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Abstract

We prove a non-linear lower bound on the size of a bounded depth bilinear arithmetical
circuit computing the circular convolution mapping in case the input vectors are of prime length.
For this proof we utilize a strengthing of the Donoho-Stark uncertainty principle [DS89], as given
by Tao [Tao05], and a combinatorial lemma by Raz and Shpilka [RS03].A new proof is given of
the Donoho-Stark uncertainty principle.

Keywords. Computational complexity, arithmetical circuits, lower bounds, constant depth
bilinear circuits.

1 Introduction

One of the central mysteries in arithmetic circuit complexity over infinite fields F is the computational
power conferred by the ability to use “for free” constants of arbitrary magnitude and/or precision
from F . Morgenstern makes the argument that most algorithms used in practice only use constants
of “reasonably” bounded magnitude [Mor73]. A possible exception is perhaps formed by algorithms
with constants obtained via derandomization procedures or polynomial interpolation.

In any case, if we restrict circuits to have their scalars to be of constant bounded magnitude
it does become easier to prove lower bounds. For example, we have the volumetric lower bounds of
Morgenstern for bounded coefficient linear circuits [Mor73], and Raz gives a tight Ω(N logN) lower
bound in the bounded coefficient bilinear model for the mapping defined by multiplication of two
n × n matrices, where N = n2 [Raz02]. Bürgisser and Lotz, building on the work of Raz, prove a
tight Ω(n log n) lower bound for the convolution of two n-vectors of variables [BL02].

Considering linear and bilinear circuits, in case constants are unrestricted however, no non-linear
lower bounds are known. The question being, whether this is just perceptual due to a current lack
of lower bound techniques, or whether there is a real loss in computational power when restricting
scalar magnitudes. Although we do not know of any non-linear lower bounds for unrestricted linear
and bilinear circuits, what is known are size-depth tradeoffs. Namely, for linear circuits there are
the results by Pudlak [Pud94], and for bilinear circuits of constant depth Raz and Shpilka prove a
non-linear lower bound for the matrix multiplication mapping [RS03].

In this paper, building on the work of [RS03], we prove a size-depth tradeoff for the circular
convolution mapping that was considered in [BL02]. We do this utilizing a discrete variant of the
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Heisenberg uncertainty principle. This principle from quantum mechanics is widely known, even to
the extent of having had a cultural impact, and expresses the inherent impossibility of simultaneously
knowing, to arbitrary precision, certain complementary observables in nature. For example, one
cannot simultaneously, through measurement, determine both the position and velocity of some given
elementary particle to arbitrary precision. Mathematically, the main issue is that a function and
its continuous Fourier transform cannot be simultaneously arbitrarily narrowly “localized”. Donoho
and Stark considered this phenomena under various measures of localization for the discrete Fourier
transform [DS89]. To obtain our result we will use a strengthening of the Donoho-Stark uncertainty
principle for the prime case due to Tao [Tao05].

The rest of this paper is organized as follows. First, we give the necessary mathematical prelim-
inaries, including a new proof of the Donoho-Stark principle, in Section 2. Then Section 3 contains
the lower bound. Finally, we mention some open problems and conclusions in Section 4.

2 Preliminaries

We define the discrete Fourier transform matrix DFTn by

(DFTn)ij = ωij ,

where ω = e2πi/n. Its unitary version we denote by Fn:

Fn =
DFTn√

n
.

The conjugate transpose of a matrix A will be denoted by A∗.

Definition 2.1. The cyclic convolution x ◦ y of two n-vectors x = (x0, x1, . . . , xn−1)T and y =
(y0, y1, . . . , yn−1)T is the n-vector (z0, . . . , zn−1)T with components

zk =
∑

i+j≡k mod n

xiyj

for 0 ≤ k < n.

For example, for n = 5, we get

x ◦ y =


x0y0 + x4y1 + x3y2 + x2y3 + x1y4

x1y0 + x0y1 + x4y2 + x3y3 + x2y4

x2y0 + x1y1 + x0y2 + x4y3 + x3y4

x3y0 + x2y1 + x1y2 + x0y3 + x4y4

x4y0 + x3y1 + x2y2 + x1y3 + x0y4

 .

When fixing x = a = (a0, . . . , an−1)T , the induced map on y is computed by the circulant matrix
Circ(a), which we define by

Circ(a) =


a0 an−1 · · · a2 a1

a1 a0 · · · a3 a2
...

...
...

...
an−2 an−3 · · · a0 an−1

an−1 an−2 · · · a1 a0

 .
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That is, we have that
x ◦ y = Circ(x)y = Circ(y)x.

Convolution can be computed using the Fourier transform, according to the following folklore result:

Theorem 2.1 (The Convolution Theorem) For any a ∈ Cn,

Circ(a) = Fndiag(DFTna)F ∗n .

In the above, for a vector x = (x1, x2, . . . , xn)T ,

diag(x) =


x1 0 · · · 0 0
0 x2 · · · 0 0
...

...
...

0 0 · · · xn−1 0
0 0 · · · 0 xn

 .

2.1 Discrete Uncertainty Principles

We begin with an alternative proof, which is new to our knowledge, of the Donoho-Stark discrete
uncertainty principle.

Definition 2.2. For an n-vector f , define the support of f to be the set supp(f) = {i : fi 6= 0}.

The size of the support of a vector f is a crude measure of the amount of localization of a vector.
Analogous to the Heisenberg uncertainty principle, we can prove that for this measure a vector f
and its Fourier transform f̂ cannot both be arbitrarily narrowly localized. More precisely, we have
the following theorem:

Theorem 2.2 ([DS89]) For any n-vector f 6= 0,

|supp(f)| · |supp(f̂)| ≥ n, (1)

where f̂ = Fnf is the discrete Fourier transform of f .

Proof. Consider an arbitrary Fourier transform pair (f, f̂) with f̂ = Fnf and f 6= 0. Since

Circ(f) =
√
nF ∗ndiag(f̂)Fn,

we have that
supp(f̂) = rank(Circ(f)).

Let R be the maximum number of zeroes following a non-zero entry in f (in the cyclic sense). Then
R ≥ n

|supp(f)| − 1.
Namely, if this were not the case, then imagine partitioning the entries of f as follows: Start

at an arbitrary nonzero position. Set i = 1. If there are no other zero positions then Bi equals this
position. Otherwise, let Bi be this position together with all the zero positions that follow it (in
the cyclic sense). Repeat this process for the next i. We obtain this way B1, B2, . . . , B|supp(f)| that
partition all n entries of f . By the above then, for each i, |Bi| ≤ R+ 1 < n

|supp(f)| . So

|
⋃
i

Bi| < |supp(f)| · n

|supp(f)|
= n.
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This is a contradiction, because B1, B2, . . . , B|supp(f)| partition the n entries of f .
The above implies the first R+1 rows of Circ(f) are independent, because they contain a square

submatrix that is upper triangular (modulo cylic shifts). Hence rank(Circ(f)) ≥ R+ 1 ≥ n
|supp(f)| .

Interestingly enough, divisibility properties of n play an important role in the analysis. For
example, Tao showed that, in case n is prime, the inequality (1) can be significantly improved. The
proof relies on the well-known fact that for prime p the discrete Fourier transform matrix DFTp is
regular.

Definition 2.3. An n× n marix A is called regular if any square submatrix of A is non-singular.

Theorem 2.3 For prime p, DFTp is a regular matrix.

The first proof of this fact is attributed to Chebotarëv, who proved it in 1926 (see [SJ96]).
Although typical proofs of this fact are field theoretic in nature, Tao gives a proof by elementary
means. Once one has established this fact the following can be proved quite readily:

Theorem 2.4 ([Tao05]) For prime p, for any nonzero p-vector f and its Fourier transform f̂ =
Fpf we have that

|supp(f)|+ |supp(f̂)| ≥ p+ 1.

Proof. Let k = p − |supp(f̂)|. There are k zeroes in f̂ . Let I ⊆ { 0, 1, . . . , p − 1 } be the indices of
these zeroes. Suppose |supp(f)| ≤ k. Let J ⊆ { 0, 1, . . . , p − 1 } be a set of size k that contains all
indices of non-zero entries of f . In the following DFT pI,J denotes the minor of DFTp with rows I
and columns J . We have that

(DFT pI,J)fJ = (DFTpf)I = 0,

but fJ 6= 0 since f 6= 0. This is a contradiction since DFT pI,J is non-singular. Hence |supp(f)| > k =
p− |supp(f̂)|.

Actually, in the above proof we only used the fact that DFTp is a regular matrix, so more
generally we have:

Theorem 2.5 Let A be an n×n regular matrix and consider pairs (f, f̂ := Af) where f 6= 0. Then

|supp(f)|+ |supp(f̂)| ≥ n+ 1.

2.2 Slow Growing Functions

Following [Pud94, RS03] we define:

Definition 2.4. For a function f : N→ N, define f (i) to be the composition of f with itself i times:

1. f (0) is the identity function,

2. f (i) = f ◦ f (i−1), for i > 0.

Futhermore, for f such that f(n) < n, for all n > 0, define

f∗(n) = min{i : f (i) ≤ 1}
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The following set of extremely slow-growing functions λd(n) will be used to express the lower
bounds. Each λd(n) is a monotone increasing function tending to infinity.

Definition 2.5 ([Pud94, RS03]). Let

1. λ1(n) = b
√
nc,

2. λ2(n) = dlog ne,

3. λd(n) = λ∗d−2(n), for d > 2.

For a directed acyclic graph G, VG denotes the set of all nodes, IG those with in-degree 0, and
OG those with out-degree 0. The depth of G is the length in edges of the longest path from IG to
OG. Raz and Shpilka prove the following combinatorial lemma:

Lemma 2.6 ([RS03]) For any 0 < ε < 1
400 and any layered directed acyclic graph G of depth d

with more than n vertices and less than ε · n · λd(n) edges, the following is satisfied:
For some k with

√
n ≤ k = o(n), there exist subsets I ⊂ IG, O ⊂ OG, and V ⊂ VG for which

|I|, |O| ≤ 5ε · d · n and |V | = k, and such that the total number of directed paths from IG\I to OG\O
that do not pass through nodes in V is at most ε · n2

k .

2.3 Circuits for Circular Convolution

We consider bounded depth bilinear arithmetical circuits with arbitrary fan-in and fan-out as in
[RS03]. Constants on the wires are assumed to be from the complex field C, and our circuits are
assumed to be layered. More precisely, there are two disjoint sets of inputs, say x and y variables.
Separately for each of these inputs there are layered linear circuits, i.e. consisting only of addition
gates, computing linear forms in x and y. Then there is a single layer of multiplication gates
multiplying the computed linear forms. Finally, there is a layered linear circuit taking the output
of the multiplication gates as input. The circuit computes formal polynomials in x and y variables
in the obvious manner, with constants on the wires intended as scalar multiplication. We will give
lower bounds on the number of edges present in the circuit below the multiplication gates.

Definition 2.6. For a bounded depth bilinear circuit C we define its size s(C) to be the number of
edges in the circuit between the multiplication gates and the outputs, and define by its depth d(C)
to be the length of a longest path in edges from a multiplication gate to an output.

Note that Cooley and Tukey [CT65] give O(n log n) size, O(log n) depth linear circuits that
compute DFTn. So using theorem 2.1, we obtain O(n log n) size bilinear circuits for computing
circular convolution. These circuits have complex coefficients on the wires of norm 1. Burgisser and
Lotz prove that this is optimal for circuits that have their constants restricted to be of norm O(1)
[BL02]. See [Jan06] for some generalization of this result.

3 Lower Bounds for Cyclic Convolution

We begin with the following easy proposition:

Proposition 3.1 Any bilinear circuit of depth 1 computing circular convolution xTCirc(y) has size
s(C) ≥ n2.
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Proof. A circuit of depth 1 has a very simple structure. There are some number r of multiplication
gates Mr computing products Mr = Lr(x)Rr(y), where Lr(x) and Rr(y) are linear forms. Then there
is one layer of output gates, each gate computing summation over some set of input multiplication
gates.

We will argue that each output gate must be connected to at least n multiplication gates. For
purpose of contradiction suppose that this is not the case. Say some output gate Oi takes input
from < n multiplication gates. Consider the subspace of dimension at least 1 defined by equations
Lj(x) = 0, for each multiplication gate j attached to output Oi. We can select a non-zero vector a
from this space such that for any assigment y = b,

(aTCirc(b))i = 0.

This yields a contradiction, for example we can take bT to be equal to a∗ shifted by i, then
(aTCirc(b))i = ||a||22, which is non-zero, since a is a non-zero vector.

We now state and prove our main result.

Theorem 3.2 There exists ε > 0 such that if p is a prime number, any layered bilinear circuit
with inputs x = (x0, x1, . . . , xp−1) and y = (y0, y1, . . . , yp−1) of depth d computing cyclic convolution
xTCirc(y) has size s(C) ≥ εpλd(p).

Proof. Consider the circuit computing

xTCirc(y) = xTFpdiag(DFTp(y))F ∗p .

We first apply substitutions xT := xTF ∗p and y = 1
nDFT

∗
P y at the inputs. This does not alter the

circuit below the multiplication gates, but now we have a circuit computing

xTdiag(y)F ∗p .

Let G be the directed acyclic graph of depth d given by the part of circuit below the multiplication
gates. The set IG is the collection of multiplication gates Mi = Li(x)Ri(y), where Li(x) and Ri(y)
are linear forms. Take OG = {1, 2, . . . , p} to be the set of outputs of the circuit. Let ε > 0 be some
small enough constant to be determined later. Trivially G has at least p vertices. Suppose that G
has strictly fewer than εp · λd(p) edges. Lemma 2.6 applies, and we obtain sets I ⊂ IG, O ⊂ OG and
V ⊂ VG such that

1. |I|, |O| ≤ 5εdp,

2. |V | = k, with
√
n ≥ k = o(p), and

3. the total number of directed paths from IG\I to OG\O that do not pass through nodes in V

is at most εp
2

k .

For each output node i ∈ OG\O, define P (i) to be the number of multiplication gates in IG\I
for which there exists a directed path that bypasses V and reaches node i. Let R be a set of r = 10k
output gates with lowest P (i) values. By averaging we get that

∑
r∈R

P (r) ≤ r

|OG\O|
∑

r∈OG\O
P (r) ≤ r

p− 5εdp
· εp

2

k
=

10εp
1− 5εd

.
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Let I ′ be the set of all multiplication gates in IG\I for which there exist directed paths to nodes in
R that bypass V . We can conclude that

|I ′| ≤ 10εp
1− 5εd

.

Define a linear subspace W by the set of equations

Ri(y) = 0 for all i ∈ I ∪ I ′.

For any fixed substitution for y ∈ W the resulting circuit has all of the gates computing linear
function in the x variables. Relative to a fixed choice for y, define linear subspace Wy by equations
gv(x) = 0 for all v ∈ V , where gv(x) denotes the linear form computed at gate v. Note that dim(W ) ≥
p− 5εdp− 10εp

1−5εd and dim(Wy) ≥ p− k, for each y. Now we have arranged that for each y ∈W , and
each x ∈Wy,

(xTdiag(y)F ∗p )r = 0, (2)

for each r ∈ R.
In order to reach a contradiction, we will now argue that it is possible to select y ∈ W and

x ∈Wy such that some output in R is non-zero.
First of all, fix a vector y ∈ W that has at most 5εdp+ 10εp

1−5εd zeroes: this can be done because
dim(W ) ≥ p− 5εdp− 10εp

1−5εd . Let A be the set of indices i for which yi = 0. Let m = |A|. Let W ′y be
a subspace of Wy of dimension 1 obtained by adding equations to the defining set of Wy as follows.
For the first stage add xi = 0 for each i ∈ A. In a second stage, start adding equations that require
xi = 0 for i /∈ A, until the dimension has been cut down to 1. Since we are starting out with a space
of dimension p− k, after the first stage, the dimension will be cut down to at most p− k−m, so we
will be able to add xi = 0 in the second stage for at least p−k−m−1. many i with i /∈ A. Provided
ε is small enough, since k = o(n), k+m will be less than a small fraction of p, so we are guaranteed
that we can indeed complete this process still leaving a subspace of non-trivial dimension. Select an
arbitrary non-zero vector x from W ′y. Observe that of the p −m indices i not in A, xi is non-zero
for at most k + 1 entries, and that xi is zero for all i ∈ A. So xi is zero for each i for which yi = 0.
Since x itself is a nonzero vector there must be some place i where xi and yi are both nonzero.

Let f = xTdiag(y) and f̂ = fF ∗P . We thus conclude that f is a non-zero vector, but that
|supp(f)| ≤ k + 1.

By the discrete uncertainty principle for cyclic groups of prime order [Tao05], stated in Theorem
2.4, we have that

supp(f) + supp(f̂) ≥ p+ 1.

Hence the output vector of the circuit f̂ is non-zero in at least p+ 1− (k + 1) = p− k places. Since
R is of size 10k, by the pigeonhole principle, there must be some output in R that is non-zero. This
is in contradiction with equation (2).

4 Conclusion

The first obvious question is of course whether we can drop the primality assumption and still
obtain the conclusion of Theorem 3.2. Unfortunately, without the assumption of primality, the
uncertainty principle weakens beyond the point of being usable in our argument. It is also not
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obvious for circular convolution how to reduce the non-prime case to the prime case by means doing
a padding/embedding-type argument, which would be clear for non-circular convolution.

A second more open ended question is the role that the various uncertainty principles, continuous
or discrete, can play in circuit lower bound arguments. In [Jan06] this question is probed some further
for the bounded-coefficient bilinear model. Perhaps the uncertainty principle can also play a role in
quantum circuit lower bounds.

Finally, there still is the central open problem of obtaining any kind of non-linear lower bound
for (unrestricted) linear circuits. However, no notable progress has been made on this question for
over 35 years.
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