Pointer Object.”

Most important: can pass iterators rather than whole containers to
methods.

C++ STL syntax based on Array Pointers. Given Foo arr[n];—

Foo* p = arr; begin p on the first element arr[0]
p++ or ++p move p to the next element—compiler knows the
memory-size m of a Foo object and converts this to p += m;

x = *p return current element
x = *p++ return current elt. and move on
p++ = x; can assign unless p is const Foo

Iterator Classes overload these (and maybe other) operators. Are
typically nested inside templated containers.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

More Array Pointers and Iterator Kinds

Random-Access Iterators also emulate the following features of
array pointers:

p += k advance k places, compiled as p += m*k; Similar for p -=

k; and p--, --p etc.
Foo* end = p + n; past-end of size-n array
p[k] is same as p + k, while
arr[k] is same as *(p+k).
If a pointer q is already on that cell, fetching *q is quicker than
arr[k] which involves arithmetic.
Can compare p < q, p <= q, p > q, p >= q, as well as p == q,
p != q.
All iterators can of course assign p = q; to each other, but only RAI
can be init from any cell k.

bidirectional iterator adds only p-- and --p to
forward iterator, plus creation by .rbegin(), .rend().

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Using Iterators

Assuming vector<int> vec of size n:

for (int i = 0; i < n; i++) { sum += vec[i]; }

becomes

for (vector<int>::const_iterator it = vec.begin();

it != vec.end(); it++) {

sum += *it;

}

which really translates, for int arr[n]:

const int* pastEnd = arr + n;

for (const int* arrp = arr; arrp != pastEnd; arrp++) {

sum += *arrp;

}

The natural-looking indexing code is slowest, while the bulky iterator
code is nearly as fast as the pointer code. (Demo: templatesorts.cpp)

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Iterator Loop Technotes

In Java and C#, with C++ to follow in 201x?, the noton of
(forward/reverse/?) iteration is being brought into the basic language
syntax, e.g:

foreach (int item: arr) {

sum += item;

}

This has “fewer moving parts” than a regular for-loop, and avoids
explicit reference to a (const)iterator—though a container class
must still implement Iterable to use this syntax.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Loop Technote II

The following while-loop

vector<int>::const_iterator it = vec.begin();

while (it != vec.end()) {

sum += *it++;

}

quite literally translates Java

while (vec.hasNext()) {

sum += vec.next(); //side-effect of advancing

}

Hence the *it++ idiom is traditional.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Iterators In Motion

For any Container<I> that supports these operations, with the
following STL syntax:

cont.begin() : iterator on first element
cont.end() : iterator one past last elt.
I *itr : data item pointed at
*itr = item; : can assign to location, except. . .
const I *itr : if itr is a const iterator.
itr->meth(...) : invoke meth(...) on data item
itr++ : move itr to next cell forward
itr-- : . . . or backward, if cont allows.

With operator-- one can employ cont.rbegin() which returns an
iterator on the last elt., and cont.rend() which is before the first elt.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

STL Iterator Class Hierarchy Categories

A random access iterator (RAI, RI in text)

is-a? [Library is more complicated than this!]

bidirectional iterator, which

is-a? forward iterator and also

is-a? reverse iterator

Each kind is-a? basic iterator, which actually breaks down into
read-only and write-only, before the ultimate base which can only
do (pointer-)assignment and comparison by ==, !=.

Since iterators are themselves value-objects, one cannot use the
base class to refer to them—this would cause Info Loss!
Instead each container creates a nested class
Container<I>::iterator by extending, type-aliasing (via
typedef), or just imitating the appropriate one of the above STL
library classes.

A declaration with a template variable before :: needs the keyword
typename in front—text, p281. Needed for return types too.

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Delegation vs. Inheritance

A class Foo is said to wrap a class Bar if:

“most” of a Foo object consists of a Bar object bar, and

“most” of the Foo methods get “most” of their functionality by
calling method(s) on that bar.

Example. Rather than extend a LinkedList class, the text’s
Ordered List wraps std::list. It could have a field std::list*

const theList held by a constant pointer, or use value syntax as inthe
text. Then rather than inherit a method like LinkedList::size() or
std::list::size(), it codes a method size() whose body simply
delegates to the enclosed list:

size_t size() const {

return theList->size();

}

CSE250 Lecture Notes Weeks 5–6, K-W chs. 3–4

Delegation vs. Inheritance II

This may look like a waste of code and (run-)time, but:

An optimizing compiler, helped along by const-correctness, can
often spare you the overhead of the “extra” method call.
Whereas inheritance, especially with virtual methods, requires an
extra class-table lookup.
If Bar uses outdated syntax, the Foo wrapper can supply a
conforming interface. (“Adapter” Pattern)
Inheritance can hurt modularity; wrapping can improve it.

The text’s Ordered_List<I>::iterator class delegates to the
corresponding methods of the std::list::iterator.
As we’ve observed, C++ templates can assume the argument
implements certain methods, without a Java-like interface specifying
them. (If some are missing—and a client tries to use one—a link-time
error results.) This is like “Duck Typing,” but compile-time/static
instead of run-time/dynamic. Templates go well with delegation and the
former, and produce efficient code (per demos).

