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Abstract

We exhibit classes of polynomials whose sets of kth partial derivatives form Grob̈ner bases
for all k, with respect to all term orders. The classes are defined by syntactic constraints on
arithmetical formulas defining the polynomials. Read-once formulas without constants have
this property for all k, while those with constants have a weaker “Gröbner-bounding” property
introduced here. For k = 1 the same properties hold even with arbitrary powering of subterms
of the formulas.

1 Introduction

This paper stems from unsolved problems about the computational complexity of arithmetical func-
tions. These problems resemble famous questions such as “Is P = NP?” and seem to be just as
difficult to resolve. A prime example concerns the determinant and permanent functions of an n×n
matrix, both of which are degree-n polynomials in n2 variables. Whereas the determinant has a
simple polynomial-time algorithm and is expressible by arithmetical formulas of nearly-polynomial
size [Ber84], the permanent was shown to be NP-hard by Valiant [Val79], and hence is considered
unlikely to have a polynomial-time algorithm. Indeed, the n × n permanents are commonly con-
jectured to require 2Ω(n) size not only for arithmetical formulas but also for arithmetical circuits.
However, no lower bounds better than Ω(N logN) are known on the size of formulas, let alone
circuits, for any family (over N) of natural N -variable degree-O(N) polynomials pN such as the
above (where N = n2). A recent text reference for all of these assertions is [BCS97].

A reason voiced for this great gap in our knowledge of lower bounds is the difficulty of asso-
ciating “classical” mathematical quantities with complexity measures such as arithmetical circuit
or formula size, or the running time of a Turing Machine. The known Ω(N logN) lower bounds
arise from one such association proved by Baur and Strassen [BS82]: the arithmetical circuit size
of pN (over any infinite field k) is bounded below by the base-2 logarithm of the geometric de-
gree of the mapping from kN to kN defined by the N first partial derivatives of pN . However,
the geometric degree of such a mapping never exceeds dN , where d + 1 is the degree of fN , and
the log of such a “singly exponential” quantity is not much above linear. Another association
with a similar limitation is to the number of connected components of algebraic sets, obtained in
[Ben83, BLY92, Yao94] via Milnor-Thom bounds. However, many double-exponential quantities
are known in algebraic geometry and serve informally as “complexity measures” of associated poly-
nomial ideals. Our interest thus lies in connecting the computational complexity of a polynomial
function p with the mathematical complexity of some ideal Ip associated to p, such as the Jacobian
ideal Jac(p) formed by the first partial derivatives of p.
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This paper asks: Which polynomial functions p have the simplest ideals Ip = Jac(p), or Ip =
some ideal formed by higher-order partial derivatives of p? The determinant and permanent func-
tions again supply motivation. For all n and k, and with respect to any “diagonal” term-order, the
kth partial derivatives of the determinant polynomials form a Gröbner basis [Stu90, CGG90]—and
the resulting so-called determinantal ideals they generate have many nice geometric properties and
are a major topic of study. For the permanent polynomials however, the corresponding “perma-
nental ideals” lack similar properties [LS98], and computer runs for n = 3, 4, 5 suggest explosive
growth in Gröbner basis size and degree. Which other classes of formulas have the same “Gröbner-
minimum” property as the determinant polynomials?

We prove that for read-once (RO) formulas, namely those in which every literal is a different
variable, the kth partial derivatives (any k) form a Gröbner basis under any term order. This
was originally motivated by the fact that every formula φ is a multi-step “Valiant projection”
(see [Val82, SV85, BCS97]) of the read-once formula φ′ of the same size obtained by replacing
every occurrence of a variable or constant in φ by a different new variable. A good bound on
the increase in some polynomial-ideal complexity measure under a single-step Valiant projection
(namely, identifying two variables or replacing a variable by a constant) may yield an association
useful for computational-complexity lower bounds with the results in this paper (or extensions of
them) as the base case. For k = 1 only, we show that Jac(p) forms a Gröbner basis also when p
has a formula that is RO with constants allowed in the formula and with powering of arbitrary
subterms, such as p = (x + 3y − 4)2(6 − z3). Our results are best-possible in the sense that every
polynomial ideal I is an elimination ideal of Jac(h) for some multi-linear read-twice formula h of
size linear in the sum of the formula sizes of given generators p1, . . . , ps for I.1 Thus Jacobians
of read-twice formulas essentially embody all complexity features of ideals, including those of the
notorious “Mayr-Meyer ideals” [CLM76, MM82, MM84, Huy86, BS88, Yap91], which have s = O(n)
and p1, . . . , ps of constant degree and size!

Section 2 defines the classes of formulas and gives the facts about Gröbner bases needed for
our proofs, which come in Section 3. A concluding Section 4 re-visits the above motivations and
gives some related mathematical problems.

2 Definitions and Background

We consider arithmetical formulas involving variables x1, x2, . . ., arbitrary constants in the field F ,
and the operators +, −, and·. It is sometimes helpful to picture the formula as a binary tree directed
toward the root whose leaves are the literals (i.e., variables or constants) and whose interior nodes
are the operators. The root is called both the output node and the highest operator. An arithmetical
circuit is obtained by allowing nodes to have arbitrarily many out-edges and (optionally, for higher-
arity + and ·) in-edges, without introducing any directed cycles and keeping the root as the only
sink. Then a formula is the same as a circuit of fanout 1. We define formulas with powering formally
by introducing unary nodes, each having a positive integer for the power.

The size of a formula or circuit is standardly the number of operators, sometimes not counting
operators one of whose arguments is a constant, but for formulas we prefer to count the number
of literals. Known results on eliminating divisions from formulas from polynomials (see [BCS97])
enable us to avoid considering the / operator here. Since our results distinguish between the
presence or absence of constants, we chose to include the − operation as a primitive, referencing
its simulation by −1 and ·,+. For any formula φ, let Var(φ) denote the set of distinct variables
occurring in φ.

1To wit, let p′1, . . . , p
′
s be defined by replacing each jth occurrence of a variable xi in pk by a new variable yijk ,

treating constants similarly. Re-labeling these new variables as y1, . . . , ym, let z1, . . . , zs+m be further new variables
and define h = z1p

′
1 + . . . zsp

′
s + zs+1(x1 − y1) + . . .+ zs+m(xn − ym).
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Definition 2.1. (a) Read-once (RO) formulas are inductively definable by:

(B1) Every variable xi is an RO formula.

(I1) If φ1 and φ2 are RO formulas and Var(φ1) ∩ Var(φ2) = ∅, then φ1 + φ2, φ1 − φ2, and
φ1 ·φ2 are RO formulas.

(b) Formulas that are read-once with powers (ROP) are defined by adding the induction clause

(I2) If φ1 is an ROP formula and a is an integer ≥ 2, then φa1 is an ROP formula.

(c) Formulas that are read-once with constants (ROC) are defined by adding instead the second
basis clause

(B2) For every constant c ∈ F , c is an ROC formula.

(d) Formulas that are read-once with powers and constants (ROPC) are defined by adding both
clauses (I2) and (B2).

(e) A formula φ (of any kind) has no additive constants (NAC) if every subtree of a + or − node
in φ has at least one variable. (Except for the triviality of multiplying together or powering
a bunch of constants, this is the same as saying that no constant is a child of a + or − sign
in φ.)

We try to maintain the distinction between a polynomial and a given formula for it, blurring
the usage only when doing so is innocuous, and call a polynomial function read-once (etc.) if it has
some RO (etc.) formula, talking with respect to a given or arbitrary field. For example, x·(y + z)
is an RO-formula of size 3, while x·y+x·z is a formula of size 4 for the same polynomial that is not
RO. The polynomial xy + 2xz has no RO formula (except over fields of characteristic 2 or 3), but
it has the ROC formula x·(y + 2·z), and both formulas are NAC. The formula (x + 3)2 is ROPC
but not NAC.

A term order � is a well-ordering of monomials with 1 as least element that respects multiplica-
tion: m1 � m2 =⇒ m1m3 � m2m3 for all monomials m1,m2,m3. The terms of a polynomial p are
well-defined by the unique expression for p over the monomial vector-space basis of F [x1, . . . , xn].
The term whose corresponding monomial is greatest under � is the leading term LT (p :�), and
the monomial itself is the leading monomial LM (p :�). We write LT (p) or LM (p) when � is un-
derstood. We also extend the notation LM (p1, p2) to mean the least common multiple of LM (p1)
and LM (p2). Then the S-polynomial of two polynomials p1 and p2 is defined by

S(p1, p2) = LM (p1,p2)
LT (p1) p1 − LM (p1,p2)

LT (p2) p2 .

Note that LM (S(p1, p2)) ≺ LM (p1, p2) since the leading terms of the two fractions cancel.
Any set B = { p1, . . . , ps } forms a basis for the ideal I = {

∑s
i=1 αipi : α1, . . . , αs ∈

F [x1, . . . , xn] }. We also write I = 〈p1, . . . , ps〉 to emphasize the ideal generated by the set. Every
polynomial ideal I ⊆ F [x1, . . . , xn] has a finite basis.

Definition 2.2. Let B = { p1, . . . , ps } generate a polynomial ideal I, and let � be a term order.

(a) Given a monomial m and a polynomial q ∈ I, an expression

q =
s∑
i=1

αipi

is an m-representation over B if for all i, LT (αipi) � m.
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(b) The representation is good (or standard) if m � LM (q).

(c) If q is an S-polynomial S(p1, p2), the representation is fair if m ≺ LM (p1, p2,).

(d) B is a Gröbner basis (GB) if every q ∈ I has a good representation over B.

Intuitively, a Gröbner basis gives every q ∈ I a representation that involves no cancellations of
terms higher than the leading term of q. It is necessary and sufficient for this that for every q ∈ I
there exists a pi in B such that LM (pi) divides LT (q). The famous Buchberger S-pair condition
for B to be a GB is usually stated (e.g. in Theorem 3 on p102 of [CLO92]) as every S-polynomial
S(pi, pj) having a good representation over B, but in fact it suffices for every S(pi, pj) to have a
fair representation, as shown by Theorem 5.64 in [BW93]. In this paper it is convenient to employ
the following:

Lemma 2.1 ((see [BW93])) A set B = { p1, . . . , ps } of polynomials forms a Gröbner basis if
(and only if) for all distinct pi, pj in B at least one of the following holds

(a) S(pi, pj) has a fair representation over B.

(b) There is a polynomial h dividing pi and pj such that LM (pi/h) and LM (pj/h) are relatively
prime.

(c) There exists a pk in B such that LM (pk) divides LM (pi, pj) and both S(pi, pk) and S(pk, pj)
have fair representations over B.

Proof. Proposition 5.70 in [BW93] shows that for any S(pi, pj) statement (c) implies (a). For (b)
=⇒ (a) we can employ the same analysis as in the proof of Lemma 5.66 in [BW93], which is the
case h = 1, since S(pi, pj) = hS(pi/h, pj/h).

For later remarks we note that in case (b) one in fact obtains a good representation over { pi, pj }
alone, not needing other parts of B.

For every polynomial ideal I and fixed �, there is a unique Gröbner basis G = { g1, . . . , gs }
such that no term t of a polynomial in G is a multiple of any LT (gi), other than t = LT (gi) itself,
and the leading terms LT (gi) have coefficient 1 (i.e., are monomials). Then s is the minimum
cardinality of any Gröbner basis for I, and we write GBI,� for this G. Finally, a basis is a universal
Gröbner basis if it is a Gröbner basis with respect to all term orders �. Any superset of a [universal]
Gröbner basis is again a [universal] Gröbner basis. Every polynomial ideal has a finite universal
GB, but there are cases where every universal GB is bigger than GBI,� for every term order �. The
k-th order partial derivatives of the determinant polynomials dn form a GB under any “diagonal”
orderings �, but generally do not form a universal GB, as they fail to be a GB with respect to
certain non-diagonal orderings.

We have not found the last definition in this section in the literature.

Definition 2.3. A basis B = { p1, . . . , ps } for an ideal I is a Gröbner-bounding basis (GBB) if for
all members gi of GBI,� there exists j such that LT (gi) divides LT (pj). B is a universal GBB if
it is a GBB for every �.

That is, a GBB bounds the degrees leading terms in the unique minimum Gröbner basis, and so
is “good enough” as an upper bound on Gröbner basis complexity. Its leading terms need not
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generate the leading-term ideal of I, however, as with a GB. For a simple example, {x2, x2 + x } is
a GBB for the ideal generated by x, but not a GB.

The sum I + J of two ideals I and J is generated by the union of any basis BI for I and any
basis BJ for J ; we also write I + J = 〈BI , BJ〉. Note that Jac(p+ q) is in general not the same as
Jac(p) + Jac(q)

3 Statement of Main Results

Formal partial derivatives of polynomials p are defined as usual even over finite fields, and Fubini’s
Theorem that ∂2p/∂x∂y = ∂2p/∂y∂x of course holds. Given k ≥ 1 we write Jack(p) for both the
set of kth-order partial derivatives and for the ideal they generate. The case k = 1 is called the
Jacobian ideal , and k = 2 is called the Hessian ideal .

Theorem 3.1 For every RO formula φ and k ≥ 1, Jack(φ) forms a universal Gröbner basis. The
same is true of ROC formulas provided they have no additive constants.

Theorem 3.2 For every ROP formula φ, and indeed every ROPC formula with no additive con-
stants, Jac(φ) forms a universal Gröbner basis.

Theorem 3.3 For every ROPC formula φ, Jac(φ) forms a universal Gröbner-bounding basis.

To separate these three theorems, first consider φ1 = x(yz+1). Then Jac(φ1) = 〈yz+1, xz, xy〉.
This is not a Gröbner basis because x is in the ideal; indeed, 〈x, yz + 1〉 is the unique minimum
GB for Jac(φ) under any term order. It is, however, a Gröbner-bounding basis. Thus Theorem 3.1
does not extend to RO(P)C formulas.

Now consider φ2 = (x2 + y2)2. This is an ROP formula. Its Jacobian is 〈x2y + y3, x3 + xy2〉.
This indeed forms a universal GB. Its Hessian, however, is 〈3x2 +y2, 2xy, x2 +3y2〉. This is not even
a GBB (under any term order), because both x2 and y2 belong to Hess(φ2). The larger example
φ3 = ((x2 + y2)2 + z4)2 shows a case where not even the degrees of a Gröbner basis for the Hessian
are bounded. The monomial z7 belongs to Hess(φ3) while z6 does not; hence every Gröbner basis
for Hess(φ3) must have entries of degree at least 7, whereas all entries of Hess(φ3) have degree 6.
So Hess(φ3) is not “Gröbner-bounding” in any sense. Note that these last two examples are for
homogeneous formulas and ideals—we shall see later that the inhomogeneity of additive constants
is responsible for the first example.

Finally, let us replace the additive constant in φ1 by a variable w, yielding the RO formula
φ4 = x(yz + w). Then Jac(φ4) = 〈x, yz + w, xz, xy〉. Although not a minimal Gröbner basis, this
is a universal Gröbner basis because its subset {x, yz + w } is the minimum reduced GB under
any term order. What we draw attention to here is that with regard to any term order � making
yz � w, the S-polynomial S(∂φ4/∂x, ∂φ4/∂y) does not reduce using ∂φ4/∂x and ∂φ4/∂y alone:
S(yz +w, xz) = wx and requires ∂φ4/∂w to be part of any good representation. Put another way,
the partials of φ4 with respect to x and y do not form even a GBB by themselves, under �. Hence
Theorem 3.1 does not extend to any ideal formed by partial derivatives of read-once formulas, but
“in general” requires having all the kth partials. The next section develops technical properties
that govern some of the above results and their boundaries.

4 Membership in Differential Ideals

We begin with the Jacobian ideal and then generalize the idea.
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Definition 4.1. Say a polynomial p ∈ F [x1, . . . , xn] is “J-nice” if there exist constants a1, . . . , an ∈
F such that

p =
n∑
i=1

aixi
∂p

∂xi
.

That is, not only is p ∈ Jac(p), but p has the particular good representation shown. Note that if p
is a nonzero constant, then p is not J-nice, and does not belong to Jac(p) (which is the zero ideal)
at all. A linear polynomial p with a nonzero constant term also fails to be J-nice, even though p
does belong to Jac(p) (which is the ideal 1).

Lemma 4.1 (a) If p and q are J-nice with constants that agree on variables in Var(p)∩Var(q),
then p+ q and p·q are also J-nice.

(b) Every homogeneous polynomial of degree d > 0 is J-nice.

(c) Every polynomial that has an ROPC formula with no additive constants is J-nice.

(d) If p is J-nice with aj 6= 1, then ∂p/∂xj is also J-nice.

(e) For every RO polynomial p and integer k ≥ 1, such that all terms of p have degree at least k,
p belongs to Jack(p), with a good representation over that basis.

Proof. For (a), without loss of generality, let x1, . . . , x` be the common variables and x`+1, . . . , xm
the variables belonging only to p, with 0 ≤ ` ≤ m ≤ n (` = 0 means Var(p) ∩ Var(q) = ∅). Then
the constants can be notated as (a1, . . . , am, 0, . . . , 0) for p and (a1, . . . , a`, 0, . . . , 0, am+1, . . . , an)
for q. Then p+ q =

∑n
i=1 aixi(∂(p+ q)/∂xi) and p·q =

∑n
i=1(ai/2)xi(∂(p+ q)/∂xi).

Every monomial of degree d is J-nice with ai = 1/d for each i, and hence (b) follows from (a)
for sums. For (c), first note that every power of a J-nice polynomial is also J-nice, as follows from
(b) for products. This implies that an ROPC formula with no additive constants can be built up
via binary sums and products of J-nice formulas with no common variables, and thus (c) follows.
Part (d) follows by differentiating the formula

∑n
i=1 aixi(∂p/∂xi) for p with respect to xj and then

solving for ∂p/∂xj .
Finally, (e) follows by induction on k because ∂p/∂xi is always an RO formula, unless it is the

constant 1 or −1. The condition on k prevents this from being an issue.

The following abstraction provides both a stronger form of (e) and a convenient generaliza-
tion for a later proof. Let δ stand for any composition of partial derivatives, and ∆ for any set
{ δ1, . . . , δm } of such δ′s. Then for any polynomial p, ∆(p) denotes the ideal generated by the m
polynomials { δ1(p), . . . , δm(p) }. Call ∆ a “differential ideal operator.” The Jacobian and Hessian
ideals, and so on for higher k, are definable this way.

Definition 4.2. Given a differential ideal operator ∆ = { δ1, . . . , δs }, a polynomial q is “∆-nice”
if there are non-negative rational constants a1, . . . , as such that p =

∑s
j=1 ajmjδj(p), where for

each j, mj is the monomial corresponding to the partial derivatives taken in δj . (That is, if
δj = (∂/∂xi) ◦ δ′j , then mj = xim

′
j , based on m′j = 1 if δ′j is the identity.)

5 A Decoupling Invariant

The final ingredient of our proofs is the following property of ideals of the form qJac(p) + pJac(q).
If we write pi as short for ∂p/∂xi, then this equals 〈qpi, pqi : 1 ≤ i ≤ n〉. In general this is not the
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same as Jac(pq), but it equals Jac(pq) if Var(p) ∩Var(q) = ∅.

Definition 5.1. An S-polynomial S(qpi, pqj) decouples if it has a fair representation over qJac(p)+
pJac(q) of the form S(qpi, pqj) =

∑n
k=1 αkqpk + βkpqk such that for some monomial m,

LM (qpi, pqj)
LT (qpi)

pi −
∑
k

αkpk = mp, (1)

LM (qpi, pqj)
LT (pqj)

qj +
∑
k

βkqk = mq (2)

We note that (2) actually follows from (1), because on multiplying the latter by p and the former
by q, the left-hand sides are equal. Intuitively this says that half of the fair representation of the
S-polynomial leads to a representation of a multiple of p, and the other half to q, “decoupling” into
p and q in this sense.

Lemma 5.1 Suppose there exist i and j such that LM (pi) divides LM (p), LM (qj) divides LM (q),
Jac(p) and Jac(q) are Gröbner bases, and S(qpi, pqj) decouples over pJac(q) + qJac(p). Then all
S-polynomials decouple over pJac(q) + qJac(p).

Proof. Take any a, d, 1 ≤ a ≤ b, and note the identity

S(qpi′ , pqj′) =
LM (qpa, pqd)
LM (qpa, qpi)

S(qpa, qpi) +
LM (qpa, pqd)
LM (qpi, pqj)

S(qpi, pqj) +
LM (qpa, pqd)
LM (qpa, pqd)

S(pqj , pqd).

In all three monomial fractions, the denominator divides the numerator owing to the hypotheses
on i and j. Noting that S(qpa, qpi) = qS(pa, pi) and similarly for S(pqj , pqd), we may obtain from
Jac(p) and Jac(q) being GBs the following fair representations of these S-polynomials:

S(qpa, qpi) =
n∑
k=1

qγkpk,

S(pqj , pqd) =
n∑
`=1

pδ`q`.

Take the decoupling representation with monomial m for S(qpi, pqj) as in Definition 5.1. Substi-
tuting yields a representation of S(qpi′ , pqj′) that is fair, again owing to divisibility in the three
fractions. To show that it decouples, we can group the αk and γk, and need only show that for
some monomial m′,

m′p =
LM (qpa, pqd)

LT (qpa)
pa −

∑
k

LM (qpa, pqd)
LM (qpa, qpi)

γkpk −
∑
k

LM (qpa, pqd)
LM (qpi, pqj)

αkpk

By decoupling for S(qpi, pqj), we have

LM (qpi, pqj)
LT (qpi)

pi −
∑
k

αkpk = mp.

This follows with m′ = LM (qpa, pqj)/LM (qpa, qpi).

It follows also that pJac(q)+qJac(p) is a Gröbner basis. To apply this result to read-once formulas,
we observe:
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Lemma 5.2 For every RO formula φ and term order �, there exists a variable xi such that
LM (∂φ/∂xi) divides LM (φ).

Proof. The base case of φ a monomial is clear, as any variable can be chosen. If φ = f + g, then
if LM (φ) belongs to Var(f) choose the “good” variable that exists by indiction in f , else choose
the one in g. If φ = f ·g, then one may choose either a “good” variable in f or a good variable in
g.

6 Proofs of the main results

First we prove the base case k = 1 of Theorem 3.1.

Theorem 6.1 For every read-once polynomial p, allowing multiplicative but not additive constants,
Jac(p) forms a universal Gröbner basis.

Proof. The proof proceeds by induction on both the formula size and the number of + or − signs
in a given RO formula φ. Since no reference to any particular property of a given term ordering �
will be needed, the conclusion will yield a universal GB.

Basis: Here φ is a monomial, and since all entries of Jac(p) are monomials, the conclusion is
clear.

Induction: If φ is not a monomial, then there is a highest + or − sign in φ. At the end of the
proof we will explain the generalization to formulas with multiplicative constants, which embraces
formulas with − signs. Hence we may take the highest non-·operator to be a + sign and parse φ as
(f + g)·h. Here f and g are RO formulas on disjoint variable sets, and either h is likewise or h = 1.
The fact that 1 (or any constant) is not to be considered an RO formula leads us to consider the
case h = 1 separately. We need to show that for all distinct i and j, one of Lemma 2.1(a,b,c) holds
for S(φi, φj).

Additive Case: φ = f + g. Then Jac(φ) = 〈Jac(f), Jac(g)〉. Consider any two distinct entries
φi and φj . If both belong to Jac(f), then by the inductive hypothesis on f , S(φi, φj) → 0 has a
fair representation over Jac(f), and hence over Jac(φ). If φi belongs to Jac(f) and φj belongs to
Jac(g), then by Var(f) ∩Var(g) = ∅ their leading terms are relatively prime, and hence condition
(b) of Lemma 2.1 holds. The other possibilities are handled similarly.

Multiplicative Case: φ = (f + g) ·h with h also an RO formula (hence non-constant). It is
tempting to rewrite φ = fh+ gh and “hand-wave” that the common multiple h does not affect the
reasoning in the previous paragraph. However, this would overlook the actual breakdown of cases
that need to be considered.2 In

Jac(φ) = 〈h·Jac(f), h·Jac(g), (f + g)·Jac(h)〉, (3)

if both φi and φj belong to one of hJac(f), hJac(g), or (f + g)Jac(h), or if one belongs to
hJac(f) and the other to hJac(g), then the reasoning of the additive case does carry over, us-
ing Lemma 2.1(b) with this h. The tricky cases are φj belonging to (f + g)Jac(h) and φi belonging

2Also, the resulting “too-simple” proof would use Lemma 2.1(b) only, and this in turn would imply that S(δi, δj)
has an acceptable representation involving δi and δj only, which we have seen is false.
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to hJac(f) or to hJac(g). These two cases cannot immediately be collapsed into one “by symme-
try,” because for any particular term order �, we will need to worry about whether the leading
term of f + g belongs to f or to g. By symmetry the cases can be re-labeled (i) LM (f) � LM (g)
and (ii) LM (g) � LM (f).

The idea in case (i) is to find a fair representation of S(hfi, (f +g)hj) by induction on Jac(fh)
for the corresponding S-polynomial S(hfi, fhj). In case (ii) this same analysis via induction on
Jac(gh) yields a fair representation of S(hgk, (f+g)hj) where xk ∈ Var(g), and the idea is to apply
Lemma 2.1(c) to obtain a fair representation for S(hfi, (f + g)hj) in terms of that and S(hfi, hgk).

However , we find that most of this work has already been done for us in Lemma 5.1. Hence
we strengthen the induction in the product case by showing that the decoupling invariant (5.1)
extends from all S-polynomials in Jac(fh) and Jac(gh) to those in Jac((f + g)h). As remarked
there, this implies that Jac((f + g)h) is a Gröbner basis. The basis of the induction is when φ is a
monomial.

For the induction step, by Lemma 5.1, it suffices to choose one variable x` ∈ Var(f) ∪Var(g)
such that ∂(f+g)/∂x` divides LM (f+g), together with some xj′ such that ∂h/∂xj′ divides LM (h).
In point of fact we can work by induction with the given j in place of j′. Now we obtain the final
symmetry: in case (i) we choose x` ∈ Var(f) such that LM (∂f/∂x`) divides LM (f), while in case
(ii) we similarly choose x` ∈ Var(g) instead.

Thus the two cases do fold into one. We may suppose that LM (f+g) = LM (f), choose xi such
that LM (∂f/∂xi) divides LM (f), and finish the proof by showing merely that S(hfi, (f + g)hj)
decouples over Jac(φ). We can do this using the induction hypothesis that S(hfi, fhj) decouples
over Jac(fh).

To finish the proof of the theorem, we need only explain how the above calculations are (not)
affected by the presence of multiplicative constants c in φ. Because δ(cf) = cδ(f) for any f and
chain δ of partial derivatives, the only difference is that some entries in Jac(φ) are multiplied by
products of these constants. The fact that φ is read-once ensures that the only constants in the
entries are these products, and in particular that no cancellations occur. Thus δ(φ) is an equivalent
basis for the ideal δ(φ′) where φ′ is obtained from φ by setting all constants equal to 1.

The proof of the second main result now follows quickly.

Proof of Theorem 2.1). We use the same reasoning as at the end of the last proof. The base
case of monomials is unchanged. The additive case now becomes formulas φ = (f+g)a where a > 1,
while the multiplicative case becomes φ = (f + g)ah. In both cases, Jac(φ) = (f + g)a−1 ·Jac(φ′),
where φ′ is obtained from φ by setting a = 1. The basis obtained for Jac(φ) is also the same as
that obtained for Jac(φ′), except that the entries for variables in Var(f) ∪ Var(g) are multiplied
by a. This does not change any of the S-polynomials.

For higher derivatives, however, the analogous “multipliers” of entries are no longer constants, and
the reasoning does not hold—nor does the statement, as we have seen.

Proof. of Theorem 3.3). Let φ stand for a formula that is read-once-in-powers with constants
c1, . . . , ck. We prove by induction on k that Jac(φ) is a GBB. If φ has no additive constants (or
even if some cj is a multiplicative constant) then by the analysis at the end of the proof of Theorem
3.1, the multiplicative constant does not affect the relevant division properties for the ideal Jac(φ).
Hence we may let c ∈ { c1, . . . , ck } stand for an occurrence of an additive constant in φ. Then φ
has a subterm (β + c) with Var(β) 6= ∅. Define ψ to be the formula obtained by replacing c by a
new variable y. By induction hypothesis (IH), Jac(ψ) forms a GBB.
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Let p ∈ Jac(φ), and let � be any admissible ordering on monomials over {x1, . . . , xn }. We
need to find a polynomial q ∈ Jac(φ) such that LT (q) divides both LT (p) and LT (∂φ/∂xi) for
some i, 1 ≤ i ≤ n. By p ∈ Jac(φ), we have a (not necessarily acceptable) representation

p =
n∑
i=1

αi
∂φ

∂xi

with each αi ∈ F [x1, . . . , xn]. Now define

p′ =
n∑
i=1

αi
∂ψ

∂xi
.

Then p = p′[y 7→ c]. We extend � to an admissible ordering �′ on monomials over {x1, . . . , xn } ∪
{ y } such that τ � y for every non-constant term τ over {x1, . . . , xn }. By IH there exists a
polynomial q′ ∈ Jac(ψ) such that, taking leading terms with regard to �′, LT (q′) divides LT (p′)
and: either LT (q′) divides LT (∂ψ/∂xi) for some i, 1 ≤ i ≤ n, or LT (q′) divides LT (∂ψ/∂y).
Taking any representation

q′ = γ0
∂ψ

∂y
+

n∑
i=1

γi
∂ψ

∂xi

with γ0, . . . , γn ∈ F [x1, . . . , xn, y], we define

q′′ =
n∑
i=1

γi
∂ψ

∂xi

(i.e., q′′ = q′ − γ0∂ψ/∂y) and q = q′′[y 7→ c]. Then q ∈ Jac(φ), and we argue that q is the required
polynomial. For this we make the following observations.

• For any variable xi occurring in β, ∂ψ/∂y divides ∂ψ/∂xi. This relies on the fact that xi occurs
only inside β, and is the only place the read-once condition is used. Hence LT (∂ψ/∂y) divides
LT (∂ψ/∂xi). It follows that for some (possibly different) i, LT (q′) divides LT (∂ψ/∂xi), and
also that LT (q′′) = LT (q′).

• For any i, LT (partialψ/∂xi) does not involve y: Regardless of whether xi is a variable in β
or not, every occurrence of y in partialψ/∂xi occurs inside a subterm (β+y)a for some power
a ≥ 1. Since Var(β) 6= ∅, the leading term τ of β majorizes y under �′, and this carries
through to ∂ψ/∂xi itself.

• It also follows that LT (p′) does not involve y, since the αi are y-free. Thus LT (q′), which
equals LT (q′′), does not involve y.

From the last point, it follows that LT (p′ :�′) = LT (p :�) and LT (q′′ :�′) = LT (q :�), and
so LT (q) divides LT (p). Finally, we have LT (q′′) dividing LT (∂ψ/∂xi) for some i from the first
point. Let r abbreviate ∂ψ/∂xi. Then ∂φ/∂xi = r[y 7→ c], and by the second point, we obtain
LT (∂φ/∂xi) = LT (r). Thus LT (q) divides LT (∂φ/∂xi). Since � was arbitrary, this completes the
demonstration that Jac(φ) is a universal Gröbner bounding basis.

7 Conclusions

Since multilinear read-twice formulas φ allow any ideal I to be an elimination ideal of Jac(φ), our
results are best possible in terms of limited-read formulas. There remains scope for the following
investigations:
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1. What further geometric properties do the ideals Jac(φ) in this paper have?

2. What properties of arithmetical formulas and their derivatives keep the expansion in Gröbner
basis complexity bounded, e.g. singly exponential?

Answers may aid the search for an invariant that has the same properties as Strassen’s but extends
to higher complexity levels, and thus can provide better lower bounds.
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of EUROSAM’84, volume 174 of Lect. Notes in Comp. Sci., pages 172–183, 1984.
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