
Much ado about Fibonacci numbers 

Ah hah! Algorithms 

Recursion and iteration 

Asymptotic analysis 

The repeated squaring trick 

 



Agenda 

• The worst algorithm in the history of humanity 

 

• Asymptotic notations: Big-O, Big-Omega, Theta 

 

• An iterative solution 

 

• A better iterative solution 

 

• The repeated squaring trick 
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FIBONACCI SEQUENCE 

And the worst algorithm in the history of humanity 
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Fibonacci sequence 

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … 

 

• F[0] = 0 

• F[1] = 1 

• F[2] = F[1] + F[0] = 1 

• F[3] = F[2] + F[1] = 2 

• F[4] = F[3] + F[2] = 3 

• F[n] = F[n-1] + F[n-2] 
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Recursion – fib1() 
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/** 

 *---------------------------------------------------------- 

 *  the most straightforward algorithm to compute F[n] 

 *---------------------------------------------------------- 

 */ 

unsigned long long fib1(unsigned long n) { 

    if (n <= 1) return n; 

    return fib1(n-1) + fib1(n-2); 

} 



Run time on my laptop 
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2.53GHz Intel Core 2 Duo, 4 GB DDR3 



On large numbers 

• Looks like the run time is doubled for each n++ 

 

• We won’t be able to compute F[120] if the trend 
continues 

 

• The age of the universe is 15 billion years < 260 
sec 

 

• The function looks … exponential 
– Is there a theoretical justification for this? 
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A Note on “Functions” 

• Sometimes we mean a C++ function 

 

• Sometimes we mean a mathematical function like F[n] 

 

• A C++ function can be used to compute a 
mathematical function 
– But not always! There are un-computable functions 

– Google for “busy Beaver numbers” and the “halting 
problem”, for typical examples. 

 

• What we mean should be clear from context 
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ANALYSIS OF FIB1() 

Guess and induct strategy 

 

Thinking about the main body 
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Guess and induct 

• For n > 1, suppose it takes c mili-sec in fib1(n) 
not counting the recursive calls 

• For n=0, 1, suppose it takes d mili-sec 

• Let T[n] be the time fib1(n) takes 

• T[0] = T[1] = d 

• T[n] = c + T[n-1] + T[n-2]  
when n > 1 

 

• To estimate T[n], we can 
– Guess a formula for it 

– Prove by induction that it works 
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The guess 

• Bottom-up iteration 

– T[0] = T[1] = d 

– T[2] = c + 2d 

– T[3] = 2c + 3d 

– T[4] = 4c + 5d 

– T[5] = 7c + 8d 

– T[6] = 12c + 13d 

 

• Can you guess a formula for T[n]? 

– T[n] = (F[n+1] – 1)c + F[n+1]d 
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The Proof 

• The base cases: n=0,1 

 The hypothesis: suppose  

 T[m] = (F[m+1] – 1)*c + F[m+1]*d    for all   m < n 

 The induction step: 

 T[n] = c + T[n-1] + T[n-2] 

         = c + (F[n] – 1)*c + F[n]*d  

               + (F[n-1] – 1)*c + F[n-1]*d 

         = (F[n+1] – 1)*c + F[n]*d 
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How does this help? 
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The golden ratio 



So, there are constants C, D such that 
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This explains the exponential-curve we saw 



ASYMPTOTIC ANALYSIS 

- Back of the envelope time/space estimation 

- Independent of whether our computer is fast 

- Big-o, big-omega, theta 
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From intuition to formality 

• Suppose fib1() runs on a computer with  

C = 10-9: 

 

 

• We need a formal way to state that (1.6)n is 

the “correct” measure of fib1()’s runtime 

– How fast the target computer runs shouldn’t 

concern us 
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Big-O 
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Intuition 
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In English 

• f(n) = O(g(n)) means: for n sufficiently large, 

f(n) is bounded above by a constant scaling 

of g(n) 

– Does the “English translation” make things 

worse? 

 

• An algorithm with runtime f(n) is at least as 

good as an algorithm with runtime g(n), 

asymptotically 
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Examples 
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Big-Omega 
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In picture 
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Examples 
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Equivalence 
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Theta 
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We say they “have the same growth rate” 



In picture 
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BETTER ALGORITHMS FOR 

COMPUTING F[N] 

- A Linear time algorithm using vectors 

 

- A linear time algorithm using arrays 

 

- A linear time algorithm with constant space 
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An algorithm using vector 
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unsigned long long fib2(unsigned long n) { 

    // this is one implementation option 

    if (n <= 1) return n; 

    vector<unsigned long long> A; 

    A.push_back(0); A.push_back(1); 

    for (unsigned long i=2; i<=n; i++) { 

        A.push_back(A[i-1]+A[i-2]); 

    } 

    return A[n]; 

} 

Guess how large an n we can handle this time? 



Data 
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n 106 107 108 109 

# seconds 1 1 9 Eats up all 
my 
CPU/RAM 



How about an array? 
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unsigned long long fib2(unsigned long n) { 

    if (n <= 1) return n; 

    unsigned long long* A = new unsigned long long[n]; 

    A[0] = 0; A[1] = 1; 

    for (unsigned long i=2; i<=n; i++) { 

        A[i] = A[i-1]+A[i-2]; 

    } 

    unsigned long long ret = A[n]; 

    delete[] A; 

    return ret; 

} 

Guess how large an n we can handle this time? 



Data 
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n 106 107 108 109 

# seconds 1 1 1 Segmentation 
fault 

Data structure matters a great deal! 

Some assumptions we made are false if too  
much space is involved: computer has to use 
hard-drive as memory 



Dynamic programming! 
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unsigned long long fib3(unsigned long n) { 

    if (n <= 1) return n; 

    unsigned long long a=0, b=1, temp; 

    unsigned long i; 

    for (unsigned long i=2; i<= n; i++) { 

        temp = a + b; // F[i] = F[i-2] + F[i-1] 

        a = b;        // a = F[i-1] 

        b = temp;     // b = F[i] 

    } 

    return temp; 

} 

Guess how large an n we can handle this time? 



Data 
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n 108 109 1010 1011 

# seconds 1 3 35 359 

The answers are incorrect because F[108] is  
greater than the largest integer representable 
by unsigned long long 
 
But that’s ok. We want to know the runtime 



AN EVEN FASTER ALGORITHM 

- The repeated squaring trick 
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Math helps! 

• We can re-formulate the problem a little: 
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How to we compute An quickly? 

• Want  

 

 

 

• But can we even compute 3n quickly? 
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First algorithm 
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unsigned long long power1(unsigned long n) { 

    unsigned long i; 

    unsigned long long ret=1; 

    for (unsigned long i=0; i<n; i++) 

        ret *= base; 

    return ret; 

} 

When n = 1010 it took 44 seconds 



Second algorithm 
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unsigned long long power2(unsigned long n) { 

    unsigned long long ret; 

    if (n == 0) return 1; 

    if (n % 2 == 0) { 

        ret = power2(n/2); 

        return ret * ret; 

    } else { 

        ret = power2((n-1)/2); 

        return base * ret * ret; 

    } 

} 

When n = 1019 it took < 1 second 
Couldn’t test n = 1020 because that’s > sizeof(unsigned long) 



Runtime analysis 

• First algorithm O(n) 

 

• Second algorithm O(log n)  

 

• We can apply the second algorithm to the 

Fibonacci problem: fib4() has the following 

data 
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n 108 109 1010 1019 

# seconds 1 1 1 1 


