
Much ado about Fibonacci numbers

Ah hah! Algorithms

Recursion and iteration

Asymptotic analysis

The repeated squaring trick

Agenda

• The worst algorithm in the history of humanity

• Asymptotic notations: Big-O, Big-Omega, Theta

• An iterative solution

• A better iterative solution

• The repeated squaring trick

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 1

FIBONACCI SEQUENCE

And the worst algorithm in the history of humanity

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 2

Fibonacci sequence

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• F[0] = 0

• F[1] = 1

• F[2] = F[1] + F[0] = 1

• F[3] = F[2] + F[1] = 2

• F[4] = F[3] + F[2] = 3

• F[n] = F[n-1] + F[n-2]

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 3

Recursion – fib1()

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 4

/**

 *--

 * the most straightforward algorithm to compute F[n]

 *--

 */

unsigned long long fib1(unsigned long n) {

 if (n <= 1) return n;

 return fib1(n-1) + fib1(n-2);

}

Run time on my laptop

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 5

2.53GHz Intel Core 2 Duo, 4 GB DDR3

On large numbers

• Looks like the run time is doubled for each n++

• We won’t be able to compute F[120] if the trend
continues

• The age of the universe is 15 billion years < 260
sec

• The function looks … exponential
– Is there a theoretical justification for this?

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 6

A Note on “Functions”

• Sometimes we mean a C++ function

• Sometimes we mean a mathematical function like F[n]

• A C++ function can be used to compute a
mathematical function
– But not always! There are un-computable functions

– Google for “busy Beaver numbers” and the “halting
problem”, for typical examples.

• What we mean should be clear from context

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 7

ANALYSIS OF FIB1()

Guess and induct strategy

Thinking about the main body

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 8

Guess and induct

• For n > 1, suppose it takes c mili-sec in fib1(n)
not counting the recursive calls

• For n=0, 1, suppose it takes d mili-sec

• Let T[n] be the time fib1(n) takes

• T[0] = T[1] = d

• T[n] = c + T[n-1] + T[n-2]
when n > 1

• To estimate T[n], we can
– Guess a formula for it

– Prove by induction that it works

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 9

The guess

• Bottom-up iteration

– T[0] = T[1] = d

– T[2] = c + 2d

– T[3] = 2c + 3d

– T[4] = 4c + 5d

– T[5] = 7c + 8d

– T[6] = 12c + 13d

• Can you guess a formula for T[n]?

– T[n] = (F[n+1] – 1)c + F[n+1]d

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 10

The Proof

• The base cases: n=0,1

 The hypothesis: suppose

 T[m] = (F[m+1] – 1)*c + F[m+1]*d for all m < n

 The induction step:

 T[n] = c + T[n-1] + T[n-2]

 = c + (F[n] – 1)*c + F[n]*d

 + (F[n-1] – 1)*c + F[n-1]*d

 = (F[n+1] – 1)*c + F[n]*d

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 11

How does this help?

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 12

The golden ratio

So, there are constants C, D such that

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 13

This explains the exponential-curve we saw

ASYMPTOTIC ANALYSIS

- Back of the envelope time/space estimation

- Independent of whether our computer is fast

- Big-o, big-omega, theta

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 14

From intuition to formality

• Suppose fib1() runs on a computer with

C = 10-9:

• We need a formal way to state that (1.6)n is

the “correct” measure of fib1()’s runtime

– How fast the target computer runs shouldn’t

concern us

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 15

Big-O

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 16

Intuition

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 17

In English

• f(n) = O(g(n)) means: for n sufficiently large,

f(n) is bounded above by a constant scaling

of g(n)

– Does the “English translation” make things

worse?

• An algorithm with runtime f(n) is at least as

good as an algorithm with runtime g(n),

asymptotically

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 18

Examples

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 19

Big-Omega

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 20

In picture

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 21

Examples

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 22

Equivalence

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 23

Theta

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 24

We say they “have the same growth rate”

In picture

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 25

BETTER ALGORITHMS FOR

COMPUTING F[N]

- A Linear time algorithm using vectors

- A linear time algorithm using arrays

- A linear time algorithm with constant space

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 26

An algorithm using vector

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 27

unsigned long long fib2(unsigned long n) {

 // this is one implementation option

 if (n <= 1) return n;

 vector<unsigned long long> A;

 A.push_back(0); A.push_back(1);

 for (unsigned long i=2; i<=n; i++) {

 A.push_back(A[i-1]+A[i-2]);

 }

 return A[n];

}

Guess how large an n we can handle this time?

Data

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 28

n 106 107 108 109

seconds 1 1 9 Eats up all
my
CPU/RAM

How about an array?

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 29

unsigned long long fib2(unsigned long n) {

 if (n <= 1) return n;

 unsigned long long* A = new unsigned long long[n];

 A[0] = 0; A[1] = 1;

 for (unsigned long i=2; i<=n; i++) {

 A[i] = A[i-1]+A[i-2];

 }

 unsigned long long ret = A[n];

 delete[] A;

 return ret;

}

Guess how large an n we can handle this time?

Data

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 30

n 106 107 108 109

seconds 1 1 1 Segmentation
fault

Data structure matters a great deal!

Some assumptions we made are false if too
much space is involved: computer has to use
hard-drive as memory

Dynamic programming!

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 31

unsigned long long fib3(unsigned long n) {

 if (n <= 1) return n;

 unsigned long long a=0, b=1, temp;

 unsigned long i;

 for (unsigned long i=2; i<= n; i++) {

 temp = a + b; // F[i] = F[i-2] + F[i-1]

 a = b; // a = F[i-1]

 b = temp; // b = F[i]

 }

 return temp;

}

Guess how large an n we can handle this time?

Data

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 32

n 108 109 1010 1011

seconds 1 3 35 359

The answers are incorrect because F[108] is
greater than the largest integer representable
by unsigned long long

But that’s ok. We want to know the runtime

AN EVEN FASTER ALGORITHM

- The repeated squaring trick

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 33

Math helps!

• We can re-formulate the problem a little:

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 34

How to we compute An quickly?

• Want

• But can we even compute 3n quickly?

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 35

First algorithm

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 36

unsigned long long power1(unsigned long n) {

 unsigned long i;

 unsigned long long ret=1;

 for (unsigned long i=0; i<n; i++)

 ret *= base;

 return ret;

}

When n = 1010 it took 44 seconds

Second algorithm

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 37

unsigned long long power2(unsigned long n) {

 unsigned long long ret;

 if (n == 0) return 1;

 if (n % 2 == 0) {

 ret = power2(n/2);

 return ret * ret;

 } else {

 ret = power2((n-1)/2);

 return base * ret * ret;

 }

}

When n = 1019 it took < 1 second
Couldn’t test n = 1020 because that’s > sizeof(unsigned long)

Runtime analysis

• First algorithm O(n)

• Second algorithm O(log n)

• We can apply the second algorithm to the

Fibonacci problem: fib4() has the following

data

2/10/2013 CSE 250, Fall 2012, SUNY Buffalo 38

n 108 109 1010 1019

seconds 1 1 1 1

