Testing Neural Net Algorithms on General Compressible Data

Arun K. Jagota {, Kenneth W. Regan }
1 Department of Computer Sciences, University of North Texas, email: jagota@cs.unt.edu
Denton, TX, 76203, USA
1 Department of Computer Science, State University of New York at Buffalo
Buffalo, NY, USA

Abstract— This paper advocates that a “realistic” evaluation of a algorithm should include
tests not only on “random” data, but also on compressible data. We evaluate a suite of nine
neural-net heuristics for the Max CLIQUE problem on both uniformly-random and compress-
ible data, using a time-bounded analogue q of the Solomonoff-Levin universal distribution m for
the latter. The Maximum Clique problem is NP-hard to solve approximately in the worst-
case; however it is easy to approximate within a factor of 2 on “random” graphs. Three
of the neural algorithms, while nearly competitive with the other six on random data, are
observed to work poorly under q, for graphs with 100 and 400 vertices. This gives some
indication that the compressible distribution q discriminates the performance of various
algorithms better than does random data. However, the results obtained here are prelimi-
nary and not definite. We suspect that a theoretical result of Li and Vitanyi, namely that
the distribution m asymptotically draws out worst-case behavior in an algorithm, shows up
as a practical phenomenon, but the results so far do not strongly support this.

1 Introduction

Most algorithm testing is done either on “random” instances of the problem at hand, or on a relatively
narrow range of instances tied to a particular application. Our first purpose is to point out that “random”
instances are not necessarily realistic instances. Our second purpose is to shed more light on the possibility
of doing scientific testing in ways that retain both realism and generality over many applications. This is
an abstract of our still-preliminary efforts to show that neural-net heuristics behave markedly differently
on “random” data versus data drawn from distributions that attempt to reflect how instances arise in
practice. A full current version of our work is available on the Internet at ftp://ETC.

Our point of departure is the common-sense position that real-world instances are not “random.” The
usual meaning of “random” is (1) that the instance is drawn from the uniform distribution on the space of
all possible instances. For example, a “random” n-vertex undirected simple graph is obtained by flipping
a coin for each pair (i,7) (1 < i < j < n) to see whether edge (7, ;) is present in the graph. (Note
that the underlying sample space will have many isomorphic copies of the same graph) Information
theory provides a second perspective: (2) a random instance is one that is incompressible; 1.e., one whose
standard encoding to a solving algorithm cannot be replaced by an appreciably shorter string encoding.
These two meanings mostly align for our purposes, since (by a standard counting argument) the vast
majority of strings cannot be appreciably compressed. Thus a “random” string from (1) will, with high
probability, be one of the strings in (2). For example, while some special n-vertex graphs such as the
n-cycle can be compressed to O(logn) bits under fairly general “smart encoding” schemes, the standard

encoding length of N = (n? — n)/2 bits cannot be improved for the vast majority of graphs.

Note that (2) does not pre-suppose a distribution or an instance space. Instead, it leads to one, called the
Solomonoff-Levin distribution m. The basic idea of m is that if a graph (or any string) g1 is compressible
to K bits while g5 cannot be compressed below N bits, then g1 is 2V =% times as likely to occur as g».

The two main scientific ideas behind m, which have recently been expounded at length in articles and a
book by Li and Vitanyi [?, 7, 11, 7], are:

1. Compressible inputs occur much more frequently than “random” ones.

2. In the absence of any specific knowledge about the distribution of inputs to a computational problem,
one should assume that they come from m.

The latter statement is justified by a theorem that for every computable distribution d on strings, there
is a constant C' depending only on d such that for all strings #, m(z) > d(z)/C. That is, m makes all
strings at least as likely, within the constant factor C, as d did. The former expresses that real-world
data sets usually have a much shorter specification than the number of data points entered or generated.
For instance, graphs having specific regularities tend to present themselves to be solved more frequently
than do “scattershot” graphs. For both reasons, m is also called the universal prior distribution.

The major rub is that m itself is not a computable distribution; indeed, there 1s no computable way to
sample according to m, or even to estimate m(z) within a constant factor—all attempts will undershoot
m(z) on many z. However, we can attempt to sample in ways intended to preserve many of the important
properties of m. Whereas m is based on a universal programming system for all computation, we define
a distribution q based on a programming system that is universal only for those computations that can

be done in time n-(log n)o(l), which is called quasf-linear time. Li and Vitanyi themselves suggested

polynomial-time sampling, but times above n? are not really efficient in practice. Quasi-linear time
includes many important computational primitives, including sorting and FFT, that are not known to
be computable in strictly-linear time. Our q assigns higher weight to size-N structures that can be
(compressed and) decompressed in time that is quasi-linear as a function of N (not of K). Scientifically,
the relevance of q amounts to asserting that real-world instances have regularities that can be efficiently
perceived and produced. In our actual sampling, we made some further compromises described and
justified below.

The main spur to our work was the following theoretical result of Li and Vitanyi [11]:

Theorem. The average-case running time under m of any terminating algorithm is within a constant
factor of its worst-case running time over all inputs of a given size.

With essentially the same proof, we show in our full report that the same statement can be made about
optimization performance: any algorithm with instances drawn according to m fares nearly as poorly
as it does on the worst instances. The proof idea is mainly that “the worst instance of size n” is a
(log(n)+const)-sized description of itself, and so gets high weight under m—hurting the m-average more
than “the best instance” helps it. Miltersen [?] shows that, subject to something like P # NP, no
polynomial-time computable distribution can be “malign” to the same degree as m. Hence q itself is not
so malign; note also that the above description does not give a ¢lin(n) time way to decompress itself.
Despite this and the way the proof of the Li-Vitanyi result borders on a triviality, we suspect that the
above is the iceberg’s tip of a phenomenon that compressible instances as they arise in the real world
really tend to be harder than “random ones.” The particular phenomenon we test is:

Test Question. Is the performance of heuristic algorithms for problems markedly poorer under q
than under uniform distribution?

The particular computational problem we study is the MAX CLIQUE problem: given an undirected graph
G, compute w(G), which stands for the maximum size of a clique in G—and furthermore, find a clique
of that size. This is a well-known NP-hard problem. We study it for several reasons:

1. Many important computational problems can be efficiently transformed into cases of the Max CLIQUE
problem.

2. Clique problems are well-suited to neural nets. There is a wide variety of heuristics that can be tested.

3. A great deal is known about the theory of cliques in graphs, especially under uniform distributions.
This theory acts as a scientific control on our experiments.

For a practically-minded treatment of the first point see [?], while the second is borne out by the algorithms
described below. We discuss the third point now. The main theoretical results about cliques in random
graphs are:

Theorems. With very high probability, an n-vertex graph selected under uniform distribution will
have maximum clique size about 2log, n, and will also have no maximal cliques of size less than
log, n at all.

Indeed, according to Matula’s Theorem [?], w(G) clusters into two adjacent integer values near 2log n.
Since any halfwitted algorithm can be expected at least to output a maximal clique, the second clause
says that all algorithms come within a factor of 2 of optimum on random graphs. Karp [10] suggested
that all polynomial-time algorithms eventually fall down to that factor of 2 on random graphs as n gets
large. Practical tests on random graphs up to several thousand vertices do much better than a factor of 2
and often come within 10%; see [?, 12] and our own results under u below. Jerrum and Sinclair [?] give
strong theoretical as well as empirical evidence that any fall-down for a particular heuristic based on the
Metropolis process does not happen for graphs of less than 80, 000-to-a-million vertices. Similar results
are known for the distributions u,(n) under which edges are independently present with probability p,
0<p<l1.

Now we argue that in “real-world” clique instances G, the critical size of w(G) that one needs to know

about is more like n/C or n'/?, not so low as logn or 2logn. The standard transformation from an
m-clause, n-variable instance ¢ of 3SAT to an equivalent instance of MAX CLIQUE produces a graph Gy
of 3m+ 2n vertices that has a clique of size n+ m iff ¢ is satisfiable. Common transformations from other
combinatorial optimization problems also have target clique sizes in the n®-to-Q(n) range. This higher
range also figures into the celebrated non-approximability results of Feige et al. [?] and Arora et al. [1]
and later refinements. These results produce graphs G such that in the “yes” case, G has a clique of
size n®, while in the “no” case, G has no clique of size n®~ %, where ¢ > d > 0 are fixed constants. It
is now known that d can be larger than e¢/3, with the conclusion that (unless NP = P) w(G) cannot
be approximated within a factor of w(G)'/3, let alone a factor of 2, in the worst case [?]. The graphs
in all these results have only O(n) = O(N'/?) non-edges (6m + n non-edges in the first) and hence are
compressible to O(N1/2) size. These facts led us to do our actual testing on the “slice” of q afforded by

graphs decompressed from seeds of sizes in some interval around N1/2.

Thus the MAX CLIQUE problem gives a sharp distinction between “random” and “real-world” instances.
This distinction applies also to pseudorandom instances, insofar as the pseudorandom generators (PSRGs)

that produce them are intended to replicate all properties of uniform distribution that are subject to
feasible statistical tests. Note that graphs G produced by a PSRG are compressible, since they are
described by the relatively short seed string s used and the number ¢ such that the ith iteration of the
PSRG on s produced GG. However, such PSRG graphs may still be only a tiny fraction of those produced
by a universal decompressor, such as the programming system on which q is based. This distinction
seems borne out by our statistics below; the g-graphs had much larger clique sizes than the “random”
graphs produced by the standard UNIX PSRG. Note also that we are not claiming that all compressible
instances are hard, but only that “general compressible data,” where “general” refers to a universal
distribution such as m or q, is harder on average than random data.

Still, this distinction does not say anything about the behavior of heuristic algorithms on these respective
kinds of instances. However, the above theory gives us a good control benchmark for a positive answer
to our above Test Question.

Benchmark. We consider a heuristic algorithm A to perform “markedly poorer” under q than
under u if its average performance ratio w(G)/A(G) under q falls below the factor-of-2 guarantee
under u.

In test cases where one cannot compute w((G) exactly, and one is testing a suite of algorithms of varying
strengths, one can use the stronger algorithms A’ to control the weaker ones, by using A’(G)/A(G) instead
as the term for GG in the average computed for q. This is a “conservative” pragmatic choice and cannot
produce a “false positive” result. Using the exact clique solving algorithm of D. Johnson and others at
AT&T Bell Labs [?], we were able to compute w(G) for all the 100-vertex graphs we generated, but on
17 of the fifty 400-vertex graphs (all with larger clique sizes), this algorithm did not halt within a day’s
computing time (per graph). (Stub: State your actual ezperience, and add the cite of Johnson.) Note
also that by Matula’s Theorem above, we were able to simply use 2log, n in place of w(G) for all the
graphs GG generated under u, with a clear conscience.

Our results for the suite of nine neural algorithms that we tested are summarized in Tables 1 and 2
below. Tables of results on the individual q-graphs are available in the full report. There were three
positive answers, but the other six heuristics performed just as well under q as under u. Hence our best
conclusion about whether the Li-Vitanyi principle sits atop a real practical phenomenon is “maybe: needs
more testing on larger graphs.”

Our results do support the conclusion that q discriminated the quality of the heuristics better than u
did. Here we remark that our approach is not limited to performance on optimization problems—it is
equally applicable to learning problems, which are the main focus of much current mainstream neural
network research. Our general position is:

If one has tested an algorithm on random data and it performs well, one should also test it on
compressible data. One may find that the good results on random data do not transfer over to
compressible data. This may give a better indication of how the algorithm will perform on real data
than the results on random data alone.

Section 2 describes the neural algorithms in full detail; this section has independent interest. Section 3
gives more detail of the methodology of our experiments. Section 4 discusses the results and conclusions
further.

2 The Neural Network Algorithms

All neural network algorithms evaluated in this paper are based on the Hopfield model [6, 7], and are
described in detail in [8]. Here we describe them only briefly, without explaining their neural network
implementation in much detail. It is worth noting that all these algorithms arise as manifestations of
essentially a single meta-algorithm: one that minimizes the usual energy function in the Hopfield model

[6, 7).

2.1 Discrete Algorithms

Steepest Descent. Steepest Descent (SD) is a discrete serial-update neural network heuristic that
minimizes energy in greedy fashion. In each time step, the unit to switch decreases energy by the
maximum amount. We use the notation SD(V;) to denote that Steepest Descent starts initially from
some subset Vy C V of vertices. SD iteratively transforms V4 into a maximal clique C', terminating
efficiently within 2n iterations [8]. Let V; denote the vertex-set in iteration ¢ and assume that it is not a
maximal clique. SD emulates the following heuristic in iteration ¢:

If V; is not a clique then
a vertex with minimum degree in the induced subgraph G[V;] is removed from V;
else if V; 1s a clique then
a vertex in V' \ V; adjacent to every vertex in V; is added to V.

Ties are broken lexicographically.

p-annealing. p-annealing is another discrete serial-update neural network heuristic, which works by
carrying out annealing while minimizing energy. More precisely, a certain parameter of the network,
called p, is varied while the network minimizes energy by steepest descent. This is analogous to varying
the temperature 7' in simulated annealing. We omit the precise description of p-annealing here, for which
the reader is refered to [8]. An intuitive description is as follows.

1. Start with small p and with the initial state Vy := V.
2. Run SD(Vy) with this value of p to transform V4 into U.
3. Increase p, set Vp := U, and go to step 2.

The algorithm is terminated when p becomes sufficiently large. It turns out that when p is small, the
set U retrieved in step 2 is not required to be a clique; however as p is increased, certain constraints get
ever tighter, ultimately forcing U to be a clique. In other words, like simulated annealing, this algorithm
starts with loose constraints—allowing an unbiased exploration of the search space—and progressively
tightens them until the final solution U forms a clique. A precise characterization of the behavior of this
algorithm is in [8].

Stochastic Steepest Descent. Stochastic Steepest Descent (SSD) is a randomized variant of SD. The
deterministic moves of SD are replaced by energy-minimizing moves that favor the steepest direction, but
probabilistically. More precisely,

The unit to switch is picked with probability proportional to the amount of energy its switch would
decrease. (The probability is zero if the switch would keep the energy same or increase it.)

The algorithm is motivated by the desire to randomize the choice of unit to switch, which allows one to
use repeated runs of the algorithm to boost the size of the clique found, while not totally relinquishing
the greedy heuristic emulated by SD, which often works well (see Tables 1 and 2, and [8]).

Let SSD(Vy, i) denote ¢ runs of SSD on a given graph, with V; as the initial state (vertex set) in each
run. (Note that the initial state is the same in each run.) The largest clique found in a run is the output
of the algorithm. One run of SSD terminates within 2n unit-switches (iterations) [8], which keeps one
run as efficient as SD.

2.2 Continuous Algorithms

The description of the continuous algorithms assumes familiarity with the continuous Hopfield model [7].

Continuous Hopfield Dynamics. This algorithm, called the continuous Hopfield dynamics (CHD)
[7, 5], is described by a system of n coupled nonlinear differential equations, presented here in discretized
form:

St 4 1) := St)+v(=S(t) + gr(WS(t) + 1)) (1)

Here S; € [0, 1] is the state of the 7% neuron, I; the external bias of the i neuron, W the n x n symmetric

weight matrix, ga(z) = ﬁ a sigmoid with gain A, g(#) notational shorthand for (g(2z;)), and ¥ the
Euler step size. The continuous-time version of (1) minimizes an energy function during its evolution [7],
into which the MAX-CLIQUE problem can be encoded [8]. With sufficiently large A and sufficiently small
7, if (1) is started from any initial state S(0) € [0, 1]” and iterated sufficiently-many times, it provably

terminates at a fixed point S from which a maximal clique of the encoded graph can be recovered [8].

For a discussion of the significance of CHD from the point of view of neural implementation and optimiza-
tion applications, see [7, 5, 8]. CHD is especially interesting because it may be viewed as the essential
special case of the algorithm presented next—a continuous optimization method developed only recently,
but one that is already beginning to make its mark on optimization as it occurs in practice.

Mean Field Annealing. The second continuous heuristic, called Mean Field Annealing (MFA) [2, 13],
may be described as a generalization of CHD in which the sigmoidal gain A is varied during the evolution
of (1). This is done by employing an annealing schedule, a sequence {X;, p;} of k elements, where A; is
the value of the sigmoidal gain and y; the number of times (1) is to be iterated with the sigmoidal gain
set at A;. Usually A; is a monotonically increasing function of ¢. The detailed algorithm is as follows.

S :=5(0)
for ::=1to k do
for j := 1 to u; do
S =8S+y(=S+g.WS+1)

With sufficiently small v and sufficiently large p;, S converges to a fixed point at each value of i [7, 5].
Additionally, with sufficiently large k, and with A; growing sufficiently slowly with i, MFA is known to
deterministically approximate simulated annealing during its evolution [2, 5], while being more efficient.

3 Experimental Methodology

(Stub: A brief description of “The q(z) Sampler” should be moved here. We need not give the actual
Gurevich-Shelah operations—a reference to our full report and the actual software being available by ftp
1s enough. It’s enough to say: there are 8 operations plus parameters; they are easy to program; they
have general uses. And some down-sides: at our seed sizes, the effects were dominated by the two ops
that expand sirings; the four ops that alter bits in strings had only limited (though perhaps sometimes
significant) play. Thus our “slice of q” was rather grainy.)

All experiments on the neural network algorithms and their evaluation on u(n) and q(z) were performed
on a SUN SparcStation I.

Details of the Test Graphs. Experiments were performed on 100-vertex graphs and on 400-vertex
graphs. The bitstrings of the 100-vertex graphs had length 4950, and those of the 400-vertex graphs
had length 79,800. For n = 100 and n = 400, three sets of fifty n-vertex graphs were generated. One
set was drawn from the uniform distribution with p = 0.5, and one with p = 0.9. All seed strings
were generated using the standard UNIX pseudorandom number generator, and recorded to make the
experiments repeatable.

The third set was generated using seed strings of lengths 65..85 for the fifty 100-vertex graphs and eleven
of the 400-vertex graphs, and 270..285 for thirty-nine of the 400-vertex graphs. When we compiled the
100-vertex set we found that eleven seeds expanded to strings of length greater than 79,800. Rather
than truncate them to length 4950, we decided to discard them from the 100-vertex sample but include
them into the 400-vertex sample. For hardware reasons we also set a limit of 700,000 on the number of
bits produced at any stage of the decoding, and discarded those seeds which broke it from the 400-vertex
sample. We believe that these practical decisions did not bias our results in any significant way. It took
about 12 hours of computing time to assemble this set.

The long strings of Os and 1s were truncated to length 4950 or 79,800 and formed into an adjacency
matrix for the graph in the order (1,2), (1,3), (2,3), (1,4),... of edges. Over three-fourths of these strings
were generated by L-programs whose final instruction was “Add a tail of |z|-many copies of u to z,”
where u was fairly long, and so ended with many repetitions of u. We do not have an intuitive idea of the
extent to which this yielded repeated patterns in the graph. The average density of the fifty 100-vertex
graphs was about 0.47, with a large variance. Four of these graphs were nearly empty, while there was
one occurrence of the complete graph on 100 vertices.

Nine heuristics were tested on each of the six sets, giving 2700 runs in all. For each 400-vertex graph, it
took about two hours to run all nine. The MFA heuristic was by far the slowest of the lot.

Sample Sizes. Each set of test graphs contained fifty graphs. It is reasonable to ask if this sample size
is adequate. For graphs drawn from u,(n), several arguments lead to the conclusion that a sample size
of fifty graphs is more than adequate for our purposes. First, the expected size of the maximum clique
in a graph drawn from u,(n) has a sharp threshold [12] and the range of sizes of maximal cliques in
such graphs is also quite narrow. Thus, any maximal-clique finding algorithm, for example most of the
ones in the current paper, is guaranteed to find a clique in a narrow range. This argument is buffeted
by experimental results reported in [8], which give the distribution of clique sizes found in fifty graphs
drawn from u,(400), p = 0.5,0.9, which turns out to have a very small variance.

For graphs drawn from q(z), however, it was not clear a priori what an adequate sample size should be.
We decided to start with a sample size of fifty. On this sample size, the results reported in Tables 1 and
2 (see Section 6 for their presentation and analysis) displayed certain trends so clearly and consistently
that we felt confident that our observations were sound and would remain basically unchanged on larger
sample sizes.

Evaluating Performance. The main hurdle in analyzing the results is that there is no easy way of
calculating the size of the largest clique in a graph. We could have used some exponential-time algorithm
to find the exact answer, but this would have been quite time-consuming on the 2700 runs. Therefore,
instead of comparing the absolute performance of these algorithms on u(n) versus those on q(z), we
decided to compare their relative performances, in particular how well or poorly certain algorithms
performed relative to others, on u(n) versus q(z).

Parameter Settings of the Continuous Algorithms. The continuous algorithms—CHD and MFA—
use certain free parameters whose values needed to be set. The values that we used are described below
to make the experiments independently repeatable. One needs to refer to [8] in order to understand some
of the parameters.

CHD was operated at p = —10n, A =1,y = 0.1, I; = |p|/4 for all ¢, and with the number of iterations of
(1) fixed in advance to n. The initial state to CHD was set to S(0) := (0.5 +)", where § was a random
value in [—0.05,0.05]. The settings are the same as in [8], and are motivated there.

MFA was operated with the same settings for p, A, 7, I, and the initial state S(0) as was CHD, and with
the following geometric annealing schedule:

2
T =a;1T ;T = 6”|P|

where a; = 0.9 for i < 4 and a; = 0.5 for i > 4. Here T; = 1/);. The settings are essentially the same as
in [8], and are motivated there. Experimental results in [8] also reveal that CHD and MFA continue to
work well on the graphs tested in [8], on parameter settings in a reasonably large neighborhood of those
described above.

4 Experimental Results

Tables 1 and 2 give the size of the clique retrieved by each of the nine algorithms, on fifty 100-vertex and
fifty 400-vertex graphs sampled from q(z) respectively.

SD() is the steepest descent algorithm whose initial state is the empty set. It emulates the naive heuristic:

Start from the empty set and extend it, by adding, in each step, one suitable vertex selected lexico-
graphically, until it forms a maximal clique.

SSD(0,1) is a randomized version of SD(0) in which the vertex to be added is selected randomly, from
the feasible choices, instead of in lexicographic fashion. SD(V) is the steepest descent algorithm whose
initial state is the entire vertex set V. Tt turns out that SD(V) emulates the following algorithm [8]:

S:=V
while S is not a clique do
Pick a vertex v € S with minimum degree in S
Delete v from S
endwhile
while S is not a mazimal clique do
Pick the lexicographically first vertex v ¢ S adjacent to every vertex in S
Add vto S

endwhile

SD(V, 1) is a randomized version of SD(V') in which the vertex to be deleted in an iteration of the first
loop is picked with probability proportional to S — degreeg(v) (the smaller the degree, the higher the
probability), and the vertex to be added in an iteration of the second loop is picked at random from
the feasible choices. SSD(@,n) and SSD(V,n) are multiple restart versions of SSD(,1) and SSD(V,1)

respectively—the largest clique found in the n runs is output.

From Tables 1 and 2, the following observations can be made:

e SD(0) works the poorest. SSD(0,1) and SSD(V,1) work moderately better but remain significantly
poorer than the best algorithms. Thus, randomization alone helps but not as much as one might
expect.

e SD(V) works much better than SD((}) and nearly as well as the best algorithms. Thus replacing the
initial state of SD(0) by V', which makes the SD algorithm greedier, improves the performance much
more dramatically than by randomizing SD(0) alone. Randomizing SD(V), to get SSD(V,1), in fact
worsens the performance significantly.

e The p-annealing algorithm consistently works just slightly better than SD(V).

e The multiple restart algorithms—SSD(0,n) and SSD(V n)—work the best, with SSD(V,n) working just
very slightly better. This shows that the real benefit of randomization is that it allows multiple restarts,
which boosts performance immensely.

e The continuous algorithm CHD works moderately poorer than the continuous algorithm MFA | which
was anticipated, but also works discernably poorer than the discrete algorithm SD(V), which was not
anticipated.

These observations hold for both Tables 1 and 2—if anything, the effects are more pronounced in Table
2 than in Table 1.

From these results we may cluster the algorithms into four groups, using the size of the clique found as
the measure. In order of decreasing performance, the clusters are:

1. SSD(V,n), SSD(f,n), p-annealing, MFA, and SD(V).

2. CHD.

3. SSD(V,1) and SSD(0,1).

4. SD(0).

Table 3 gives the clique sizes found by these nine algorithms on random graphs, i.e. graphs drawn from
u,(n). The relative rankings of the algorithms in Tables 1, 2, and 3 are mostly the same, though there
is one notable exception, explained later in this paragraph. The performance differentials between these

algorithms are however far wider on graphs drawn from q(z) than on graphs drawn from u,(n). On
graphs drawn from u;5(n), the clique sizes obtained by all nine algorithms are in a small range. SD(0)

remains the poorest working algorithm, but only marginally so. On graphs drawn from ug g(n), the range
of clique sizes gets larger and so do the performance differentials, although most of the relative rankings
remain unchanged. The one notable exception is the MFA algorithm which performs significantly better
than all the others. Although MFA worked very slightly poorer than the multiple restart algorithms on
graphs drawn from q(z) it works significantly better on graphs drawn from ug g(n). Another interesting
feature of the graphs drawn from u;/5(n) versus those drawn from q(z) revealed by the algorithms is
that, whereas both types of graphs have roughly the same density, the algorithms, on average, retrieve
much larger cliques on graphs drawn from q(z) than on graphs drawn from u;/5(n). Certainly this is not
surprising as it is reasonable to expect a correlation between the compressibility of graphs drawn from
q(z) and the fact that they contain large cliques.

The performance ratio of algorithm A relative to algorithm B on graph G is defined as the clique size found
by B divided by the clique size found by A. Table 4 gives the performance ratio of each algorithm relative
to SSD(V,n), averaged over graphs drawn from q(z) and over graphs drawn from u,(n). SSD(V,n) is
chosen as the reference algorithm because it works best on graphs drawn from q(z). The results reported
in Table 4 are drawn from the earlier tables. The results viewed in this fashion tend to support our
earlier observations in more dramatic fashion. For example, SD(0) has a poor performance ratio, 2.42, on
graphs drawn from q(100), which worsens markedly, to 7.56, on graphs drawn from q(400). By contrast,
SD(0) has much better performance ratios on graphs drawn from u,(100), p = 0.5,0.9, which remain

unchanged on graphs drawn from u,(400), p = 0.5,0.9.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. In The Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science, page to appear, 1992.

[2] G. Bilbro, R. Mann, T.K. Miller, W.E. Snyder, D.E. Van den Bout, and M. White. Optimization by
mean field annealing. In D.S. Touretzky, editor, Advances in Neural Information Processing Systems,
volume 1, pages 91-98, San Mateo, 1989. (Denver 1988), Morgan Kaufmann.

[3] B. Bollobés and P. Erdés. Cliques in random graphs. Proc. Camb. Phil. Soc., 80:419-427, 1976.

[4] Y. Gurevich and S. Shelah. Nearly linear time. In Proceedings, Logic at Botik, Lecture Notes in
Computer Science No. 363, pages 108-118. Springer-Verlag, 1989.

[5] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-
Wesley, 1991.

[6] J.J. Hopfield. Neural networks and physical systems with emergent collective ¢ omputational abilities.

Proceedings of the National Academy of Sciences, USA, 79, 1982.

[7] J.J. Hopfield. Neurons with graded responses have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, USA, 81, 1984.

[8] A. Jagota. Approximating maximum clique in a Hopfield-style network. IEEE Transactions on
Neural Networks, 6(3):724-735, 1995.

[9] A. Jagota, L. Sanchis, and R. Ganesan. Approximating maximum clique using neural network
and related heuristics. In D.S. Johnson and M. Trick, editors, DIMACS Series: Second DIMACS
Challenge, page To Appear. AMS, January 1995. Proceedings of the Second DIMACS Challenge:
Cliques, Coloring, and Satisfiability.

[10] R.M. Karp. The probabilistic analysis of some combinatorial search algorit hms. In J.F. Traub, editor,
Algorithms and Complexity: New Directions and Recent Results, pages 1-19. Academic Press, New
York, 1976.

[11] M. Li and P.M.B. Vitanyi. Average case complexity under the universal distribution equals worst-
case complexity. Information Processing Letters, 42:145-149, May 1992.

[12] E.M. Palmer. Graphical evolution. Wiley, New York, 1985. Matula’s theorem on page 76.

[13] C. Peterson and B. Séderberg. A new method for mapping optimization problems onto neural netw
orks. International Journal of Neural Systems, 1:3-22, 1989.

Table 1: Average performance on p-random graphs. This table is excerpted from Table I in [8].

n _p | SD(@) SD(V) p-A SSD(#,1) SSD(V,1) SSD(#,n) SSD(V,n) CHD MFA
100 05| 6.34 7.98 806 6.48 6.42 8.36 860 7.44 850
100 0.9 | 23.86 28.16 28.34 23.40 24.82 27.60 2876 27.92 30.02
400 0.5 | 830 9.88 10.34 8.44 8.24 10.80 11.04 9.16 10.36
400 0.9 | 3612 43.80 4458 35.84 36.82 41.86 4320 43.24 49.94

Table 2: Average performance ratio SSD(V,n)(G)/A(G) on all graphs. The numbers for the q graphs are
obtained by averaging over the performance ratios, not by taking the performance ratio of the average.

Source _SD(#) SD(V) p-A SSD(#,1) SSD(V,1) SSD(#,1) SSD(V,n) CHD MFA

q(100) 2.42 1.10 1.09 1.79 1.60 1.03 — 1.31 1.10
G.5(100) 1.35 1.08 1.07 1.37 1.32 1.02 — 1.15 1.01
G.(100) 1.20 1.02 1.01 1.23 1.15 1.04 — 1.03 0.96

q(400) 7.56 1.09 1.03 2.64 2.19 1.02 — 1.24 1.05
G.5(400) 1.33 112 1.07 1.31 1.33 1.02 — 1.21 1.02
G.5(400) 1.19 0.99 0.97 1.21 1.17 1.03 — 1.00 0.87

