
CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7
Data Structures—Performance and Objectives

Kenneth W. Regan
University at Buffalo (SUNY)

Weeks 7–8+

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Basic Data Structure “Facts of Life”

Any data structure that supports iterators gives “fingered access” in
O(1) time. But what if we only have an address, relative directions, a
key to match, or a feature to search?

An array/vector provides indexed access in O(1) time.
But insert or erase of items “in the middle,” has a worst-case
Θ(n) time—owing to the need to “Move House(s).”
A linked list can do insert/erase or other “splicing” from an
iterator in O(1) time.
But it has no addressing, and search may require polling all n items.

Can we do both search and splicing in o(n) time?—such as O(
√

n) or
O(log n) time?

Can we “hash out” a way to do both in O(1) time?

Always? Reliably?

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Compromises and “Amortized” Performance

[Diagram and discussion of the “Valli” data structure, which is a vector
of n/r pointers into a sorted n-item linked list.]
[Name stands for “Vector And Linked List + Iterator”—on a machine
named for Justin Timberlake, it commemorates Frankie Valli.]

Amortized O(g(n)) performance means that
The time for a single call is usually O(g(n)), and/or
The average amount of time over a long series of calls is O(g(n)).
This is also allowed to depend on whether the distribution of data
items and/or calls is “normal” versus “adversarial.”

The refresh policy for Valli needs to be timed carefully.
Adversarial: a burst of inputs with the same or similar keys.
Basic binary search trees have the same problem!

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Performance Goals of “Valli”

Promise of Valli is O(log(n/r) + r) time lookup. If r = Θ(log n),
this becomes O(log n)
If (say) r =

√
n, then the time is O(log(n) +

√
n) = O(

√
n), which

isn’t as good.
(Why aren’t we saying “Θ” in the last item? Because you can get
lucky!—the item you want might be at the beginning of the
length-r segment.)
Also important is that the vector only has about n/r entries. Not
only does this reduce the extra space needed for the vector
(compared to the list), it also reduces how often one needs to
resize/refresh the vector compared to keeping one pointer per list
node.
Thus putting r significantly down also degrades the performance.
Having r = Θ(log n) is a “sweet spot.”
But a fixed value such as r = 20 can be “sweet” for a lot of sizes,
roughly up to 220 = a million!

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

How much worse is “Amortized”—?

Suppose we call refresh whenever the number n of items doubles.
Waiting until n = 2r, as hinted on the project spec, means
refreshing when the size hits 40, 80, 160,. . .
Suppose n = 10 ∗ 2k, e.g. k = 12, n = 40, 960 = about 40,000.
We have spent “Theta-Of” 40 + 80 + 160 + · · ·+ 20, 480 + 40, 960 =
about 80, 000 on refreshes.
This is about 2n, and we inserted n items, so the average cost of
refresh per insert was 2 times whatever constant is in the
“Theta” for saying refresh takes Θ(n) time.
That’s less on average than the Θ(log n) time that binary search
takes to find where to insert the next item in the first place.
Thus although refresh seems a pain when it’s called, its amortized
cost is negligible, meaning Little-Oh of something else, 2 = o(log n).
(This means there’s slack to refesh a little more often and so maybe
improve the performance of find. . .)

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Binary Search Trees

[Guest lecture. It was review for many, but commences the intent stated
in Week 1 that coverage would be sequential once Chapter 8 was hit.
I’ve located it here amid the “amortized” discussion because it sets up
the important examples on the next slides.]

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Other “Amortized O(1)” Examples

Text has the same doubling strategy for the capacity of a
KW::vector in Chapter 4, and explains similar results.
Implementations of the standard STL vector usually do similarly.

When a vector changes its capacity it generally migrates to a new
block of memory, thus invalidating any iterators unwisely left on
it—demo STLinvalids.cpp.

Classic example is next-step in a binary-tree tra(ns)versal, which
can be coded as operator++ for an iterator.

Main transversals are preorder , inorder, and postorder , but for a
binary search tree, only inorder respects the sorting.

A binary tree with n nodes has n− 1 edges. In any of the three
main transversals, each edge is stepped thru twice. Hence the
average time per step is proportional to (2n− 2)/n = 2− 2/n,
which is about (and no more than) 2.
Thus although some individual steps can take a long time, the
operator++ takes “amortized O(1)” time.

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Adversarial Data

A more-important variable in data-structure performance is the
sequence in which data items are presented.
Example: Valli will “degrade” if a burst of consecutive inserts
have keys that are equal or near each other in sorted order.

A burst of toys tagged “McDonald’s. . . ” could blow up the segment
between mileposts on “Ma. . . ” and “Me. . . ” Then a search for (e.g.)
“McFarlane Models” would have to wade thru all the “McD” stuff,
just like on a singly-linked list.
A refresh would cure that, but with the global “doubling” strategy
mentioned above, it might take a long time.
Hence the idea of refreshing whenever the # of items between any
two mileposts doubles. . .—but it’s harder to code.

With basic binary search trees (as in Ch. 8, as opposed to balanced
trees to come in Ch. 11), things can be as bad or even worse!

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

“Scraggly” Trees

To generate an extreme example, insert 20 then 19,18,17,. . . ,1.
A basic BST created in that order will be a line angling down left.
No lookup-time advantage over a (sorted) linked list.
Note also that iterator begin() const will take n− 1 steps
walking from the root until it finds the node with 1.

The “2− 2/n” amortized performance is not upset by this, because
the final n− 1 steps will take 1 hop each.
If the inserts were in order 1,2,3,. . . ,20 then begin() would be
immediate, but the last application of operator++ before the
iterator hits end() would take n− 1 upward steps.

A “random permutation” of any data will give you a pretty
balanced tree (this is proved as a theorem in some texts), BUT—
Real-world data often isn’t random! In particular, it’s natural to
copy into one data structure from another in sorted order. If you
copy into a basic BST that way, you’re. . . scraggly!

Valli won’t be affected as badly, as refreshes will fix things.

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

What Do We Try to Guarantee?

The basic tradeoff: going for the best long-run performance may
require tolerating some bad short-runs.
Or worse, it may expose us to rare(?) cases that could give data
structures like BSTs “permanent bad shape.”
Alternative: smooth out the bumps so no instance is too bad—but
you need a more-complicated data structure that does overall more
work, even for “good data cases”!
Example: the Red-Black Tree (Ch. 11) actually used by the C++
STL for all of set, multiset, map, multimap. It guarantees
O(log n) time performance for insert, erase, find,...—but
with a higher principal constant “hiding under the O”!

Hence, one can often compete with it!
According to the article cited at the end of the Project 1 spec, a
simple sorted vector is better for some situations.
Valli is almost as good, for almost all situations!

Hash Tables can Beat The Tree, but, not with the guarantees. . .

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

More on Binary Search Trees

[Coverage from official K-W text notes, and code.]
[Code examples, including iterator class which the text doesn’t
give, and same STL-conformant interface—also largely to illustrate
issues with set-vs.-multiset in Chapter 9.]
Text’s code for insert is recursive, likewise erase and find.
Actual STL code is iterative, and uses extra parent links.
Either way, and as-usual, erase is the most difficult to code. When
a non-leaf is deleted, one needs to find another node to put in its
place.

Can be either the inorder successor or the inorder predecessor—text
does the latter.

Despite recursion being “high-level”, text uses an important
“low-level” detail: passing pointers by reference. Needs a slide to
itself. . .

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

*&

The main public insert(const I& item) method delegates to a
private “helper method”

void insert(const I& item, Node*& local_root) {
...
if (local_root == NULL) { //standard uses dummy NIL node instead

local_root = new Node(item,NULL,NULL);
}
...

}

Note that if you had a current pointer as parameter, you would hit if
(current == NULL) { ... at the same place. If you then did current
= new Node(...); you would link the new node only to current. You
wouldn’t link it to any parent node!
Passing the link by reference ensures that you modify the link itself.
(Hence I would prefer naming it link or link2localRoot.)

CSE250 Lecture Notes Weeks 7–8, K-W chs. 4–7

Alternative Implementations [FYI, not in text]

If you maintain a prev pointer, you can assign the new node to
prev->left or to prev->right accordingly, with no *& needed.
But you need to test if (prev->left == NULL) and/or
if (prev->right == NULL) along with lessThan, which is slower.
Having a parent link doesn’t let you rest easy with a current
pointer, the same way a prev link does in a doubly-linked
list—because when you hit current == NULL, it has no parent!
Or even if you use a dummy NIL node, unlike a dummy end-node in
a list, it doesn’t have a unique parent!
Pointer-to-pointer also works, aka. double indirection:

void insert(const I& item, Node** ptr2link) {
...
if (*ptr2link == NULL) {

*ptr2link = new Node(item,NULL,NULL);
}
... //[the best singly-linked lists are similar!]

}

