
Selected Slides from the Koffman-Wolfgang C++

Primer (with spot-edits and additions by KWR and AH)

From the Instructor Materials slides by Elliot

Koffman and Paul Wolfgang, copyright ©

John Wiley and Sons, 2006—2009.

This material is used by permission of John

Wiley & Sons, Inc

For private use only by students in CSE250,

Fall 2009. Re-distribution or public posting

in any form is expressly forbidden.

C++ Primer 1

C++ Primer 2

A Simple Program

#include <iostream>
#include <string>

using namespace std;

int main()
{
cout << "Enter your name\n";
string name;
getline(cin, name);
cout << "Hello " << name

<< " - welcome to C++\n";
return 0;

}

C++ Primer 3

The #include Directive

• The first two lines:
#include <iostream>

#include <string>

incorporate the declarations of the iostream and

string libraries into the source code.

• If your program is going to use a member of the

standard library, the appropriate header file must

be included at the beginning of the source code

file.

C++ Primer 4

The using Statement

• The line
using namespace std;

tells the compiler to make all names in the
predefined namespace std available.

• The C++ standard library is defined within this
namespace.

• Incorporating the statement
using namespace std;

is an easy way to get access to the standard
library.
– But, it can lead to complications in larger programs.

C++ Primer 5

The using declaration

• Instead of incorporating all names from a
namespace into your program

– It is a better approach to incorporate only the
names you are going to use.

– This is done with individual using
declarations.

using std::cin;

using std::cout;

using std::string;

using std::getline;

C++ Primer 6

The function main

• Each program must include a main

function.

• This function is defined as follows:
int main()

{

…

}

where the code for the function appears

between the { and the }.

YMMV Note (by us)

•Some (old) compilers or authorities may
want you to say int main(void) { …

•(when you are not using command-line

parameters, that is)

•Some desire or require an explicit
return 0; at the end of main.

•Etc. etc. If one of the programs we

provide does not compile as-is on your

home system, please let us know!
C++ Primer 7

C++ Primer 8

The stream insertion operator

• The statement:
cout << "Enter your name\n";

inserts the string into the standard output

stream.

– The result is that it is displayed on the

console.

C++ Primer 9

The getline function (ed. by us)

• The statement
getline(cin, name);

reads the characters from the input stream

(keyboard) until a new line character is

entered.

– The resulting string is stored in the string

name.

– getline consumes the \n but does not return it.

C++ Primer 10

The insertion operator again

• The statement:
cout << "Hello " << name << " – welcome to C++\n";

outputs three strings to the console:
Hello

the entered line

- welcome to C++

• If the characters John Doe were entered,

the result would be
Hello John Doe - welcome to C++

C++ Primer 11

Comments (ed. by us)

• There are three types of comments:

• Form 1:
– A comment begins with the characters /* and ends with the

characters */

• Form 2:
– A comment begins with the characters // and ends at the end of

the current line

• Form 3, using the preprocessor:
– Begin with #if(0), put a line of dashes for clarity, and after the

block to comment-out, put a line of dashes, and the line #endif

• All characters of a comment are replaced by a single space
by the preprocessor.

• Note that a /* that follows a // is ignored.

• A // that appears after a /* is also ignored.

• A comment that begins with a /* is terminated by the first
*/ that is encountered. This is why one needs Form 3 to
comment out blocks of code that may have /*…*/ in it.

C++ Primer 12

More on #include directive

• The #include directive has two forms:

#include <header>

– is reserved for standard library headers.

#include "file-name"

– is used for user-defined include files.

• The convention is that user-defined
include files will end with the extension .h.

• Note that the standard library headers do
not end with .h.

C++ Primer 13

Compiling and Executing

• The command to compile is dependent upon the
compiler and operating system.

• For the gcc compiler (popular on Linux) the
command would be:

• g++ -o HelloWorld HelloWorld.cpp

• To execute the program you would then issue
the command

HelloWorld

More complicated projects require linking. An IDE such as Eclipse can

manage this automatically, but it is important to learn how to do it from a

console command line, and this uses the ―make‖ / makefile utility.

C++ Primer 14

Compiling and Linking

• A C++ program consists of one or more source
files.

• Source files contain function and class
declarations and definitions.
– Files that contain only declarations are incorporated

into the source files that need them when they are
compiled.

• Thus they are called include files.

– Files that contain definitions are translated by the
compiler into an intermediate form called object files.

– One or more object files are combined with to form
the executable file by the linker.

C++ Primer 15

Compiling and Linking

C++ Primer 16

Compiling and Executing

• The command to compile is dependent upon the
compiler and operating system.

• For the gcc compiler (popular on Linux) the
command would be:

g++ -o HelloWorld HelloWorld.cpp

• To execute the program you would then issue
the command

HelloWorld

• Confusing? Use the -c option to produce a
.o file, the -o option for an executable.

Example of Manual Linking

g++ -c StringWrap.cpp

This produces StringWrap.o

g++ -c SeqClient.cpp

This produces SeqClient.o
g++ -o “seqclient” StringWrap.oSeqClient.o

Produces the final executable seqclient

Use ./seqclientConstitution.txt 1000 to run.

C++ Primer 17

File Streams---simple way (by us)

• File I/O uses the same stream notation as
screen I/O with cout << … and cin >> …

• OK to use simple (value) notation provided

you know the file(name) to open right away.

• Need #include<fstream> to get the ifstream

and ofstream classes.

• Can open a file foo.txt for input by
ifstream INPUT(“foo.txt”, ios::in);

C++ Primer 18

File Streams---cont‘d.

• To open a file in append mode, do ofstream
OUTPUT(“bar.txt”, ios::app);

• Style: ALL-CAPS for unusual user-defined items?

• std::ios::app is the ―append object‖ in the ios sub-namespace.

• Can read a whitespace-separated item by
INPUT >> item, and write a value x to a

file by OUTPUT << x, just as with cout.

• Can use getline(INPUT,myline) to read

the next line into the string variable myline.
C++ Primer 19

Reading all input from a file (by us)

• while (INPUT >> item){… will terminate

after the last item in the file has been read.

• This is a common ―walk and chew gum‖
idiom. It works because the >> operator

returns a null reference when the stream is
exhausted. Better than testing for eof().

• while(getline(INPUT,myline)) {…

works line-by-line. No \n returned in myline.

• Still need INPUT.close()etc. to close files.
C++ Primer 20

Header and Body Files (by us)

• The purpose of having separate .h and .cpp

files is to maximize the opportunity for

separate compilation. (And for readability.)

• Java does separate compilation to the max!

(.class file is like C/C++ .o object file)

• It is OK to have bodies in a .h file (especially

inside class braces), so long as they are not

too big and don‘t cause many dependencies.

• Outside class braces, bodies in .h files should
be marked inline (more on this later).

C++ Primer 21

.h and .cpp (by us)

• Header files universally use the extension
.h, e.g. ―Foo.h‖.

• Other files can include the header via
#include “Foo.h”, with quotes not <…>

because this is relative to the current

directory.

• AOK to have code in subfolders, e.g.
#include “ISR/AbsISR.h”

• Body and end-client files (with main) will use
.cpp in this course (.cc, .cxx also seen)

C++ Primer 22

Templates Will Be .h Only (by us)

• Template classes will have .h files only,

and will not be compiled separately.

– Our text is like that, ditto earlier CSE250‘s.

– Reason not to use separate .cpp for

templates is a linking issue, not supported by

g++. (Your home IDE/compiler might allow…)

• See example files beginning with ―Link…‖

in the ~regan/cse250/Java2C++ directory.

C++ Primer 23

extern and static (by us)

• A non-const object declared outside class

braces in a .h file should have the keyword
extern in front.

• Then define/construct it in the .cpp file,

without saying ―extern‖.

• Functions/operators are automatically

extern, so they don‘t need the keyword.

• (Text mentions extern “C” in a conditional-

compilation context, which is different, ignorable…)
C++ Primer 24

extern and static (cont‘d)

• For class fields and methods, static has

the same meaning as in Java.

• But non-const static fields cannot be

initialized inside the class, nor by inline

constructor---not anywhere in the .h file!

• So you could have a Foo.cpp file for a

class Foo that has nothing except a few

definitions of non-const static fields.

• Field can‘t be both static and extern.
C++ Primer 25

C++ Primer 26

The Preprocessor

• The compiler (effectively) makes several
passes through the source program.

• The first of these passes is done by what‘s
known as the preprocessor.

1. Replace trigraphs with their equivalent

2. Splice long lines into a single line.

3. Remove comments and replace by a single space.

4. Split the input file into tokens

5. Carry out preprocessing directives

6. Expand macros

• Note that the preprocessor is inherited from
the C programming language.

C++ Primer 27

Splicing Long Lines (ed. by us)

• If a line ends with the character \

– Then the following line is appended to this line

and the result is considered a single line.

• Used for long C-style strings, but with

<string>, prefer using + operators.

• General: keep lines within 80 columns!

• Break long expressions across lines so

that an operator begins the next line.

C++ Primer 28

Macros (ed. by us)
• Macros are defined by the forms:

#define macro-name macro-definition

#define macro-name(parameters) macro-definition

– Definition ends at the end of the current line.

– Macros requiring longer lines use long-line
splicing.

• Examples:
#define NULL 0 //AOK, done by default
#define MAX(x, y) ((x) > (y) ? (x) : (y)) //common, but…

• Within the program, wherever a macro appears, it
is textually replaced by its definition.

• Without all the parens, MAX could cause errors…

• Hence best to use macros with #ifndef etc. only.

C++ Primer 29

Conditional Compilation

• Forms:
#ifdef macro-name

code to be compiled if macro-name is defined

#else

code to be compiled if macro-name is not defined

#endif

or
#ifndef macro-name

code to be compiled if macro-name is not defined

#else

code to be compiled if macro-name is defined

#endif

C++ Primer 30

Using Conditional Compilation

• Some functions are defined to be used by both
C and C++ programs.

• If a C/C++ compiler is compiling a program as a
C++ program, then the macro __cplusplus is
defined. (Note the two _ chars).

• Then the function would be declared as follows:
#ifdef __cplusplus //__GNUG__ is for our g++
extern "C" {
#endif

function declaration
#ifdef __cplusplus
}
#endif

C++ Primer 31

Preventing Multiple Includes

• A header file may be included by another header file.

• The user of the header file may not know this and may
include a duplicate.

• This may lead to a compile error.

• To prevent this, each include file should be structured as
follows:

#ifndef unique-name

#define unique-name

…

#endif

• Generally unique-name is related to the file name.
– Example myfile.h would use the name MYFILE_H_

C++ Primer 32

More on #include directive

• The #include directive has two forms:

#include <header>

– is reserved for standard library headers.

#include "file-name"

– is used for user-defined include files.

• The convention is that user-defined
include files will end with the extension .h.

• Note that the standard library headers do
not end with .h.

Rules for Inclusion (by us)

• A declaration may not appear twice in the

same separate compilation path.

• A definition (i.e., value or body) may not

appear twice in the whole program…

• …unless it is within class braces---all

compilers allow including .h files with

bodies in separate compilation units that

get linked together.

C++ Primer 33

C++ Primer 34

Using braces and indentation
• There are several coding styles.

• The one used in this text is:

– Place a { on the same line as the condition for
an if, while, or for statement.

– Indent each line of the controlled compound
statement.

– Place the closing } on its own line, indented at
the same level as the if, while, or for.

– For else conditions, use the form:
} else {

• But, AOK to align braces vertical a-la 115-116.

C++ Primer 35

Nested If Statements

• If there are multiple alternatives being selected,

– the if that appears within an else part should be on

the same line as the else.

– Example:

if (operator == '+') {

result = x + y;

add_op++;

} else if (operator == '-') {

result = x – y;

subtract_op++;

}

Command-Line Arguments (by us)

• int main(int argc, char** argv),

or can do

• int main(int argc, char* argv[])

• Invoke as a.out arg1 arg2 …

• In C++, unlike Java, argv[0] is the name of

the program, as a char* type ―C-string‖.

• So argv[1], argv[2],… are the actual args

• (Please otherwise avoid C arrays and strings.)

C++ Primer 36

Giving Filenames as Arguments (by us)

File stringsorts.cpp has a basic protocol:
…

if (argc >= 2) { //note *not* an "else" of first "if"

infileName = args->at(1);

infile.open(infileName.c_str(), ios_base::in);

if (! infile.is_open()) {

cerr << "Unable to open file: " << infileName << endl;

return(1);

}

} else { //argc == 1, i.e. no arguments given

cerr << "Usage: stringsorts file n with n >= 0" << endl;

return(1);

}

(Earlier part of file uses a string stream to input an integer

more easily.) C++ Primer 37

Makefiles (4 slides by us)

C++ Primer 38

•A Makefile can be used to manage projects in a
number of ways.

•Makefiles can also vary in complexity. They can
simply contain lines to compile the code files, use
macros, and perform tasks such as cleanup of files
generated during compilation (usually used for
bigger projects).

•The Java2C++ directory and others under
~regan/cse250/… have examples.

Makefiles

• A Makefile to compile the HelloWorld program

could look something like this:

HelloWorld: HelloWorld.cpp

g++ -o HelloWorld HelloWorld.cpp

• To compile the code, you need to go to the

directory of the Makefile and HelloWorld.cpp and

execute the command ‗make‘

C++ Primer 39

Makefiles

• Makefiles can also be used to manage larger

projects and carry out other tasks such as clean

up.

• When you include .h files that you have written

you need to link files together. This can all be

done in a Makefile as well.

• The -c flag for g++ will compile the code and

create .o files
g++ -c HelloWorld.cpp

C++ Primer 40

Makefiles

• The code can then be linked by running g++ on

the .o files to create an executable.
g++ -o HelloWorld HelloWorld.o

• This can be put into the Makefile as the

following:
HelloWorld.o: HelloWorld.cpp

g++ -c HelloWorld.cpp

HelloWorld: HelloWorld.o

g++ -o HelloWorld HelloWorld.o

C++ Primer 41

C++ Primer 42

Primitive Data Types (ed. by us)

Data Type Range of Values (Intel x86)
short -32,768 through 32,787
unsigned short 0 through 65,535
int -2,147,483,648 through 2,147,483,647
unsigned int, size_t 0 through 4,294,967,295
long Now usually -2^63 thru 2^63 – 1, i.e. 64-bit
unsigned long Now usually 0 thru 2^64 – 1 (e.g. on timberlake)
float Approximately ±10-38 to 1038 with 7 digits of

precision
double Approximately ±10-308 to 10308 with 15 digits of

precision
long double1 Approximately ±10-4932 to 104932 with 18 digits of

precision (80-bit IEEE extension, maybe longer)
char The 7-bit ASCII characters
signed char -128 through 127
unsigned char 0 through 255
wchar_t The Unicode characters
bool true or false

1
 With the Microsoft compiler long double is the same as double. (True for you VC++ people?)

C++ Primer 43

Numeric Constants

• 1234 is an int

• 1234U or 1234u is an unsigned int

• 1234L or 1234l is a long

• 1234UL or 1234ul is an unsigned long

• 1.234 is a double

• 1.234F or 1.234f is a float

• 1.234L or 1.234l is a long double.

C++ Primer 44

Operator Precedence

Rank Operator Operation Associativity
1 [] Array subscript Left

 () Function call

 . Member access

 -> Member access

 ++ -- Postfix increment or decrement

2 ++ -- Prefix increment or decrement

 * Pointer de-referencing operator

 & Address of operator

 + - Unary plus or minus

 ! Complement

 ~ Bitwise complement

 new Object creation

3 * / % Multiply, divide, remainder

4 + - Addition, Subtraction

5 << Shift left

 >> Shift right

C++ Primer 45

Operator Precedence (2)

Rank Operator Operation Associativity
6 < <= Less than, Less than or equal

 > >= Greater than, Greater than or equal

7 == Equal to

 ! Not equal to

8 & Bitwise and

9 ^ Exclusive or

10 | Bitwise or

11 && Logical and

12 || Logical or

13 ?: Conditional

14 = Assignment Right

 *= /= &=
+= -= <<=
>>= &= |=

Compound Assignment

C++ Primer 46

C-Style Casts (ed by us)

• Old style: (new-type) expression

This form is inherited from the C programming
language and its use is discouraged in C++
programs (but needed? for primitive pointer casts).

• New style: newType(expression). E.g. int(x), Foo(x).

• Newer style: dynamic_cast<newClass*>(p) (more later).

• C++ has other type conversion operators (also
called cast operators) for conversion among user-
defined (i.e. Class) types.
– These are discussed in lecture, when they are used.

C++ Primer 47

T* v versus T *v

• Using the form
double* px;

clearly states that px is of type pointer-to-
double.

• Using the form
double *px;

states that the expression *px is of type
double, thus px must be a pointer-to-
double.

• Use Foo*, no exceptions!

C++ Primer 48

Multiple Variables in one

Declaration

• The declaration:
double* px, py;

declares that px is a pointer-to-double, but

py is a double.

• To declare multiple pointer variables in

one declaration:
double *px, *py;

• NEVER do either!! (standard style)

C++ Primer 49

The NULL pointer

• The null pointer is a pointer value that points to nothing.

• Internally the value of the null pointer is implementation
defined.

• The literal constant 0 is converted to a null pointer.

• Null pointers are converted to false when used in
boolean expressions, and non-null pointers are
converted to true.

• The macro NULL is defined in <cstddef> as:
#define NULL 0

• Future versions of C++ will have a reserved-word for the
null pointer literal.

C++ Primer 50

Function Definition (ed. by us)
• Form:

return-type function-name(parameter list) {

function body

}

• The parameter list is either empty, or a
comma-separated list of the form:

type-name parameter-name

• Function definitions (especially outside
namespaces, i.e. ―global‖) are discouraged,
except for operators and some functions
associated to a given class, in the same file.
See e.g. example files LinkArg.{h,cpp}.

C++ Primer 51

Operator Functions (ed. by us)
• C++ allows class types to be operated on as if they were

primitive types.

• You can define operators such as +, -, * etc. to operate.

• Example, if s1 and s2 are strings
s1 + s2

represents the string consisting of s1 followed by s2.

• The name of the operator functions is the form
operator@ where @ represents the operator.

• Example:
operator+

is the + operator.

• Weirdly, operator() allows you to customize the
function-application operator. Used like .apply(…) in Java

C++ Primer 52

Arrays and C Strings (ed. by us)

• An array is an object. (In Java. In C++ it‘s

just a pointer. Hence don‘t use---use
vector<…>.)

• The elements of an array are all of the

same type.

• The elements of an array are accessed by

an index applied to the subscript operator.
array-name[index]

C++ Primer 53

Declaring an array

• Form:
type-name array-name[size];

type-name array-name[] = {initialization list};

• Examples:
int scores[5];

string names[] = {"Sally", "Jill", "Hal", "Rick"};

• Main difference from Java: you can‘t put [] next to

the type name.

C++ Primer 54

Pointers and Arrays
• C++ performs automatic conversion between array types and

pointer types.

• The expression:
students[0]

and
*students

are equivalent.

• The expression:
a[i]

is equivalent to
*(a + i)

and
&a[i]

to
(a + i)

• Main importance: this notation carries thru to iterators in
the Standard Template Library. Cf. table in text,
pp268—269.

C++ Primer 55

Arrays as function arguments

• Arrays are passed to functions as pointers.

• Function parameters may be declared either as
pointers or arrays,
– but the two are equivalent.

• Example:
int find(int x[], int n, int target);
int find(int* x, int n, int target);

are equivalent.

• The ―int n‖ is the size of the array, which must be
passed separately, since arrays don‘t know their
bounds. HENCE, pass vectors---official advice
from Stroustrup himself---and Burn This Slide!

C++ Primer 56

The string class

• The string class is defined in the header
<string>

• Using the string class allows us to manipulate

string objects similar to objects of the primitive

types.

• Example:
string s1, s2;

s1 = "hello";

s2 = s1 + " world";

• Text has a comprehensive list of methods.

C++ Primer 57

The <iostream> header

• The header <iostream> declares the following

pre-defined streams as global variables:
istream cin; //input from standard input

ostream cout; //output to standard output

ostream cerr; //output to the standard error

• Standard input is generally from the keyboard,

but may be assigned to be from a file.

• Standard output and standard error are

generally to the console, but may be assigned to

a file.

C++ Primer 58

The istream class
• The istream class performs input from input

streams.

• It defines the extraction operator (>>) for the

primitive types and the string class.

Type of operand Processing
char The first non-space character is read.
string Starting with the first non-space character, characters are read

up to the next space.
int
short
long

If the first non-space character is a digit (or + or -), characters

are read until a non-digit is encountered. The sequence of

digits is then converted to an integer value of the specified

type.
float
double
long double

If the first non-space character is a digit (or + or -), characters

are read as long as they match the syntax of a floating-point

literal. The sequence of characters is then converted to a

floating-point value of the specified type.

C++ Primer 59

Status Reporting Functions

Member Function Behavior
bool eof() const Returns true if there is no more data available from the

input stream, and there was an attempt to read past the

end.
bool fail() const Returns true if the input data did not match the

expected format, or if there is an unrecoverable error.
bool bad() const Returns true if there is an unrecoverable error.
bool operator!() const Returns fail(). This function allows the istream

variable to be used directly as a logical variable.
operator void*() const Returns a null pointer if fail() is true, otherwise

returns a non-null pointer. This function allows the use

of an istream variable as a logical variable.

KWR: Famously fubar, but no one has superseded it.

C++ Primer 60

Reading all input from a stream

int n = 0;
int sum = 0;
int i;
while (cin >> i) {

n++;
sum += i;

}
if (cin.eof()) {

cout << "End of file reached\n";
cout << "You entered " << n << numbers\n";
cout << "The sum is " << sum << endl;

} else if (cin.bad()) {
cout << "Unrecoverable i/o error\n";

} else {
cout << "The last entry was not a valid number\n";

}

C++ Primer 61

The ostream class

• The ostream class provides output to an output stream.

• It defines the insertion operator (<<) for primitive types
and the string class.

Type of operand Processing
char The character is output.
string The sequence of characters in the string is output.
int
short
long

The integer value is converted to decimal and the characters

are output. Leading zeros are not output unless the value is

zero, in which case a single 0 is output. If the value is negative,

the output is preceded by a minus sign.
float
double
long double

The floating-point value is converted to a decimal

representation and output. By default a maximum of six digits

is output. If the absolute value is between 10-4 and 106, the

output is in fixed format; otherwise it is in scientific format.

C++ Primer 62

Formatting Manipulators in <iostream>

Manipulator Default Behavior
noshowpoint yes If a floating-point value is a whole number, the decimal

point is not shown.
showpoint no The decimal point is always shown for floating-point

output.
skipws yes Sets the format flag so that on input white space (space,

newline, or tab) characters are skipped.
noskipws no Sets the format flag so that in input white space (space,

newline, or tab) characters are read.
right yes On output, the value is right-justified.
left no On output, the value is left-justified.
dec yes The input/output is in base 10.
hex no The input/output is in base 16.
fixed no Floating-point output is in fixed format
scientific no Floating-point output is in scientific format.
ws no On input, whitespace is skipped. This is a one-time

operation and does not clear the format flag.
endl no On output, a newline character is written and the output

buffer is flushed.

C++ Primer 63

I/O Manipulators in <iomanip>

Manipulator Behavior
setw(size_t) Sets the minimum width of the next output.

After this the minimum width is reset to the

default value of 0.
setprecision(size_t) Sets the precision. Depending on the output

format, the precision is either the total

number of digits (scientific) or the number

of fraction digits (fixed). The default is 6.
setfill(char) Sets the fill character. The default is the

space.
resetiosflags(ios_base::fmtflags) Clears the format flags set in the parameter.
setiosflags(ios_base::fmtflags) Sets the format flags set in the parameter.

C++ Primer 64

Floating-point output format
• The default floating-point format is called general.

• If you set either fixed or scientific, then to get back to general format

you must use the mainiplator call:
resetiosflage(ios_base::fixed | ios_base::scientific)

Format Example Description
Fixed 123.456789 Output is of the form ddd.ffffff where the number

of digits following the decimal point is specified by the

precision.

Scientific 1.2345678e+002 Output is of the form d.fffff±ennn where the

number of digits following the decimal point is

controlled by the value of precision. (On some systems

only two digits for the exponent are displayed.)

General 1.23456e+006
1234567
123.4567
1.234567e-005

A combination of fixed and scientific. If the absolute

value is between 10-4 and 106, output is in fixed format;

otherwise it is in scientific format. The number of

significant digits is controlled by the value of

precision.

C++ Primer 65

File Streams

• The header <fstream> defines the classes

ifstream An istream associated with a file

ofstream An ostream associated with a file

C++ Primer 66

Constructors and the open function (ed. by us)

Function Behavior
ifstream() Constructs an ifstream that is

not associated with a file.
ifstream(const char* file_name,
ios_base::openmode mode = ios_base::in)

Constructs an ifstream that is

associated with the named file. By

default, the file is opened for

input.
ofstream() Constructs an ofstream that is

not associated with a file.
ofstream(const char* file_name,
ios_base::openmode mode = ios_base::out)

Constructs an ofstream that is

associated with the named file. By

default, the file is opened for

output.
void open(const char* file_name,
ios_base::openmode)

Associated an ifstream or and

ofstream with the named file

and sets the openmode to the

specified value.

Use ios_base:app to append to existing file without zapping it.

Because arg1 is char* not string, must use c_str() method

C++ Primer 67

Openmode Flags

openmode Meaning
in The file is opened for input.
out The file is opened for output.
binary No translation is made between internal and external character

representation.
trunc The existing file is discarded and a new file is written. This is the

default and applies only to output.
app Data is appended to the existing file. Applies only to output.

Example File Input (by us)
ifstream* infilep; //lines from “main” in “stringsorts.cpp” (in Java2C++/)

…

if (argc >= 2) {

infileName = args->at(1);

infilep = new ifstream(infileName.c_str(), ios_base::in);

if (! infilep->is_open()) {

cerr << "Unable to open file: " << infileName << endl;

return(1);

}

} else { //argc == 1, i.e. no arguments given

cerr << "Usage: stringsorts file n with n >= 0" << endl;

return(1);

}

Differs from text examples in that the stream is

assigned inside a scope. Alas, needs pointers!

Why---(by us, more in lecture)

• To prevent ―cloning‖ streams, C++ ―disables‖
their operator= and copy-constructors

– by declaring them private.

• If you try to write ―value-based‖ code like this:
ifstream infilep;

if (argc >= 2) {

infilep = ifstream(…); //new ifstream would be a “type error”

you get the error that they are ―private in this

context‖---and screenfuls more!

• Newer languages are better at telling

delayed initialization apart from assignment.
C++ Primer 69

File Pointer Example (cont‘d, by us)

vector<string> itemsCopy1(n); //now read up to n strings

int numItems = 0; //means # of strings stored so far AND next free index

string temp;

while (numItems < n && *infilep >> temp) { //test for !fail, see text

// control here means read was good, so store item

itemsCopy1[numItems++] = temp;

}

if (infilep->eof()) {

cout << "Read all " << numItems << " items in “ << infileName << endl;

} else if (infilep->bad()) {

cerr << "Unrecoverable i/o error after "<<numItems<<" items." << endl;

} else { // stream is still good, so we must have hit n items

cout << "Read " << numItems << " items from “ << infileName << endl;

}

C++ Primer 70

Outputting With File Pointers (by us)

const string outfileName = infileName + ".out"; //still in stringsorts.cpp

ofstream* outfilep = new ofstream(outfileName.c_str(), ios_base::out);

assert(outfilep->is_open()); //actual code file has different optional test

…

for (int i = 0; i < numItems; i++) {

(*outfilep) << itemsCopy1[i] << endl; //puts items on separate lines

}

infilep->close(); //could also do delete(infilep) and delete(outfilep),

outfilep->close(); //which (should!) call close on the files.

• For legacy-code reasons, the ifstream and ofstream

constructors need a char* old-style string as first arg, hence

the calls to the c_str() method.

• Can use ios_base::app as 2nd arg to append not zap outfile.
C++ Primer 71

C++ Primer 72

String Streams

• Defined in the header <sstream>

• Associates an istream or ostream with a string object.

Constructor Behavior
explicit istringstream(const string&) Constructs an istringstream to

extract from the given string.
explicit ostringstream(string&) Constructs an ostringstream to

insert into the given string.
ostringstream() Constructs an ostringstream to

insert into an internal string.

Member Function Result
string str() const Returns a copy of the string that is the

source or destination of the

istringstream or

ostringstream.

C++ Primer 73

Using an istringstream

• Assume that the string person_data
contains:

Doe, John 5/15/65

• We want to split this into family_name,
given_name, month, day, and year.

istringstream in(person_data);

in >> family_name >> given_name;

in >> month; // Read the month

in >> c; // Skip the / character

in >> day; // Read the day

in >> c; // Skip the / character

in >> year; // Read the year

C++ Primer 74

Using an ostringstream

• We want to construct the string

person_data from the component values.
ostringstream out;

out << family_name << ", " << given_name << " "

<< month << "/" << day << "/" << year;

string person_data = out.str();

String-conversion Convention (by us)

To code a .toString() method, the idiom is:

• Declare an ostringstream& variable out.

• Output the fields of your object to out the
way you would with std::cout.

• Finally return out.str();

• Can shorten the method name to str().

• You still need to write e.g. cout << obj.str(), but

you‘d have to with operator string() anyway.

• See LinkArg.{h,cpp} for a simple example.
C++ Primer 75

Strings to Numbers (by us)

• You can read an int from the console via
cin or on any istream IN by declaring a
variable x of type int and doing IN >> x;

• Same idea for double and other types.

• If you‘ve already saved the digits as a string
xstr, do (with #include<sstream>):

– istringstream iss(xstr);

– iss >> x;

• If iss is already declared, do iss.str(xstr);

• Programs written by us have examples.

