CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7 Data Structures—Performance and Objectives

Kenneth W. Regan University at Buffalo (SUNY)

Weeks 7–8+

ション ふゆ マ キャット しょう くりく

Basic Data Structure "Facts of Life"

Any data structure that supports iterators gives "fingered access" in O(1) time. But what if we only have an address, relative directions, a key to match, or a feature to search?

- An array/vector provides *indexed access* in O(1) time.
- But insert or erase of items "in the middle," has a worst-case $\Theta(n)$ time—owing to the need to "Move House(s)."
- A linked list can do insert/erase or other "splicing" from an iterator in O(1) time.
- But it has no addressing, and search may require polling all n items.

(日) (日) (日) (日) (日) (日) (日) (日)

Can we do both search and splicing in o(n) time?—such as $O(\sqrt{n})$ or $O(\log n)$ time?

Can we "hash out" a way to do both in O(1) time?

Always? Reliably?

Compromises and "Amortized" Performance

[Diagram and discussion of the "Valli" data structure, which is a vector of n/r pointers into a sorted *n*-item linked list.] [Name stands for "Vector And Linked List + Iterator"—on a machine named for Justin Timberlake, it commemorates Frankie Valli.]

- Amortized O(g(n)) performance means that
 - The time for a single call is usually O(g(n)), and/or
 - The *average* amount of time over a long series of calls is O(g(n)).
 - This is also allowed to depend on whether the distribution of data items and/or calls is "normal" versus "adversarial."
- The refresh policy for Valli needs to be timed carefully.
- Adversarial: a burst of inputs with the same or similar keys.
- Basic binary search trees have the same problem!

Performance Goals of "Valli"

- Promise of Valli is $O(\log(n/r) + r)$ time lookup. If $r = \Theta(\log n)$, this becomes $O(\log n)$
- If (say) $r = \sqrt{n}$, then the time is $O(\log(n) + \sqrt{n}) = O(\sqrt{n})$, which isn't as good.
- (Why aren't we saying "Θ" in the last item? Because you can get lucky!—the item you want might be at the beginning of the length-r segment.)
- Also important is that the vector only has about n/r entries. Not only does this reduce the extra space needed for the vector (compared to the list), it also reduces how often one needs to resize/refresh the vector compared to keeping one pointer per list node.
- Thus putting r significantly down also degrades the performance. Having $r = \Theta(\log n)$ is a "sweet spot."
- But a fixed value such as r = 20 can be "sweet" for a lot of sizes, roughly up to $2^{20} =$ a million!

How much worse is "Amortized"—?

- Suppose we call **refresh** whenever the number n of items doubles.
- Waiting until n = 2r, as hinted on the project spec, means refreshing when the size hits 40, 80, 160,...
- Suppose $n = 10 * 2^k$, e.g. k = 12, n = 40,960 = about 40,000.
- We have spent "Theta-Of" $40 + 80 + 160 + \dots + 20,480 + 40,960 =$ about 80,000 on refreshes.
- This is about 2n, and we inserted n items, so the average cost of refresh per insert was 2 times whatever constant is in the "Theta" for saying refresh takes $\Theta(n)$ time.
- That's less on average than the $\Theta(\log n)$ time that binary search takes to find where to insert the next item in the first place.
- Thus although refresh seems a pain when it's called, its *amortized* cost is *negligible*, meaning Little-Oh of something else, $2 = o(\log n)$.
- (This means there's slack to refesh a little more often and so maybe improve the performance of find...)

CSE250 Lecture Notes Weeks 7-8, K-W chs. 4-7

Binary Search Trees

[Guest lecture. It was review for many, but commences the intent stated in Week 1 that coverage would be sequential once Chapter 8 was hit. I've located it here amid the "amortized" discussion because it sets up the important examples on the next slides.]

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Other "Amortized O(1)" Examples

- Text has the same doubling strategy for the capacity of a KW::vector in Chapter 4, and explains similar results.
- Implementations of the standard STL vector usually do similarly.
 - When a vector changes its capacity it generally migrates to a new block of memory, thus *invalidating* any iterators unwisely left on it—demo STLinvalids.cpp.
- Classic example is next-step in a binary-tree tra(ns)versal, which can be coded as operator++ for an iterator.
 - Main transversals are *preorder*, *inorder*, and *postorder*, but for a binary *search* tree, only *inorder* respects the sorting.
- A binary tree with n nodes has n-1 edges. In any of the three main transversals, each edge is stepped thru twice. Hence the average time per step is proportional to (2n-2)/n = 2-2/n, which is about (and no more than) 2.
- Thus although some individual steps can take a long time, the operator++ takes "amortized O(1)" time.

Adversarial Data

- A more-important variable in data-structure performance is the sequence in which data items are presented.
- Example: Valli will "degrade" if a burst of consecutive inserts have keys that are equal or near each other in sorted order.
 - A burst of toys tagged "McDonald's..." could blow up the segment between mileposts on "Ma..." and "Me..." Then a search for (e.g.) "McFarlane Models" would have to wade thru all the "McD" stuff, just like on a singly-linked list.
 - A refresh would cure that, but with the global "doubling" strategy mentioned above, it might take a long time.
 - Hence the idea of refreshing whenever the # of items between any two mileposts doubles...—but it's harder to code.
- With basic binary search trees (as in Ch. 8, as opposed to *balanced* trees to come in Ch. 11), things can be as bad or even worse!

"Scraggly" Trees

- To generate an extreme example, insert 20 then $19, 18, 17, \ldots, 1$.
- A basic BST created in that order will be a line angling down left.
- No lookup-time advantage over a (sorted) linked list.
- Note also that iterator begin() const will take n-1 steps walking from the root until it finds the node with 1.
 - The "2 2/n" amortized performance is not upset by this, because the final n 1 steps will take 1 hop each.
 - If the inserts were in order 1,2,3,...,20 then begin() would be immediate, but the last application of operator++ before the iterator hits end() would take n − 1 upward steps.
- A "random permutation" of any data will give you a pretty balanced tree (this is proved as a theorem in some texts), BUT—
- *Real-world data often isn't random!* In particular, it's natural to copy into one data structure from another in sorted order. If you copy into a basic BST that way, you're...scraggly!
 - Valli won't be affected as badly, as refreshes will fix things.

What Do We Try to Guarantee?

- The basic tradeoff: going for the best *long-run* performance may require tolerating some bad short-runs.
- Or worse, it may expose us to rare(?) cases that could give data structures like BSTs "permanent bad shape."
- Alternative: smooth out the bumps so no instance is too bad—but you need a more-complicated data structure that does overall more work, even for "good data cases"!
- Example: the Red-Black Tree (Ch. 11) actually used by the C++ STL for all of set, multiset, map, multimap. It guarantees $O(\log n)$ time performance for insert, erase, find,...-but with a higher principal constant "hiding under the O"!
 - Hence, one can often compete with it!
 - According to the article cited at the end of the Project 1 spec, a simple sorted vector is better for some situations.
 - Valli is almost as good, for almost all situations!
- Hash Tables can Beat The Tree, but, not with the guarantees...

More on Binary Search Trees

- [Coverage from official K-W text notes, and code.]
- [Code examples, including iterator class which the text doesn't give, and same STL-conformant interface—also largely to illustrate issues with set-vs.-multiset in Chapter 9.]
- Text's code for insert is recursive, likewise erase and find.
- Actual STL code is iterative, and uses extra parent links.
- Either way, and as-usual, **erase** is the most difficult to code. When a *non*-leaf is deleted, one needs to find another node to put in its place.
 - Can be either the inorder successor or the inorder predecessor—text does the latter.
- Despite recursion being "high-level", text uses an important "low-level" detail: *passing pointers by reference*. Needs a slide to itself...

*&

The main public insert(const I& item) method *delegates* to a private "helper method"

void insert(const I& item, Node*& local_root) {

```
...
if (local_root == NULL) { //standard uses dummy NIL node instead
    local_root = new Node(item,NULL,NULL);
}
...
}
```

Note that if you had a current pointer as parameter, you would hit if (current == NULL) { ... at the same place. If you then did current = new Node(...); you would link the new node only to current. You wouldn't link it to any parent node! Passing the link by reference ensures that you modify the link itself. (Hence I would prefer naming it link or link2localRoot.)

Alternative Implementations [FYI, not in text]

- If you maintain a prev pointer, you can assign the new node to prev->left or to prev->right accordingly, with no *& needed.
- But you need to test if (prev->left == NULL) and/or if (prev->right == NULL) along with lessThan, which is slower.
- Having a parent link doesn't let you rest easy with a current pointer, the same way a prev link does in a doubly-linked list—because when you hit current == NULL, it has no parent!
- Or even if you use a dummy NIL node, unlike a dummy end-node in a list, it doesn't have a unique parent!
- Pointer-to-pointer also works, aka. *double indirection*:

void insert(const I& item, Node** ptr2link) {

```
if (*ptr2link == NULL) {
    *ptr2link = new Node(item,NULL,NULL);
}
... //[the best singly-linked lists are similar!], ...
```