Ah hah! Algorithms
Recursion and iteration Asymptotic analysis
The repeated squaring trick

Much ado about Fibonacci numbers

Agenda

- The worst algorithm in the history of humanity
- Asymptotic notations: Big-O, Big-Omega, Theta
- An iterative solution
- A better iterative solution
- The repeated squaring trick

And the worst algorithm in the history of humanity

FIBONACCI SEQUENCE

Fibonacci sequence

- $0,1,1,2,3,5,8,13,21,34, \ldots$
- $\mathrm{F}[0]=0$
- $F[1]=1$
- $F[2]=F[1]+F[0]=1$
- $F[3]=F[2]+F[1]=2$
- $F[4]=F[3]+F[2]=3$
- $F[n]=F[n-1]+F[n-2]$

Recursion - fib1()

```
/**
*
* the most straightforward algorithm to compute F[n]
*
*/
unsigned long long fib1(unsigned long n) {
    if (n<=1) return n;
    return fib1(n-1) + fib1(n-2);
}
```


Run time on my laptop

2.53GHz Intel Core 2 Duo, 4 GB DDR3

Fib1 run time

On large numbers

- Looks like the run time is doubled for each n++
- We won't be able to compute $\mathrm{F}[120]$ if the trend continues
- The age of the universe is 15 billion years $<2^{60}$ sec
- The function looks ... exponential - Is there a theoretical justification for this?

A Note on "Functions"

- Sometimes we mean a C++ function
- Sometimes we mean a mathematical function like F[n]
- A C++ function can be used to compute a mathematical function
- But not always! There are un-computable functions
- Google for "busy Beaver numbers" and the "halting problem", for typical examples.
- What we mean should be clear from context

Guess and induct strategy

Thinking about the main body

ANALYSIS OF FIB1()

Guess and induct

- For $n>1$, suppose it takes c mili-sec in fib1(n) not counting the recursive calls
- For $n=0,1$, suppose it takes d mili-sec
- Let T[n] be the time fib1 (n) takes
- $\mathrm{T}[0]=\mathrm{T}[1]=\mathrm{d}$
- $T[n]=c+T[n-1]+T[n-2]$ when $n>1$
- To estimate T[n], we can
- Guess a formula for it
- Prove by induction that it works

The guess

- Bottom-up iteration

$$
\begin{aligned}
& -T[0]=T[1]=d \\
& -T[2]=c+2 d \\
& -T[3]=2 c+3 d \\
& -T[4]=4 c+5 d \\
& -T[5]=7 c+8 d \\
& -T[6]=12 c+13 d
\end{aligned}
$$

Can you guess a formula for $\mathrm{T}[\mathrm{n}]$?
$-T[n]=(F[n+1]-1) c+F[n+1] d$

The Proof

- The base cases: $\mathrm{n}=0,1$
- The hypothesis: suppose
- $T[m]=(F[m+1]-1)^{*} c+F[m+1]^{*} d$ for all $m<n$
- The induction step:
- $T[n]=c+T[n-1]+T[n-2]$

$$
=c+(F[n]-1)^{*} c+F[n]^{*} d
$$

$$
+(F[n-1]-1)^{*} c+F[n-1]^{*} d
$$

$$
=(F[n+1]-1)^{*} c+F[n]^{*} d
$$

How does this help?

$$
\begin{gathered}
F[n]=\frac{\phi^{n}-(-1 / \phi)^{n}}{\sqrt{5}} \\
\phi=\frac{1+\sqrt{5}}{2} \approx 1.6 \\
\end{gathered}
$$

So, there are constants C, D such that

$$
C \phi^{n} \leq T[n] \leq D \phi^{n}
$$

This explains the exponential-curve we saw

- Back of the envelope time/space estimation
- Independent of whether our computer is fast
- Big-o, big-omega, theta

ASYMPTOTIC ANALYSIS

From intuition to formality

- Suppose fib1() runs on a computer with $C=10^{-9}$:
$10^{-9}(1.6)^{140} \geq 3.77 \cdot 10^{19}>100 \cdot$ age of univ.
- We need a formal way to state that $(1.6)^{\mathrm{n}}$ is the "correct" measure of fib1()'s runtime
- How fast the target computer runs shouldn't concern us

Big-O

$f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$
$f(n)=O(g(n))$ iff \exists constants $C, n_{0}>0$
such that $f(n) \leq C g(n), \forall n \geq n_{0}$

Intuition

in our case $T[n]=O\left(\phi^{n}\right)$

In English

- $f(n)=O(g(n))$ means: for n sufficiently large, $f(n)$ is bounded above by a constant scaling of $g(n)$
- Does the "English translation" make things worse?
- An algorithm with runtime $f(n)$ is at least as good as an algorithm with runtime $g(n)$, asymptotically

Examples

$$
\begin{aligned}
& n^{2}=O\left(n^{2}\right) \\
& n^{2}=O\left(n^{2} / 10^{6}\right) \\
& n=O\left(n^{2}\right)
\end{aligned}
$$

Big-Omega

$f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$
$f(n)=\Omega(g(n))$ iff \exists constants $C, n_{0}>0$
such that $f(n) \geq C g(n), \forall n \geq n_{0}$

In picture

Examples

$$
n \log n=\Omega(n)
$$

$$
2^{n} / 10^{6}=\Omega\left(n^{100}\right)
$$

Equivalence

$$
f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))
$$

Theta

$$
f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n) \text { and } g(n)=O(f(n))
$$

We say they "have the same growth rate"

in fib1() example: $T[n]=\Theta\left(\phi^{n}\right)$

In picture

- A Linear time algorithm using vectors
- A linear time algorithm using arrays
- A linear time algorithm with constant space

BETTER ALGORITHMS FOR COMPUTING F[N]

An algorithm using vector

```
unsigned long long fib2(unsigned long n) {
    // this is one implementation option
    if (n <= 1) return n;
    vector<unsigned long long> A;
    A.push_back(0); A.push_back(1);
    for (unsigned long i=2; i<=n; i++) {
        A.push_back(A[i-1]+A[i-2]);
    }
    return A[n];
}
```


Guess how large an n we can handle this time?

Data

n	10^{6}	10^{7}	10^{8}	10^{9}
\# seconds	1	1	9	Eats up all my CPU/RAM

How about an array?

```
unsigned long long fib2(unsigned long n) {
    if (n <= 1) return n;
    unsigned long long* A = new unsigned long long[n];
    A[0] = 0; A[1] = 1;
    for (unsigned long i=2; i<=n; i++) {
        A[i] = A[i-1]+A[i-2];
    }
    unsigned long long ret = A[n];
    delete[] A;
    return ret;
}
```


Guess how large an n we can handle this time?

Data

n	10^{6}	10^{7}	10^{8}	10^{9}
\# seconds	1	1	1	Segmentation fault

Data structure matters a great deal!

Some assumptions we made are false if too much space is involved: computer has to use hard-drive as memory

Dynamic programming!

```
unsigned long long fib3(unsigned long n) {
    if ( }\textrm{n}<=1\mathrm{ ) return n;
    unsigned long long a=0, b=1, temp;
    unsigned long i;
    for (unsigned long i=2; i<= n; i++) {
        temp =a + b;// F[i] = F[i-2] + F[i-1]
        a=b; // a = F[i-1]
        b = temp; // b = F[i]
    }
    return temp;
}
```


Guess how large an n we can handle this time?

Data

n	10^{8}	10^{9}	10^{10}	10^{11}
\# seconds	1	3	35	359

The answers are incorrect because $\mathrm{F}\left[10^{8}\right]$ is greater than the largest integer representable by unsigned long long

But that's ok. We want to know the runtime

- The repeated squaring trick

AN EVEN FASTER ALGORITHM

Math helps!

- We can re-formulate the problem a little:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
F[n-1] \\
F[n-2]
\end{array}\right]=\left[\begin{array}{c}
F[n] \\
F[n-1]
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
F[n+1] \\
F[n]
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]}
\end{aligned}
$$

How to we compute A^{n} quickly?

- Want

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}
$$

- But can we even compute 3^{n} quickly?

First algorithm

```
unsigned long long power1(unsigned long n) {
    unsigned long i;
    unsigned long long ret=1;
    for (unsigned long i=0; i<n; i++)
        ret *= base;
    return ret;
}
```

When $\mathrm{n}=10^{10}$ it took 44 seconds

Second algorithm

```
unsigned long long power2(unsigned long n) {
    unsigned long long ret;
    if ( }\textrm{n}==0\mathrm{ ) return 1;
    if (n % 2 == 0) {
        ret = power2(n/2);
        return ret * ret;
    } else {
        ret = power2((n-1)/2);
        return base * ret * ret;
    }
}
```

When $\mathrm{n}=10^{19}$ it took <1 second
Couldn't test $\mathrm{n}=10^{20}$ because that's $>$ sizeof(unsigned long)

Runtime analysis

- First algorithm $\mathrm{O}(\mathrm{n})$
- Second algorithm O(log n)
- We can apply the second algorithm to the Fibonacci problem: fib4() has the following data

n	10^{8}	10^{9}	10^{10}	10^{19}
\# seconds	1	1	1	1

