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Abstract. We derive quadratic lower bounds on the ∗-complexity of
sum-of-products-of-sums (ΣΠΣ) formulas for classes of polynomials f
that have too few partial derivatives for the techniques of Shpilka and
Wigderson [10, 9]. This involves a notion of “resistance” which connotes
full-degree behavior of f under any projection to an affine space of suf-
ficiently high dimension. They also show stronger lower bounds over the
reals than the complex numbers or over arbitrary fields. Separately, by
applying a special form of the Baur-Strassen Derivative Lemma tailored
to ΣΠΣ formulas, we obtain sharper bounds on +, ∗-complexity than
those shown for ∗-complexity by Shpilka and Wigderson [10], most no-
tably for the lowest-degree cases of the polynomials they consider.
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1 Introduction

In contrast to the presence of exponential size lower bounds on constant-depth
Boolean circuits for majority and related functions [3, 13, 7], and depth-3 arith-
metical circuits over finite fields [5, 6], Shpilka and Wigderson [10] observed
that over fields of characteristic zero (which are infinite), super-quadratic lower
bounds are not known even for constant-depth formulas. Indeed they are un-
known for unbounded fan-in, depth 3 formulas that are sums of products of affine
linear functions, which they call ΣΠΣ formulas. These formulas have notable
upper-bound power because they can carry out forms of Lagrange interpolation.
As they ascribed to M. Ben-Or, ΣΠΣ formulas can compute the elementary
symmetric polynomials Skn (defined as the sum of all degree-k monomials in n
variables, and analogous to majority and threshold-k Boolean functions) in size
O(n2) independent of k. Thus ΣΠΣ formulas present a substantial challenge for
lower bounds, as well as being a nice small-scale model to study.

Shpilka and Wigderson defined the multiplicative size of an arithmetical (cir-
cuit or) formula φ to be the total fan-in to multiplication gates. We denote this
by `∗(φ), and write `(φ) for the total fan-in to all gates, i.e. + gates as well. The
best known lower bound for general arithmetical circuits has remained for thirty
years the Ω(n log n) lower bound on `∗ by the “Degree Method” of Strassen
[11] (see also [1, 2]). However, this comes nowhere near the exponential lower
bounds conjectured by Valiant [12] for the permanent and expected by many for
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other NP-hard arithmetical functions. For polynomials f of total degree nO(1),
the method is not even capable of Ω(n1+ε) circuit lower bounds, not for any
ε > 0. Hence it is notable that [10] achieved better lower bounds on `∗3(f), where
the subscript-3 refers to ΣΠΣ formulas. These were Ω(n2) for f = Skn when
k = Θ(n), n2−εk for Skn with small values of k, and Ω(N2/polylog(N)) for the
determinant, with N = n2. However, Ω(n2) is the best this can do for ΣΠΣ
formulas. Shpilka [9] got past this only in some further-restricted cases, and also
considered a depth-2 model consisting of an arbitrary symmetric function of
sums. This barrier provides another reason to study the ΣΠΣ model, in order
to understand the obstacles and what might be needed to surpass them.

The techniques in [8, 10, 9] all depend on the set of dth-order partial deriva-
tives of f being large. This condition fails for functions such as f(x1, . . . , xn) =
xn1 +. . .+xnn, which has only n dth-order partials for any d. We refine the analysis
to show the sufficiency of f behaving like a degree-r polynomial on any affine
subspace A of sufficiently high dimension (for this f , r = n and any affine line
suffices). Our technical condition is that for every polynomial g of total degree
at most r− 1 and every such A, there exists a d-th order partial of f − g that is
non-constant on A. This enables us to prove an absolutely sharp n2 bound on
`∗3(f) for this f computed over the real or rational numbers, and a lower bound
of n2/2 over any field of characteristic zero. Note the absence of “O,Ω” notation.
We prove similar tight bounds for sums of powered monomial blocks, powers of
inner-products, and functions depending on `p-norm distance from the origin,
and also replicate the bounds of [10, 9] for symmetric polynomials. Even in the
last case, we give an example where our simple existential condition may work
deeper than the main question highlighted in [9] on the maximum dimension of
subspaces A on which Skn vanishes.

In Section 5 we prove lower bounds on +, ∗ complexity `3(f) that are signifi-
cantly higher (but still sub-quadratic) than those given for `∗3(f) in [10] when the
degree r of f is small. This is done intuitively by exploiting a closed-form appli-
cation of the Baur-Strassen “Derivative Lemma” [1] to ΣΠΣ formulas, showing
that f and all of its n first partial derivatives can be computed with only a
constant-factor increase in ` and `∗ over ΣΠΣ formulas for f .

2 Preliminaries

A ΣΠΣ-formula is an arithmetic formula consisting of four consecutive layers:
a layer of inputs, next a layer of addition gates, then a layer of multiplication
gates, and finally the output sum gate. The gates have unbounded fan-in from
the previous layer (only), and individual wires may carry arbitrary constants
from the underlying field. Given a ΣΠΣ-formula we can write p =

∑s
i=1Mi,

where Mi = Πdi
j=1li,j , and li,j = ci,j,1x1 + ci,j,2x2 + . . .+ ci,j,nxn + ci,j,0. Here di

is the in-degree of the ith multiplication gate, and ci,j,k is nonzero iff there is a
wire from xk to the addition gate computing li,j .

Let X = (x1, . . . , xn) be an n-tuple of variables. For any affine linear subspace
A ⊂ Fn, we can always find a set of variables B ⊂ X, and affine linear forms



lb in the variables X \ B, for each b ∈ B, such that A is the set of solutions
of {xb = lb : b ∈ B}. This representation is not unique. The set B is called a
base of A. The size |B| always equals the co-dimension of A. In the following,
we always assume some base B of A to be fixed. Any of our numerical “progress
measures” used to prove lower bounds will not depend on the choice of a base.

Following Shpilka and Wigderson [10], for polynomial f ∈ F [x1, . . . , xn], the
restriction of f to A is defined to be the polynomial obtained by substitution of
lb for variable xb for each b ∈ B, and is denoted by f|A . For a set of polynomials
W , define W|A = {f|A | f ∈ W}. For a linear form l = c1x1 + . . . + cnxn + c0,
we denote lh = c1x1 + . . .+ cnxn. For a set S of linear forms, Sh = {lh : l ∈ S}.

3 Resistance of polynomials

We state our new definition in the weakest and simplest form that suffices for the
lower bounds, although the functions in our applications all meet the stronger
condition of Lemma 1 below.

Definition 1. A polynomial f in variables x1, x2, . . . , xn is (d, r, k)-resistant if
for any polynomial g(x1, x2, . . . , xn) of degree at most r−1, for any affine linear
subspace A of co-dimension k, there exists a dth order partial derivative of f − g
that is non-constant on A.

For a multiset X of size d with elements taken from {x1, x2, . . . , xn}, we will
use the notation ∂df

∂X to indicate the dth-order derivative with respect to the
variables in X. As our applications all have r = deg(f), we call f simply (d, k)-
resistant in this case. Then the case d = 0 says that f itself has full degree on any
affine A of co-dimension k, and in most cases corresponds to the non-vanishing
condition in [10]. We separate our notion from [10] in applications and notably
in the important case of the elementary symmetric polynomials in Section 4.4
below.

The conclusion of Definition 1 is not equivalent to saying that some (d+1)st-
order partial of f−g is non-vanishing on A, because the restriction of this partial
on A need not be the same as a first-partial of the restriction of the dth-order
partial to A. Moreover, (d, k)-resistance need not imply (d−1, k)-resistance, even
for d, k = 1: consider f(x, y) = xy and A defined by x = 0.

Theorem 1. Suppose f(x1, x2, . . . , xn) is (d, r, k)-resistant, then

`∗3(f) ≥ r k + 1
d+ 1

.

Proof. Consider a ΣΠΣ-formula that computes f . Remove all multiplication
gates that have degree at most r − 1. Doing so we obtain a ΣΠΣ formula F
computing f − g, where g is some polynomial of degree at most r − 1. Say F
has s multiplication gates. Write: f − g =

∑s
i=1Mi, where Mi = Πdi

j=1li,j and
li,j = ci,j,1x1 + ci,j,2x2 + . . .+ ci,j,nxn + ci,j,0. The degree of each multiplication
gate in F is at least r, i.e. di ≥ r, for each 1 ≤ i ≤ s. Now select a set S of input
linear forms using the following algorithm:



S = ∅
for i = 1 to s do

repeat d+ 1 times:
if (∃j ∈ {1, 2, . . . , di}): Sh ∪ {lhi,j} is a set of independent vectors

then S = S ∪ {li,j}

Let A be the set of common zeroes of the linear forms in S. Since Sh is an
independent set, A is affine linear of co-dimension |S| ≤ (d+ 1)s.

We claim that if at a multiplication gate Mi we picked strictly fewer than
d + 1 linear forms, then any linear form that was not picked is constant on A.
Namely, each linear form l that was not picked had lh already in the span of Sh,
for the set S built up so far. Hence we can write l = c+ lh = c+

∑
g∈S cgg

h, for
certain scalars cg. Since each gh is constant on A, we conclude l is constant on
A. This settles the claim, and yields that for each multiplication gate either

1. (d+ 1) input linear forms vanish on A, or
2. fewer than (d+ 1) linear forms vanish on A, with all others constant on A.

For each multiset X of size d with elements from {x1, x2, . . . , xn }, the dth
order partial derivative ∂d(f − g)/∂X is in the linear span of the set

{
di∏
j=1
j /∈J

lij : 1 ≤ i ≤ s, J ⊆ {1, 2, . . . , di}, |J | = d }

This follows from the sum and product rules for derivatives and the fact that a
first order derivative of an individual linear form lij is a constant. Consider 1 ≤
i ≤ s and J ⊆ {1, 2, . . . , di} with |J | = d. If item 1. holds for the multiplication
gate Mi, then

∏di
j=1
j /∈J

lij vanishes on A, since there must be one lij that vanishes

on A that was not selected, given that |J | = d. If item 2 holds for Mi, then this
product is constant on A.

Hence, we conclude that ∂d(f − g)/∂X is constant on A. Since f is (d, r, k)-
resistant, we must have that the co-dimension of A is at least k + 1. Hence
(d+ 1)s ≥ k+ 1. Since each gate in F is of degree at least r, we obtain `∗3(F) ≥
r k+1
d+1 . Since F was obtained by removing zero or more multiplication gates from

a ΣΠΣ-formula computing f , we have proven the statement of the theorem. ut
To prove lower bounds on resistance, we supply the following lemma:

Lemma 1. Over fields of characteristic zero, for any d ≤ r, k > 0, and any
polynomial f(x1, x2, . . . , xn), if for every affine linear subspace A of co-dimension
k, there exists some dth order partial derivative of f such that

deg(
(
∂df

∂X

)
|A

) ≥ r − d+ 1, then f is (d, r + 1, k)-resistant.



Proof. Assume for every affine linear subspace A of co-dimension k, there exists
some dth order partial derivative derivative of f such that

deg(
(
∂df

∂X

)
|A

) ≥ r − d+ 1.

Let g be an arbitrary polynomial of degree r. Then(
∂df − g
∂X

)
|A

=
(
∂df

∂X
− ∂dg

∂X

)
|A

=
(
∂df

∂X

)
|A
−
(
∂dg

∂X

)
|A
.

The term
(
∂df
∂X

)
|A

has degree at least r − d+ 1, whereas the term
(
∂dg
∂X

)
|A

can

have degree at most r − d. Hence deg(
(
∂df−g
∂X

)
|A

) ≥ r − d + 1 ≥ 1. Since over

fields of characteristic zero, syntactically different polynomials define different
mappings, we conclude ∂df−g

∂X must be non-constant on A. ut

The main difference between Lemma 1 and the original Definition 1 appears to
be the order of quantifying the polynomial “g” of degree r − 1 out front in the
former, whereas analogous considerations in the lemma universally quantify it
later (making a stronger condition). We have not found a neat way to exploit
this difference in any prominent application, however.

4 Applications

4.1 Sum of nth powers polynomial

Consider f =
∑n
i=1 x

n
i . By repeated squaring for each xni , one obtains ΣΠ

circuits (not formulas) of size O(n log n). All arithmetical circuits require size
Ω(n log n) for f [1]. The expression for f yields a ΣΠΣ formula φ with n mul-
tiplication gates of degree n, with n2 wires in the top linear layer fanning in to
them. This works over any field, but makes `(φ) = `∗(φ) = n2. We prove that
this is close to optimal.

Theorem 2. Over fields of characteristic zero, any ΣΠΣ-formula for f =∑n
i=1 x

n
i has multiplicative size at least n2/2.

Proof. By Theorem 1 it suffices to show f is (1, n − 1)-resistant. Let g be an
arbitrary polynomial of degree n − 1. Letting g1, . . . , gn denote the first order
partial derivatives of g, we get that the ith partial derivative of f − g equals
nxn−1

i − gi(x1, . . . , xn). Note that the gi’s are of total degree at most n− 2.
We claim there is no affine linear subspace of dimension greater than zero

on which all ∂f/∂xi are constant. Consider an arbitrary affine line xi = ci + dit
parameterized by a variable t, where ci and di are constants for all i ∈ [n],
and with at least one di nonzero. Then ∂(f−g)

∂xi
restricted to the line is given by

n(ci + dit)n−1 − hi(t), for some univariate polynomials hi(t) of degree ≤ n− 2.



Since there must exist some i such that di is nonzero, we know some partial
derivative restricted to the affine line is parameterized by a univariate polynomial
of degree n − 1, and thus, given that the field is of characteristic zero, is not
constant for all t. ut

In case the underlying field is the real numbers R and n is even, we can
improve the above result to prove an absolutely tight n2 lower bound.

Theorem 3. Over the real numbers, for even n, any ΣΠΣ-formula for f =∑n
i=1 x

n
i has multiplicative size at least n2.

Proof. Since f is symmetric we can assume without loss of generality that A has
the base representation xk+1 = l1(x1, . . . , xk), . . . , xn = ln−k(x1, . . . , xk). Then

f|A = xn1 + . . . xnk + ln1 + . . .+ lnn−k.

Hence f|A must include the term xn1 , since each lnj has a non-negative coefficient
for the term xn1 and n is even. Thus via Lemma 1 we conclude that over the
real numbers f is (0, n− 1)-resistant. Hence, by Theorem 1 we get that `∗3(f) ≥
deg(f)n1 = n2. ut

Let us note that f =
∑n
i=1 x

n
i is an example of a polynomial that has few

d-th partial derivatives, namely only n of them regardless of d. This renders
the partial derivatives technique of Shpilka and Wigderson [10]—which we will
describe and extend in the next section—not directly applicable.

4.2 Blocks of powers polynomials

Let the underlying field have characteristic zero, and suppose n = m2 for some
m. Consider the “m blocks of m powers” polynomial f =

∑m
i=1

∏im
j=(i−1)m+1 x

m
j .

The straightforward ΣΠΣ-formula for f , that computes each term/block using
a multiplication gate of degree n, is of multiplicative size n3/2. We will show this
is tight.

Proposition 1. The blocks of powers polynomial f is (0,m− 1)-resistant.

Proof. Consider an affine linear space of co-dimension m−1. For any base B of A,
restriction to A consists of substitution of the m−1 variables in B by linear forms
in the remaining variables X/B. This means there is at least one term/block
Bi :=

∏im
j=(i−1)m+1 x

m
j of f whose variables are disjoint from B. This block Bi

remains the same under restriction to A. Also, for every other term/block there
is at least one variable that is not assigned to. As a consequence, Bi cannot be
canceled against terms resulting from restriction to A of other blocks. Hence
deg(f|A) = deg(f). Hence by Lemma 1 we have that f is (0,m−1)-resistant. ut

Corollary 1. For the blocks of powers polynomial f , `∗3(f) ≥ nm = n3/2.

Alternatively, one can observe that by substitution of a variable yi for each
variable appearing in the ith block one obtains from a ΣΠΣ-formula F for f a
formula for f ′ =

∑m
i=1 y

n
i of the same size as F . Theorem 2 generalizes to show

that `∗3(f ′) ≥ 1
2n

3/2, which implies `∗3(f) ≥ 1
2n

3/2.



4.3 Polynomials depending on distance to the origin

Over the real numbers, d2(x) = x2
1 +x2

2 + · · ·+x2
n is the square of the Euclidean

distance of the point x to the origin. Polynomials f of the form q(d2(x)) where q
is a single-variable polynomial can be readily seen to have high resistance. Only
the leading term of q matters. For example, consider f = (x2

1 + x2
2 + · · ·+ x2

n)m.
On any affine line L in Rn, deg(f|L) = 2m. Therefore, by Lemma 1, over the
reals, f is (0, n− 1)-resistant. Hence by Theorem 1 we get that

Proposition 2. Over the real numbers, `∗3((x2
1 + x2

2 + · · ·+ x2
n)m) ≥ 2mn.

Observe that by reduction this means that the “mth-power of an inner product
polynomial”, defined by g = (x1y1 +x2y2 + · · ·+xnyn)m, must also have ΣΠΣ-
size at least 2mn over the reals numbers. Results for lp norms, p 6= 2, are similar.

4.4 The case of symmetric polynomials

The special case of (0, k)-resistance is implicitly given by Shpilka [9], at least
insofar as the sufficient condition of Lemma 1 is used for the special case d = 0
in which no derivatives are taken. For the elementary symmetric polynomial Srn
of degree r ≥ 2 in n variables, Theorem 4.3 of [9] implies (via Lemma 1) that Srn
is (0, n− n+r

2 )-resistant. Shpilka proves for r ≥ 2, `∗3(Srn) = Ω(r(n− r)), which
can be verified using Theorem 1: `∗3(Srn) ≥ (r + 1)(n− n+r

2 ) = Ω(r(n− r)).
The symmetric polynomials Skn collectively have the “telescoping” property

that every dth-order partial is (zero or) the symmetric polynomial Sk−dn−d on
an (n − d)-subset of the variables. Shpilka [9] devolves the analysis into the
question, “What is the maximum dimension of a linear subspace of Cn on which
Srn vanishes?” In Shpilka’s answer, divisibility properties of r come into play as
is witnessed by Theorem 5.9 of [9]. To give an example case of this theorem, one
can check that S2

9 vanishes on the 3-dimensional linear space given by

{(x1, ωx1, ω
2x1, x2, ωx2, ω

2x2, x3, ωx3, ω
2x3) : x1, x2, x3 ∈ C},

where ω can be selected to be either primitive 3rd root of unity. Let

ρ0(f) = max{k : for any linear A of codim. k, f|A 6= 0}.

Shpilka proved for r > n/2, that ρ0(Srn) = n − r, and for r ≥ 2, that n−r
2 <

ρ0(Srn) ≤ n−r. For S2
9 we see via divisibility properties of d that the value for ρ0

can get less than the optimum value, although the n−r
2 lower bound suffices for

obtaining the above mentioned `∗3(Srn) = Ω(r(n−r)) lower bound. We have some
indication from computer runs using the polynomial algebra package Singular
[4] that the “unruly” behavior seen for ρ0 because of divisibility properties for
r ≤ n/2 can be made to go away by considering the following notion:

ρ1(f) = max{k : for any linear A of codim. k, there exists i,
(
∂f

∂xi

)
|A
6= 0}



One can still see from the fact that Srn is homogeneous and using Lemma 1 and
Theorem 1 that `∗3(Srn) ≥ r·(ρ1(Srn)+1)

2 . Establishing the exact value of ρ1(Srn),
which we conjecture to be n+ 1− r at least over the rationals, seems at least to
simplify obtaining the `3(Srn) = Ω(d(n− d)) lower bound. In the full version we
prove that for r ≥ 2, ρ1(Sr+1

n+1) ≥ ρ0(Sr−1
n ).

For another example, S3
6 is made to vanish at dimension 3 not by any sub-

space that zeroes out 3 co-ordinates but rather by A = { (u,−u,w,−w, y,−y) :
u,w, y ∈ C }. Now add a new variable t in defining f = S4

7 . The notable fact is
that f 1-resists the dimension-3 subspace A′ obtained by adjoining t = 0 to the
equations for A, upon existentially choosing to derive by a variable other than t,
such as u. All terms of ∂f/∂u that include t vanish, leaving 10 terms in the vari-
ables v, w, x, y, z. Of these, 4 pairs cancel under the equations x = −w, z = −y,
but the leftover vwx + vyz part equates to uw2 + uy2, which not only doesn’t
cancel but also dominates any contribution from the lower-degree g. Gröbner
basis runs using Singular imply that S4

7 is (1, 4)-resistant over C as well as the
rationals and reals, though we have not yet made this a consequence of a general
resistance theorem for all Srn.

Hence our (1, k)-resistance analysis for S4
7 is not impacted by the achieved

upper bound of 3 represented by A. Admittedly the symmetric polynomials
f have O(n2) upper bounds on `3(f), so our distinction in this case does not
directly help surmount the quadratic barrier. But it does show promise of making
progress in our algebraic understanding of polynomials in general.

5 Bounds for +,*-Complexity

The partial derivatives technique used by Shpilka and Wigderson [10] ignores
the wires of the formula present in the first layer. In the following we show how
to account for them. As a result we get a sharpening of several lower bounds,
though not on `∗3 but on total formula size. We employ the concepts and lemmas
from [10]. For f ∈ F [x1, . . . , xn], let ∂d(f) be the set of all dth order formal
partial derivatives of f w.r.t. variables from {x1, . . . , xn}. For a set of poly-
nomials A = {f1, . . . , ft} span(A) = {

∑t
i=1 cifi | ci ∈ F}. Write dim[A] as

shorthand for dim[span(A)]. Note span(f1, . . . , ft)|A = span(f1|A , . . . , ft|A), and
that dim[W|A ] ≤ dim[W ]. The basic inequality from [10] then becomes:

Proposition 3. dim[∂d(c1f1 + c2f2)|A ] ≤ dim[∂d(f1)|A ] + dim[∂d(f2)|A ].

We refine two main results in [10] ∗-complexity into results with tighter
bounds but for +, ∗-complexity. In each case we compare old and new versions.

Theorem 4 ([10]). Let f ∈ F [x1, . . . , xn]. Suppose for integers d,D, κ it holds
that for every affine subspace A of co-dimension κ, dim(∂d(f)|A) > D. Then
`∗3(f) ≥ min(κ

2

d ,
D

(κ+d
d ) );

Theorem 5 (new). Let f ∈ F [x1, . . . , xn]. Suppose for integers d,D, κ it holds
that for every affine subspace A of co-dimension κ,

∑n
i=1 dim[∂d( ∂f∂xi )|A ] > D.

Then `3(f) ≥ min( κ2

d+2 ,
D

(κ+d
d ) ).



Proof. Consider a minimum-size ΣΠΣ-formula for f with multiplication gates
M1, . . . ,Ms. We have that f =

∑s
i=1Mi, where for 1 ≤ i ≤ s, Mi = Πdi

j=1li,j
and li,j = ci,j,1x1 +ci,j,2x2 + . . .+ci,j,nxn+ci,j,0, for certain constants ci,j,k ∈ F .
Computing the partial derivative of f w.r.t. variable xk we get

∂f

∂xk
=

s∑
i=1

di∑
j=1

ci,j,k
Mi

li,j
. (1)

Let S = {i : dim[Mh
i ] ≥ κ}. If |S| ≥ κ

d+2 , then `3(f) ≥ κ2

d+2 . Suppose |S| < κ
d+2 .

If S = ∅, then let A be an arbitrary affine subspace of co-dimension κ. Otherwise,
construct an affine space A as follows. Since |S|(d + 2) < κ, and since for each
j ∈ S, dim[Mh

i ] ≥ κ, it is possible to pick d+ 2 input linear forms lj,1, . . . , lj,d+2

of each multiplication gate Mj with j ∈ S, such that {lhj,1, . . . , lhj,d+2|j ∈ S} is a
set of |S|(d+ 2) < κ independent homogeneous linear forms. Define

A = {x : li,j(x) = 0, for any i ∈ S, j ∈ [d+ 2]}.

We have that the co-dimension of A is at most κ. W.l.o.g. assume the co-
dimension of A equals κ. For each i ∈ S, d+2 linear forms of Mi vanish on
A. This implies that dim[∂d(Mi

li,j
)|A ] = 0. for any i ∈ S. For any i /∈ S, by

Proposition 2.3 in [10], dim[∂d(Mi

li,j
)|A ] <

(
κ+d
d

)
. Let Dk = dim[∂d( ∂f∂xk )|A ]. By

Proposition 3 and equation (1),

Dk ≤
∑
i/∈S

∑
j

ci,j,k 6=0

dim[∂d(
Mi

li,j
)|A ].

Hence there must be at least Dk
(κ+d
d ) terms on the r.h.s., i.e. there are at least

that many wires from xk to gates in the first layer. Hence in total the number
of wires to the first layer is at least

∑n
i=1

Di
(κ+d
d ) >

D

(κ+d
d ) . ut

Theorem 6 ([10]). Let f ∈ F [x1, . . . , xn]. Suppose for integers d,D, κ it holds
that for every affine subspace A of co-dimension κ, dim(∂d(f|A)) > D. Then for
every m ≥ 2, `∗3(f) ≥ min(κm, D

(md ) ).

Theorem 7 (new). Let f ∈ F [x1, . . . , xn]. Suppose for integers d,D, κ
with d ≥ 1, it holds that for every affine subspace A of co-dimension κ,∑n
i=1 dim[∂d( ∂f∂xi |A)] > D. Then for every m ≥ 2, `3(f) ≥ min(1

2κm,
D

(m−1
d ) ).

The proof of Theorem 7 is analogous to above and appears in the full version.

In [10] it was proved that for d ≤ log n, `∗3(S2d
n ) = Ω(n

2d
d+2

d ). Note that for
d = 2, this lower bound is only Ω(n). We can apply Theorem 5 to prove the
following stronger lower bound on the total formula size of S2d

n . In particular for
d = 2, we get an Ω(n

4
3 ) bound.



Theorem 8. For 1 ≤ d ≤ log n, `3(S2d
n ) = Ω(n

2d
d+1

d ).

Proof. For any affine subspace A of co-dimension κ and d ≥ 2 we have that
n∑
i=1

dim[∂d−1(
∂S2d

n

∂xi
)|A ] ≥ dim[∂d(S2d

n )|A ] ≥
(
n− κ
d

)
.

The latter inequality follows from Lemma 4.4 in [10]. Applying Theorem 5 we
get that

`3(S2d
n ) ≥ min(

κ2

d+ 1
,

(
n−κ
d

)(
κ+d−1
d−1

) ) = min(
κ2

d+ 1
,

(
n−κ
d

)(
κ+d
d

) κ+ d

d
). (2)

Set κ = 1
9n

d
d+1 . Then we have that(

n−κ
d

)(
κ+d
d

) κ+d
d
≥ (

n−κ
κ+d

)d
κ+d
d
≥ (

8/9n

2/9n
d
d+1

)d
κ+d
d

= 4dn
d
d+1
κ+d
d
≥ 4d

9d
n

2d
d+1 ≥ n

2d
d+1 .

Hence (2) is at least min( n
2d
d+1

81(d+1) , n
2d
d+1 ) = Ω(n

2d
d+1

d ). ut

Corollary 2. `3(S4
n) = Ω(n4/3).

Shpilka and Wigderson defined the “product-of-inner-products” polynomial
over 2d variable sets of size n (superscript indicate different variables, each vari-
able has degree one) by PIP dn =

∏d
i=1

∑n
j=1 x

i
jy
i
j .

Theorem 9. For any constant d > 0, `3(PIP dn) = Ω(n
2d
d+1 ).

Proof. Let f = PIP dn . Essentially we have that ∂f
∂xi
j

= yijPIP
d−1
n , where the

PIP d−1
n must be chosen on the appropriate variable set. Let A be an arbitrary

affine linear subspace of co-dimension κ. Then

d∑
i=1

n∑
j=1

dim[∂d−1(
∂f

∂xij
|A)] =

d∑
i=1

n∑
j=1

dim[∂d−1(yijPIP
d−1
n |A)]

≥ (dn− κ) dim[∂d−1(PIP d−1
n |A)]

The last inequality follows because at least dn − κ of the y-variables are not
assigned to with the restriction to A. From Lemma 4.9 in [10] one gets

dim[∂d−1(PIP d−1
n |A) ≥ nd−1 − 22d−1κnd−2.

Using Theorem 7 we get

`3(f) ≥ min(
κ2

2
,

(dn− κ)(nd−1 − 22d−1κnd−2)(
κ−1
d−1

) ).

Taking κ = n
d
d+1 , one gets for constant d that `3(PIP dn) = Ω(n

2d
d+1 ). ut

For comparison, in [10] one gets `∗3(PIP dn) = Ω(n
2d
d+2 ).



6 Conclusion

We have taken some further steps after Shpilka and Wigderson [10, 9], obtain-
ing absolutely tight (rather than asymptotically so) multiplicative size lower
bounds for some natural functions, and obtaining somewhat improved bounds
on +, ∗-size for low-degree symmetric and product-of-inner-product polynomi-
als. However, these may if anything enhance the feeling from [10, 9] that the
concepts being employed may go no further than quadratic for lower bounds.
One cannot after all say that a function f(x1, . . . , xn) is non-vanishing on an
affine-linear space of co-dimension more than n. The quest then is for a mathe-
matical invariant that scales beyond linear with the number of degree-d-or-higher
multiplication gates in the formula.
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