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Abstract

We give new explicit conversions from a quantum circuit C into a small set of Boolean
formulas φk such that the acceptance amplitude of C (on a given input) can be computed from
the numbers of satisfying assignments to the φk. They enable use of heuristic #SAT solvers
to perform emulation of quantum circuits. We likewise represent the acceptance probability
as a difference #sat(φ1) − #sat(φ2) in a way that facilitates sampling of measured values
C(x). Computational experiments are performed and compared with other quantum circuit
emulators on a variety of instances, including formulas arising from stages of executing the
quantum inner loop of Shor’s algorithm, which is otherwise classical.

1 Introduction

Quantum circuits can efficiently perform n-bit computations that are commonly believed to
require time exponential in n on classical computers, in particular those associated to the prob-
lem of factoring n-bit integers. They are not however known or believed to solve NP-hard
problems with comparable efficiency. The theoretical concepts involved are asymptotic, talking
about growth rates as n gets large, but the concrete time for moderate values of n makes it-
self felt. Current standards for cryptographic use of factoring involve n on the order of 1, 000.
Success in classical emulation in many cases has recently been claimed for n approaching 50
[HSST, BIS+16]. It is thus important to develop and test emulations that can work for problem
sizes in this range of n.

Simulators and emulators use several forms. One is to go straight to the N × N matrices
defining compositions of gate operations, where N = 2n, but use sparse representations of these
matrices. Others first pre-process a given circuit C in time scaling as nO(1) before going to steps
that scale as N . We treat and develop emulators that convert C into a completely different
object to which off-the-shelf methods can be applied. In [DHH+04, GS06, RC12] the object is
a small set of polynomial equations pC = 0. In this paper we produce small sets of Boolean
formulas φCk (z1, . . . , zr) (in conjunctive normal form) such that C can be simulated with exact
knowledge of the number of assignments in { 0, 1 }r that satisfy φCj .

The tasks of counting the number of solutions to a given polynomial equation and the number
of satisfying assignments to a Boolean formula belong to a complexity class of functions called
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#P. The corresponding class of decision problems is called PP. The general cases of these tasks
are both NP-hard. Although NP-hardness has generally been regarded as strong evidence of
asymptotic intractability, recently there have been broad advances on solving concrete cases of
these tasks. Most of this success has come from so-called SAT-solvers asked to find just one
satisfying assignment, but recently so-called #SAT solvers charged with counting the number of
satisfying assignments exactly have gained traction.

Quantum circuits yield special cases of these tasks that are captured by a subclass of PP
called AWPP [FR98] which unlike PP is not known or believed to contain NP-hard problems.
However, AWPP is defined “semantically” via a so-called “promise condition” (see [FFKL03]) and
there does not seem to be a simple syntactic way to distinguish the objects we will produce from
general ones given to #SAT solvers. Our prime interest is nevertheless in whether these instances
are concretely easier than general ones belonging to common NP-hard tasks. Most in particular,
direct attempts to apply SAT-solvers on classical NP-based representations of the factoring
problem have not led to success (cf. [Ask14]). Direct encoding of factoring via Karatsuba
multiplication is called a “tough case” by [YB17]. Our formulas φCj will be substantially different
in character, and will be used to drive the quantum inner loop of Shor’s algorithm [Sho94], the
rest of which is classical, rather than encode the factoring predicate directly. Thus our goal will
be to test whether the resulting classical attack on factoring is any more dangerous than others
that have been tried.

Of course the above facts imply that there exists a reduction from C to formulas φCj . One
could be obtained by applying the generic Cook-Levin reduction to #SAT , starting from the
polynomials pC for instance. However, we seek the most efficient reductions, ones that are
natural, specific, and tight. We will use the technique that produces pC as a proof guide. Some
theoretical interest may come from structural properties of the particular φCj that we obtain,
including a certain sameness of form in the Hadamard and Toffoli gate cases. We presume
familiarity with quantum circuits and gates; references include [BBC+95, NC00, LR14]. We will
consider three prominent universal quantum gate sets:

• Hadamard (H) and Toffoli (Tof) gates.

• Hadamard and controlled quarter-circle phase (CS) gates.

• Hadamard, controlled-NOT (CNOT), and T -gates (T).

It is commonplace to include CNOT in the first two sets as well. The first group involve
phases 0 and π only, represented by entries +1 and −1 (divided by

√
2 in the case of the

Hadamard gate) in the corresponding matrices. The second group adds phases π/2 and −π/2
represented by entries i and −i. The third group needs minimum phase angle π/4, which will
correspond to k = 3 and K = 2k = 8 in notation to come, but is more expressive.

Two important technical points concern approximation and sampling. The expression for
the acceptance amplitude in the first group involves formulas φ0, φ1 with some number r of
variables—h of them “free”—and gives acceptance amplitudes of the form

#sat(φ0)−#sat(φ1)

R
,

where R = 2h/2 rather than be of order 2h or 2r. The total numbers n0 and n1 of satisfying
assignments to φ0 and φn will each have order 2h, but their difference is a priori constrained to
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be at most R. It will therefore not suffice to compute n0 to within a factor of (1 + ε), say, nor
likewise n1. This is why exact #SAT solving is sought.

On the other hand, many prominent quantum algorithms—Shor’s among them—need quan-
tum only to generate samples z from a distribution D on { 0, 1 }n. Here approximations z′

to z are often tolerated. Hence we are most narrowly interested in the sampling problem for
satisfying assignments, indeed cases of uniform generation. Exact counting generally implies
uniform sampling, but when and whether the latter affords more slack is a difficult problem in
general. The second point is that to imitate the classical reduction from uniform sampling to
#sat we need parallel results that give the acceptance probability, rather than the amplitude,
as a difference

#sat(ψ0)−#sat(ψ1)

R2
,

where ψ0 and ψ1 are “double-rail” versions of φ0 and φ1. Whether further savings can be
realized by further use of approximation leads to further questions both about sampling and the
workings of individual heuristic #SAT solvers

[This draft lays out the proofs; experiments to come. . . ]

2 Overview and General Theorem

Let C be a quantum circuit on m qubits with s gates and put M = 2m. Consider the formal
product of the s-many unitary M ×M matrices U`, one for each gate in C. It expands to a
sum of s-fold products of matrix entries. Every nonzero product can be called a possible path
though the object described by C. The value of the product is a complex number reiθ with
phase θ. One thing to note is that it is customary to write the input a to C on the left and list
the gates/gate-matrices left-to-right as U1, . . . , Us, but the matrix computations are

C(a) = UsUs−1 · · ·U2U1a and 〈 a |C | b 〉 = 〈C(a), b〉.

If a path begins in row i of a, then it enters U1 through column i and exits through some row
j, whereupon it enters U2 through column j. For intuition we might wish to use either the
transposed computation or the conjugate transpose,

C(a) = aTUT1 U
T
2 · · ·UTs−1UTs or C(a)∗ = a∗U∗1U

∗
2 · · ·U∗s−1U∗s ,

and talk about the path entering row i of the first matrix and exiting via column j, etc., so as
to align with how we read the circuit. However, we pay strict accord to how the computation
unfolds.

We make two mild assumptions about U` and θ. The first, called balance, is that all nonzero
entries of U` have the same magnitude. This property is preserved under tensor products, so it
suffices to verify it for the 2r × 2r matrix defining an r-ary gate locally. The second is that θ
be an integer multiple of 2π/K where K = 2k for some k. Then e2πi/K is a primitive K-th root
of unity, which we denote by ω when k is understood. When k is least possible we call either
2π/K or 1/K the min-phase of the circuit and identify the phases with 0, . . . ,K− 1 modulo K.

If x = x1, . . . , xn are variables in a Boolean formula φ and a ∈ { 0, 1 }, then φ[x = a] stands
for the formula obtained by substituting ai for xi for each i and simplifying operations involving
constants. We could make a distinction between #sat(φ[x = a]) referring to assignments in
the reduced formula—not including x1, . . . , xn—and #sat(φ)[x = a] meaning the number of
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assignments to the original φ that give the values a1, . . . , an to x1, . . . , xn, respectively. However,
the following base-case understanding removes the need: A formula φ with zero variables has
20 = 1 assignment λ belonging to { 0, 1 }0 = {λ }. If φ is equivalent to >, the constant true
formula, then λ is a satisfying assignment; if φ ≡ ⊥, the constant false formula, then λ is
unsatisfying. An empty conjunction defaults to > while an empty disjunction or XOR defaults
to ⊥. Now we can state and already prove the main general theorem:

Theorem 1. Let C be a circuit of m qubits and s balanced gates of minphase 1/K = 2−k

and maximum arity r ≤ m qubits. Then we can efficiently build a Boolean formula φ of size
O(m+ sk22r) in variables ~w, ~x, ~y, ~z and find a constant R such that for all a, b ∈ { 0, 1 }m:

〈 a |C | b 〉 =
1

R

K−1∑
L=0

#sat(φ[~w = L, ~x = a, ~z = b])ωL

=
1

R

∑
L,c

φC(~w = L, ~x = a, ~y = c, ~z = b])ωL.

Moreover, for every assignment (a, c) to ~x, ~y there is exactly one pair (L, b) such that φC [~w =
L, ~x = a, ~y = c, ~z = b] holds and it can be found in O(s) time.

Proof. We track paths in stages ` = 1 to s as they begin in a column a = J0 ∈ { 0, 1 }m of U1 and
terminate in row b = Is of Us. We allocate s+ 1 suites W0, . . . ,Ws of variables w0,`, . . . , wk−1,`
which collectively track the phase L ∈ { 0, . . . ,K − 1 } of a path by L =

∑k−1
j=0 wj2

j . At each
stage ` we identify m location literals u1, . . . , um on the qubit lines whose values determine an
entry column J ∈ { 0, 1 }m to the matrix U`; initially they are the input variables x1, . . . , xm. We
allocate up to m fresh variables y1, . . . , ym whose values I ∈ { 0, 1 }m stand for possible exit rows
I`, which become either the entry column J`+1 for the next stage or are equated with the output
variables z1, . . . , zm. (Note that the “ui” will be meta-symbols, and extended constructions will
allow them to be negated variables. We will also later distinguish between allocated variables
yi whose values are forced not free, calling them vi instead.)

If J is any column value in { 0, 1 }m, then uJ denotes the unique conjunction of signed literals
±ui (over i = 1 to m) whose value is 1 on J and 0 for all J ′ 6= J . For instance, if J = 01101 then
uJ = (ū1∧u2∧u3∧ū4∧u5). We denote row conjuncts vI similarly. Entering stage ` of the circuit,
we consider all possible current phases p`−1 coded by the variables W`−1 = w0,`, . . . , wk−1,`. For
all pairs I, J we add clauses as follows:

• If U`[I, J ] = 0 then we add ¬(uJ ∧ vI), which becomes a clause of 2m disjoined literals.

• If U`[I, J ] = reiθ, then by balance, r 6= 0 is independent of I, J and θ = 2πid/K for some
d ∈ [K]. Then we add for j = 0 to k − 1 the clause

((uJ ∧ vI)→ (wj,` = wj,`−1 ⊕ Fd(W`−1))),

where Fd is the fixed finite function true on all c such that c+ d causes a flip in bit j.

Note that Fd can be a function of the variables w0,`−1, . . . , wj,`−1 alone. We can alternately
consider that over j = 0 to k − 1 alone we have added the single clauses

wj,` = wj,`−1 ⊕ F ′(u1, . . . , um, v1, . . . , vm, w0, . . . , wj),
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where F ′ takes into account all the phases d that arise in the matrix entries U`[I, J ] as specified
by the value J for u1, . . . , um and I for v1, . . . , vm. Economizing F ′ will occupy much of the
remainder of the paper, but for this proof we reason about Fd for all the uJ and vI .

Finally we note that v1, . . . , vm become “u1, . . . , um” for the next stage if there is one, else we
conjoin the clauses ∧mi=1(vi = zi) (or just substitute z1, . . . , zm directly). The last act is to add
the clauses ∧jw̄j,0 and declare ~w in the theorem statement to refer to the terminal wj,s phase
variables. Then ~y in the theorem statement ranges over wj,` for 1 ≤ ` ≤ s − 1 and variables
vi,` introduced as “vi” in the corresponding stages `. (We will pin it down further in specific
instances later.) This finishes the construction of φC .

To see that it is correct, first consider any path P from a to b whose phase changes by L.
First we substitute ~x = a and ~z = b and Ws = L. In the base case s = 0 with empty circuit,
P can only be a path from a to b = a with L = 0. Then we have Ws = W0 and substituting L
gives > if b = a and L = 0, ⊥ otherwise. For s ≥ 1, to P there corresponds a unique assignment
of row and column values

a = J1, I1 = J2, . . . , Is−1 = Js, Is = b

to literals designated “ui” and “vi” at each stage `. For all (I, J) 6= (I`, J`), all clauses (uI∧vJ)→
. . . ) are vacuously satisfied. This leaves the clause

((uJ` ∧ vI`)→ (wj,` = wj,`−1 ⊕ Fd(W`−1))),

where d is the phase of the nonzero entry U`[I, J ]. By induction, the values of W`−1 in the
assignment either have the phase c of the path entering that stage or the assignment is already
determined to be unsatisfying. These determine the value Fd(W`−1 and hence collectively over
j these clauses determine that W` must have the correct value c + d modulo K, else they are
not satisfied. Since the values of the variables in W` are forced, we have a unique continuation
of a satisfying assignment. In the last stage, the current phase value must become L. Hence
we have mapped P to one satisfying assignment of φC [~x = a, ~z = b, ~w = L] (with W0 already
substituted to zeros).

Going the other way, suppose y is any satisfying assignment to φC (again with W0 = 0). We
argue that y maps uniquely to a path Py. We get a = J1 from the values assigned to ~x, then the
values J2, . . . , Js of the other column entries, and finally the exit row Is which gives a b. The
values of phases along the path are likewise determined by the assignment and must be correct.
Hence the assignment yields a unique path. The path must be legal: at any stage the left-hand
side of one clause of the form (uJ ∧ vI)→ . . . holds so its consequent must be made true.

Thus the correspondence of counting paths and counting satisfying assignments is parsimo-
nious for each phase value L, so the equation in Theorem 1 follows. Finally, we may observe
that if U` is a tensor product of a 2r × 2r matrix and identity matrices, then whenever I and
I ′ vis-à-vis J and J ′ agree on the r qubit lines touched by the gate, their clauses can be iden-
tified, leaving at most 22r distinct clauses added at stage `. The rest of the size estimation is
straightforward.

As already remarked, the main purpose of this paper is to find the most economical (and
elegant) condensations for specific families of quantum gates. We also note that any initialization
L0 can be used for W0 provided the corresponding target for Ws is shifted to be L + L0. Here
we finish by noting one further general feature of the emulation that already follows from this
proof.
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For any set B of target output values and phase L, we can define pLC(a,B) =
∑

b∈B p
L
C(a, b),

where pLC(a, b) denotes the number of paths from a to b having phase L. We will find it convenient
to maintain these sets of paths when B is a cylinder, that is, for some I ⊆ { 1, . . . ,m }, I =
{ i1, . . . , ir }, and binary string c of length r:

B = { b ∈ { 0, 1 }m : bi1 = c1 ∧ bi2 = c2 ∧ · · · ∧ bir = cr }.

Singleton sets { b } have this form with I = { 1, . . . ,m } and c = b, as do sets Bi = { b : bi = 1 }
which represent measuring the single qubit i to test for a 1 value. Cylinders are important
because we can choose not to substitute all z1, . . . , zm variables by values b1, . . . , bm.

Note must however be taken that a path to b and path to b′ do not interfere—because they
have different “locations.” Hence in particular, taking weighted sums of pLC(a,B) is not the
same as measuring outcomes in B. One needs to sum them for all b ∈ B. We will fix this issue
by proving a parallel theorem for the acceptance probability. We state it here just for circuits
of gates whose entries are multiplies of i:

Theorem 2. Let C be a circuit of m qubits and s balanced gates of minphase π/2 and maximum
arity r ≤ m qubits. Then we can efficiently build a Boolean formula ψ of size O(m + s22r)
in variables ~v, ~w, ~x, ~y, ~z and find a constant R such that for all a ∈ { 0, 1 }m and cylinders
B ⊆ { 0, 1 }m: ∑

b∈B
|〈 a |C | b 〉|2 =

1

R2
(#sat(ψ′)−#sat(ψ′′)), (1)

where ψ′ and ψ′′ are projections of ψ depending on B. Moreover, for every assignment (a, c) to
~x, ~y there is exactly one completion to an assignment that satisfies ψ′ or ψ′′ (never both) and it
can be found in O(s) time.

It is best to prove this after gaining a concrete understanding of the efficiency issues for the
cases K = 2, 4, 8 and the motivation for sampling and uniform generation. The next section
segregates the variables ~y of the general case into Hadamard variables y1, . . . , yh and other
variables v1, . . . , vs−h, whence “~v” in the above statement.

3 Binary Case

In this section, C is a circuit of Hadamard and Toffoli—and optionally NOT and CNOT—gates
only. Then the nonzero entries are ±1 ignoring factors of

√
2 and so the resulting values eiθ are

likewise ±1. Paths giving +1 are positive paths and those giving −1 are negative paths. For
any origin a ∈ { 0, 1 }m and terminus b ∈ { 0, 1 }m their numbers are denoted by p+C(a, b) and
p−C(a, b), respectively. If h ≤ s is the number of Hadamard gates then the amplitude of obtaining
b as output by C(a) is given by

〈 a |C | b 〉 =
p+C(a, b)− p−C(a, b)

2h/2
.

This motivates the specific form of our first “concrete” main theorem in the binary case. For
a cylinder B defined by I = { i1, . . . , ir } and c, let φ[~z ∈ B] stand for the substitution zi1 =
c1, . . . , zir = cr.
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Theorem 3. Given any m-qubit circuit C of h Hadamard gates and s − h Toffoli and CNOT
gates, input a ∈ { 0, 1 }m, and cylinder B ⊆ { 0, 1 }m, we can construct a Boolean formula φC
of size O(s + m) in conjunctive normal form with variables y1, . . . , yh, v1, . . . , vs−h, w, . . . , wh
together with x1, . . . , xm and z1, . . . , zm such that

p+C(a,B) = #sat(φ[~x = a, ~z ∈ B,wh = 0])

p−C(a,B) = #sat(φ[~x = a, ~z ∈ B,wh = 1]).

Moreover, no two satisfying assignments agree on y1, . . . , yh.

Proof. We start with variables xi, letting “ui” initially refer to xi on each line, and start with
the equation w0 = 0, i.e., w̄0. We let ` run from 1 to h this time, not 1 to s.

1. For each Hadamard gate on line i, increment `, allocate fresh variables w` and y`, and
conjoin the equation

(w` = w`−1 ⊕ (ui ∧ y`)).
To set up the next stage we note that “ui” now refers to y`.

2. For each Toffoli gate with sources i, j and target k, increment o, allocate a fresh variable
vo and conjoin the equation

(vo = uk ⊕ (ui ∧ uj)).
Now “uk” refers to vo.

3. For a CNOT gate with source i and target k, we conjoin (vo = uk ⊕ ui) instead. Note this
is the same as fixing uj = 1 in the Toffoli case.

After placing the last gate, we conjoin the output-equating clauses (ui = zi) for each qubit
line i. Note again that in the case h = 0 we have wh = w0, and so φC [wh = 1] is unsatisfiable—in
keeping with there being no negative paths. The rest of the correctness logic follows as in the
proof of Theorem 1 (or see the specialized proof in the Appendix).

A special beauty of this construction is that the differences among the three types of quantum
gate are expressed by the fourth variable in the new equation being fresh, used, or fixed. The
difference between w`−1 and uk also matters, of course, but both are existing variables.

To finish the proof of Theorem 3, we can use either of the following conversions to CNF. We
can convert to 4CNF without introducing any more variables by applying to each equation the
conversion

(q = p⊕ (u ∧ y)) ≡ (ū→ p = q) ∧ (ȳ → p = q) ∧ ((u ∧ y)→ p 6= q)

≡ (u ∨ p ∨ q̄) ∧ (u ∨ p̄ ∨ q) ∧ (y ∨ p ∨ q̄) ∧ (y ∨ p̄ ∨ q)
∧(ū ∨ ȳ ∨ p ∨ q) ∧ (ū ∨ ȳ ∨ p̄ ∨ q̄).

To obtain 3CNF we need to introduce a new variable t and equation t = u ∧ y. Doing so does
not increase the number of satisfying assignments. The clauses thus obtained are:

(q = p⊕ t) ∧ (t = u ∧ y) ≡ (t̄→ p = q) ∧ (t→ p 6= q) ∧ (ū→ t̄) ∧ (ȳ → t̄ ∧ ((u ∧ y)→ t)

≡ (t ∨ p ∨ q̄) ∧ (t ∨ p̄ ∨ q) ∧ (t̄ ∨ p ∨ q) ∧ (t̄ ∨ p̄ ∨ q̄)
∧(u ∨ t̄) ∧ (y ∨ t̄) ∧ (ū ∨ ȳ ∨ t).

The end equations ui = zi become clause pairs (ui ∨ z̄i) ∧ (ūi ∨ zi). Overall, if C has m qubits,
h Hadamard gates, and s− h Toffoli plus CNOT gates, then the 4CNF formula has:
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• h Hadamard variables y1, . . . , yh;

• h+ 1 indicator variables w0, . . . , wh;

• s− h line variables v1, . . . , vs−h;

• m input variables x1, . . . , xm—which, however, are substituted for when presenting any
input a ∈ { 0, 1 }m; and

• up to m output variables z1, . . . , zm per the discussion of cylinders above.

These variables form 6h + 6t = 6s 3-clauses and 4-clauses, plus the 1-clause w̄0 plus up to
2m output clauses, making O(s + m) clauses in all. The 3CNF formula adds s more variables
and has 7s clauses besides (w̄0) and the output ones. As observed above, the formulas meet the
requirements of Theorem 3 for any cylinder B.

The one-qubit Pauli gates are defined as follows—note that X is the NOT gate and we have

multiplied Y =

[
0 −i
i 0

]
by i:

X =

[
0 1
1 0

]
, iY =

[
0 1
−1 0

]
, Z =

[
1 0
0 −1

]
.

• To emulate X on line i, pro-forma we introduce a new variable vo. The phase cannot
change, so we have no new w` equation, but we need to rule out the two 0s in the matrix.
Thus we add clauses ¬(ūi ∧ v̄o) and ¬(ui ∧ vo). They amount to the single equation clause
(vo = ūi).

As a shortcut we may just use ūi in place of ui for the next gate involving line i (or the
final output equation). In all of the above constructions and reasoning it is fine for “ui” to
be a negated variable. Thus the number of equation clauses may be less than the number
of gates.

• To emulate Z on line i we can leave ui alone since it is diagonal, but we need to flip the
current indicator variable w` if ui = 1. Thus we add the new variable w` and equation
w` = ui ⊕ w`−1. Reflecting that the Y gate is deterministic, there is no change to the
number of satisfying assignments—but now the number of phase-indicator variables will
be greater than h+ 1.

• To emulate iY, we allocate vo. We have to be mindful that ui indexes the columns, so the
−1 entry corresponds to (ūi ∧ vo), To eliminate the 0s we do as above for X. Thus we get
two new clauses:

(w` = w`−1 ⊕ (ūi ∧ vo)) ∧ (vo = ūi).

Thus the number of equations can be more than the number of gates. We can, however,
employ the shortcut of making ūi become the location on line i and avoid introducing
vo, simplifying the phase equation to (w` = w`−1 ⊕ ūi). In either event, the normalizing
constant R does not change,

As a check, note iY = ZX. In the order of presenting gates left-to-right in the circuit, the X
comes first. Suppose we take the shortcut option. Then we next use ūi in place of “ui” in the
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description for Z. We thus get the new phase equation w` = ūi ⊕ w`−1, which agrees with the
shortcut option for iY.

To emulate the phase gate S =

[
1 0
0 i

]
, however, we need to augment the series of indicator

variables to handle non-integral multiples of π.

4 Gates With Other Phases

Most of the other common quantum gates conform to the original meaning of bit as an eighth
of the Spanish dollar. So we take k = 3 and K = 8 to encode gates with entries that are powers
of ω =

√
i. The phases of paths can be identified with the integers modulo 8. We rename wj,`

to the following three series of variables indexed only by `:

• p` tracks whether the phase belongs to { 0, 1, 2, 3 } or to { 4, 5, 6, 7 };

• q` tracks whether it belongs to { 0, 1, 4, 5 } or to { 2, 3, 6, 7 };

• r` tracks whether the phase is even or odd.

The initial equations are (p0 = 0), (q0 = 0), and (r0 = 0), that is, singleton clauses p̄0∧q̄0∧r̄0.
The formulas φj = φC [Ws = j] are now obtained by substituting the bits of j for the respective
final variables ps, qs, rs. Again with s = 0 this will make φ0 = > when a = b and φj = ⊥ for
j 6= 0. When s ≥ 1 it is OK to substitute 0 for p0, q0, r0 to simplify the formula. Here are the
rules for certain gates:

• S =

[
1 0
0 i

]
: No new variable vo and no change to ui since this is diagonal, but the phase

increments by 2 modulo 8 when ui = 1. So we add the new phase variables p`, q` with
equations

q` = q`−1 ⊕ ui
p` = p`−1 ⊕ (ui ∧ q`−1).

• T =

[
1 0
0 ω

]
: This says to increment the phase modulo 8 if ui = 1 else leave it unchanged.

The equations are:

r` = r`−1 ⊕ ui
q` = q`−1 ⊕ (r`−1 ∧ ui
p` = p`−1 ⊕ (q`−1 ∧ r`−1 ∧ ui),

The last equation expresses that there is a carry from the 1s place all the way to the 4s
place (modulo 8). It goes outside the XOR-of-AND form of previous equations, but could be
broken down with an extra variable v as (p` = p`−1 ⊕ (ui ∧ v)) ∧ (v = (q`−1 ∧ r`−1)). For S the
parity does not change so there is no need to introduce r`, though no harm either in adding the
equation r` = r`−1. The same goes for the controlled-S gate.
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• CS =

[
I 0
0 S

]
with source i and target j: Since this is diagonal, no new line variables are

needed and ui and uj remain the markers on their lines. The new phase variables and
clauses, again with no change to r`−1, are:

q` = q`−1 ⊕ (ui ∧ uj)
p` = p`−1 ⊕ (ui ∧ uj ∧ q`−1).

• Rzθ =

[
e−iθ/2 0

0 eiθ/2

]
with θ = π/2, giving

[
ω̄ 0
0 ω

]
: The direct approach gives

r` = ¬r`−1,
q` = q`−1 ⊕ (r`−1 ⊕ ui)
p` = p`−1 ⊕ ((ui ∧ q`−1 ∧ r`−1) ∨ (ūi ∧ q̄`−1 ∧ r̄`−1)),

with no change to ui on the line. The equation for p` is annoying to convert into CNF.
There are two alternatives. First, Rzπ/2 is just the scalar multiple of S by ω̄, so we could
ignore the scalar and do as for S. We would lose the literal correspondence between
the values of (p`, q`, r`) and the phase, but the acceptance amplitudes would not change.
However, we can accommodate the scalar by wriing equations involving just those and
(p`−1, q`−1, r`−1):

r` = ¬r`−1,
q` = q`−1 ⊕ r̄`−1,
p` = p`−1 ⊕ (q̄`−1 ∧ r̄`−1).

These equations all stay within the conversion to CNF given above, but taking two steps
introduces an extra q` and r` variable.

• V =
√
X = 1√

2

[
ω ω̄
ω̄ ω

]
: As written this is a nondeterministic gate, so we allocate a new

line variable yo which is free and becomes the “new ui” in subsequent stages. Coding it

directly has a similar annoyance factor, but we can use V = ω̄ · 1√
2
·
[
i 1
1 i

]
. The parity r`

flips if we bother with the ω̄ factor but otherwise does not change. The other equations
are:

q` = q`−1 ⊕ (yo = ui)

p` = p`−1 ⊕ (q`−1 ∧ (yo = ui)).

The first equation is equivalent to q`⊕ q`−1⊕yo⊕ui; as an XOR expression it has a 4CNF
of eight clauses. The seond is equivalent to

(q`−1 ∨ p` ∨ p̄`−1) ∧ (q`−1 ∨ p̄` ∨ p`−1) ∧ (q̄`−1 ∨ F ),

where F = p` ⊕ p`−1 ⊕ yo ⊕ ui is again an XOR of four literals. Hence we get a 5CNF of
2+8 clauses unless we introduce extra variables. The constant R goes up by a factor of 2,
not just

√
2.
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• CV =

[
I 0
0 V

]
: This 2-qubit gate is famous for combining with CNOT to simulate the

Toffoli gate [BBC+95]. We can emulate it by replacing “ui” in the expressions for V by
(ui ∧ uj), making yo the new location on the target line j and leaving ui alone on i.
Conceptually simpler is to use the equation

CV = (I⊗ H) · CS · (I⊗ H),

that is, sandwiching CS between two Hadamard gates on line j.

Noting also that CV · CV = CNOT, it follows that CS and H form a universal set. It is
interesting to compare the formulas obtained via various equivalences of this kind, especially
in regard to the numbers of free variables added. The way parity formulas crop up in these
equations enhances our interest in the construction in the Appendix, in case #sat solvers tailored
to XOR form arise. The phase variables in all cases retain the property that upon setting the free
variables y1, . . . , yh for Hadamard gates and any yo for other nondeterministic gates as above,
the values of all p|ell, q`, r` are forced.

To emulate Rzθ or Tθ =

[
1 0
0 eiθ

]
for finer angles θ = π/2K−1, we would add more series of

phase-tracking variables mod 16, mod 32, and so forth. The sizes of formulas remain polynomial
in k = log2(K), but the number of phase terms in the formula

〈 a |C | b 〉 =
1

R

K−1∑
L=0

#sat(φ[~w = j,~a = a,~b = b])ωL =
1

R

∑
z

∑
L

φ(L, a, b, z)ωL

becomes exponential in k. Here is where the ability to take approximations in samples over
these sums while driving Shor’s algorithm may come in. We bring these issues right to a head
by discussing the quantum Fourier transform next.

5 Encoding the QFT and Tradeoffs

The quantum Fourier transform QFTn on n qubits is represented (in the standard basis) by the
ordinary N ×N discrete Fourier matrix FN where N = 2n. It has entries

FN [I, J ] = ωI·J ,

where ω = e−2πi/N . If the incoming phase is c then the new phase is c′ = c + I · J modulo N .
Hence the only equations we need to add are

W` = W`−1 + I · J (mod N). (2)

Here we have suites of n phase variables for W`−1 and W`, n qubit line literals ui coding J , and
n fresh location variables y1, . . . , yn coding I. Since FN is symmetric we could interchange I
and J . Another thing to note is that the parity in multiples of 1/N changes if and only if the
row and column index of FN (numbered from zero) are both odd. If the qubit lines on which
FN is situated are labeled u1, . . . , un in order, then the odd row indices are those with un = 1
and the odd column indices have vn = 1 for the newly-introduced variable vn replacing un on
that line. It follows that the equation for the finest-phase variable is simply

wn,` = wn,`−1 ⊕ (un ∧ vn).
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The string relation (2) is known to have Boolean circuits of size O(n logO(1)(n)) via the
Schönhage-Strassen integer multiplication algorithm [SS71] and its conversion to circuits. (Iron-
icaly, this uses F2n.) We do not know how efficiently the formulas convert to CNF but with
the introduction of extra variables it is reasonable to suppose we can obtain bounded CNF of
roughly O(n2) size. Alternatively, one can use Karatsuba multiplication in time O(n1+ε) and
expect to get bounded-CNF formulas of size not too much worse. Concrete quantum circuits
have recently been presented by Markov and Saeedi [MS12].

In any event, the inclusion of QFTn in a circuit still allows formulas φC of nO(1) size. Lurking,
however, is the issue of having 2n phases. We will combine two ideas to finesse this: approxi-
mating the output distribution of QFTn and using a #sat oracle on subformulas to guide the
sampling.

A second way to emulate QFTn is to use quantum circuits of simpler gates. Among various
recursions for QFTn in terms of recursions and similar gates, the following may be best tailored
to our scheme of emulation. The qubit n-cycle defined by Kn| a1a2a3 · · · an 〉 = | a2a3 · · · ana1 〉
and its inverse can be effected by cycling the ui labels, without introducing any variables or
adding any clauses. For all N define DN to be the diagonal matrix with entries

DN [I, I] = eπiI/N ,

noting the absence of the ‘2’ before ‘π’ so that this runs through the first N powers of a primitive
2N -th root of unity. Then we obtain the recursion

FN =
1√
2

[
I DN/2

I −DN/2

] [
FN/2 0

0 FN/2

]
K−1n .

The Boolean equations for DN/2 are much easier to handle than those for FN directly because
they involve only adding I modulo N to the phase, not multiplying. The identity matrices I here
are N/2 × N/2. Unrolling the recursion gives n stages, each of O(n) formula size. Conversion
to bounded-arity CNF and the presence of 2n phases remain issues.

6 Sampling and Uniform Generation

To discuss sampling, first we review the classical way to sample satisfying assignments of a
Boolean formula φ(x1, . . . , xn) uniformly at random. If we try to do this with a SAT decision
solver, then we might try the following: Ask whether φ0 = φ[x1 = 0] and φ1 = φ[x1 = 1] are
satisfiable. If both are, then flip a coin to give the value of x1, else just one is satisfiable and
we must set x1 accordingly. The flaw is that this does not give uniform distribution over the
set S of satisfying assignments. There may be just one member a with x1 = 0 and many with
x1 = 1, yet this process will give a with probability 0.5. It is in fact strongly believed that
uniform sampling from S cannot be done with a decision solver, because that would collapse
the complexity class #P and hence the polynomial hierarchy down to PNP.

With a #sat solver, however, we can calculate not only |S| but also its breakdown according
to the trial value of x1. We can thus carry out the classical reduction from counting to uniform
generation:

• Using two calls to #sat , compute |S0| = |{x ∈ S : x1 = 0 }| and |S1| = |{x ∈ S : x1 = 1 }|.

• Set x1 = 0 with probability |S0|/|S| and x1 = 1 otherwise.

12



• Substitute the value of x1 into φ and recurse on x2 and so on.

In the quantum case we could do this on φ = φC to sample uniformly from S, but as
remarked above in the binary case, this alone gives little information insofar as assignments for
positive and negative paths are nearly evenly distributed. The quantum sampling task is to
generate outputs b—belonging to { 0, 1 }m or some (cylindrical) subset B thereof—according to
the probability distribution |〈 a |C | b 〉|2. A naive attempt to emulate the above process—in the
binary case K = 2 with h Hadamard gates—could go like this:

1. After substituting ~x = a in φC , substitute only b1 = 0, that is, z1 = 0, to create φ0. Leave
zi for i ≥ 2 alone.

2. Use the #sat oracle to compute s+0 = #sat(φ0[wh = 0]) and s−0 = #sat(φ0[wh = 1]).

3. Fix b1 = z1 = 0 and φ = φ0 with probability p0 = 1
2h

(s+0 − s
−
0 )2, else fix b1 = z1 = 1 and

φ = φ1.

4. Repeat the above steps for z2, then z3, and so on to the end.

This fails, however, because s+0 is the number of all positive paths from a to elements of
B0 = { b ∈ { 0, 1 }m : b1 = 0 }, likewise s−0 the number of all such negative paths. The probability
of the output landing in B—that is, of measuring 0 in the first qubit—is not (s+0 − s

−
0 )2 but

rather the sum of the squared differences for each individual b ∈ B, divided by 2h.
We need a theorem to maintain these squared differences that preserves the cylindrical

structure. The proof is a natural outgrowth of the ideas of Theorem 3 and Section 4. We state
and prove the binary case first.

Theorem 4. Let C be a circuit of m qubits, h Hadamard gates, and s − h Toffoli and
CNOT gates. Then we can efficiently build a Boolean formula ψC of size O(m + s) in vari-
ables ~v, ~v′, ~w, ~w′, ~x, ~y, ~y′, ~z and find a constant R such that for all a ∈ { 0, 1 }m and cylinders
B ⊆ { 0, 1 }m:

Pr[C(a) ∈ B] =
∑
b∈B
|〈 a |C | b 〉|2

=
1

2h
(#sat(ψC [~x = a, ~z = b] ∧ wh = w′h)−#sat(ψC [~x = a, ~z = b] ∧ wh 6= w′h).

Moreover, for every assignment (a, c, c′) to ~x, ~y, ~y′ there is exactly one completion to an assign-
ment that satisfies ψC and it can be found in O(s) time.

Proof. Take φC from Theorem 3 and make ψC from two copies of φC . The second copy shares
the input and output variables and shares the initialization w0 = 0 but has fresh Hadamard
variables y′1, . . . , y

′
h, fresh phase variables w′1, . . . , w

′
h, and fresh line variables v′1, . . . , v

′
s−h from

the non-Hadamard gates. By the analysis used to prove Theorem 3, for any a, b ∈ { 0, 1 }m:

• The number of satisfying assignments with ~x = a, ~z = b that set wh = 0 and that set
w′h = 0 equals p+C(a, b)2.

• The number of satisfying assignments with ~x = a, ~z = b that set wh = 1 and that set
w′h = 1 equals p−C(a, b)2.

13



• The number of satisfying assignments with ~x = a, ~z = b that set wh and w′h differently
equals 2p+C(a, b) · p−C(a, b).

Equation (3) follows because we are summing (p+C(a, b) − p−C(a, b))2 over all b ∈ B and the
denominator 2h is the same for all terms. The previous proof analysis also establishes that every
assignment (a, c, c′) forces values of the line variables and phase variables in each copy and that
the evaluation remains in O(s) time.

Now we can make the uniform generation procedure work by using ψ0 = ψC [z1 = 0] in place of
φ0. We need two calls to the #sat oracle to evaluate #sat(ψ0∧wh = w′h) and #sat(ψ0∧wh 6= w′h).
Their difference over 2h gives the correct probability because by summing over assignments to
z2, . . . , zm we are summing (3) over b ∈ B0. We do not need to make separate calls for the case
z1 = 1. Thus the efficiency in the number of oracle calls is the same as in the classical iterative
reduction. The resulting binary string b is generated with the same probability distribution DC
as measuring all registers of C(a) would give, and the time needed is O(mhT2s+m) where Tn is
the time for calls to the #sat oracle on an n-variable formula.

The main pain is that the doubling-up of the previous φC changes the number of variables
after substitutions from s+m−1 to 2s+m (the extra “+1” comes from wh being equated to w′h
rather than fixed). There is, however, a sense in which the doubling would wind up being paid
anyway. Suppose C is a decision circuit for inputs of length n. Standard definitions of acceptance
by quantum circuits tend to say either that qubit 1 is measured or qubit n+1 is measured, with
the binary outcome g(x) = 1 for acceptance, 0 for rejection. Let’s say it is qubit n+ 1. If we say
nothing more and work with φC , then we are working with B1 = { b ∈ { 0, 1 }n+1 : bn+1 = 1 } and
have the above-described problem that #sat(φC [zn+1 = 1, . . . ]) does not give what’s needed.

The standard answer is to apply the so-called “compute-uncompute trick” by designing the
bulk of C to operate on qubits 1, . . . , n, then use a CNOT gate to place the answer on line
n+ 1, and then put a reversed and conjugated copy of the gates of C on the first n lines. The
resulting circuit C ′ = C∗ ◦ CNOT ◦ C maps (a, 0) for any input a ∈ { 0, 1 }n to (a, g(a)). Thus
we have b = a1 as the unique target for 〈 a |C ′ | b 〉. Going from C to C ′, however, requires the
same increase in fresh Hadamard and line variables as going to ψC . Indeed, the beautiful point
is that φC′ and ψC are virtually identical.

For K = 4 we again get a difference of two calls to #sat :

Proof of Theorem 2. Here by the constructions in Section 4 the formula φC has variables ph, qh
denoting the final phase, with ph = 0 for 1 and i versus ph = 1 for −1 and −i, and qh = 0 for
1,−1 versus qh = 1 for i,−i. Again we make a copy φ′C with final phase variables p′h < q′h. For
a final state α = a+ bi− c− di we have

|α|2 = (a2 + b2 + c2 + d2)− (2ac+ 2bd).

The positive term is expressed by conjoining (p′h = ph) ∧ (q′h = qh). The negative term is
expressed by the combinations (phqh, p

′
hq
′
h) = (00, 10), (10, 00), (01, 11), or (11, 01). The con-

junction allowing exactly these combinations is (p′h 6= ph) ∧ (qh = q′h).

The case K = 8, however, brings a difference from theory when concreteness is desired. In
theory the acceptance probability remains the difference between two #P functions, hence two
invocations of #sat , for any K. Indeed with k = log(K) allowed to grow polynomially in n
it remains within the general closure theorem for the class GapP of [FFK94, FFL96, FR99].
However, with K = 8 the exponential sums have terms that are integral and terms multiplied
by
√

2.
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7 Driving Shor’s Algorithm

Shor’s algorithm to factor a given n-bit integer M starts by choosing Q = 2` where ` = 2n+ 1,
so that M2 < Q < 2M2. It first guesses uniformly at random a number a such that 1 < a < M .
Presuming gcd(a,M) = 1 (else we’ve found a factor of M by luck), it first sets up a deterministic
circuit C0 (using classical reversible gates) that maps any binary-encoded number x < Q to
fa(x) = ax (mod M). More precisely, C0 maps x · 0` to the concatenation x · y where y = fa(x)
as an `-bit number. The execution of C0(x) using iterated squaring is actually the most time-
consuming step by quantum reckoning and creates substantial overhead for our emulator. Here
is the quantum part of the algorithm:

1. Prepend Hadamard gates on the first ` of 2` qubit lines.

2. Then stick C0 on the 2` lines. This creates the functional superposition

Φ =
1√
Q

∑
x

|xfa(x) 〉.

3. Apply QFT` to the first ` lines—that is. multiply by FQ ⊗ I⊗`.

4. Measure the first ` registers to get an output b < Q.

The algorithm then goes into deterministic steps that attempt to use b to find a period r
such that fa(x) = fa(x + r) for all x. With high probability, a correct r will cause a factor of
M to tumble out. If the steps involving b fail, we start over again with another a′. The analysis
shows that with high probability we need only O(log n) restarts.

The last step giving b can be emulated by exactly the sampling process of the last section.
We can stop when z` is set—the remaining values and their probabilities will not matter.
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8 Appendix 1: Self-Contained Proof of Theorem 3

The following lemma acts as a “bridge” that may have separate application to SAT-solving in
XOR form rather than CNF.

Lemma 1. We can convert a quantum circuit C into a formula ψC of the form µ ∧ η, where

µ = (p̄0 ⊕ (u1 ∧ y1)⊕ (u2 ∧ y2)⊕ · · · ⊕ (uh ∧ yh)),

such that after substituting any values for a and b, p+C(a, b) = #sat(µ∧η)[p0 = 0] and p−C(a, b) =
#sat(µ ∧ η)[p0 = 1]. Here some ui variables may coincide with a yj variable, but the {ui } are
distinct, as are the { yj }.

The intuition is that CNOT and Toffoli gates have no effect on the signs of paths. Only when
both input qubit and output qubit to a Hadamard gate are | 1 〉 does the path’s sign change. The
binary basis values of these bits are represented by the variable pairs uj , yj . Thus the path is
positive if and only if it corresponds to an assignment that satisfies an even number of the terms
(uj ∧ yj) (including zero). It hence satisfies µ with p0 = 0. Whereas, the path is negative if and
only if it corresponds to an assignment that satisfies an odd number of the terms (uj ∧ yj), and
so satisfies µ with p0 = 1, which is the same as negating µ. The contributions from CNOT and
Toffoli gates go only into η and are “forced” by assignments to variables in µ so as to preserve
input/output consistency. They are part of η.

Proof. Label the inputs with variables x1, · · · , xn. If there are ancilla qubits, it is fine to continue
labeling them xn+1, · · · , xm and substitute them with 0 later. Similarly label the outputs with
variables z1, · · · , zn, again using more if there are more qubits.

The first invariant of the construction is that at any stage each qubit line i has a “current
variable” which we refer to indirectly as ui. Initially each ui is xi. Upon declaring the circuit
finished, we conjoin to η the equation clauses (zi = ui) for each i. Initially we have

ψ0 = µ0 ∧ η0 = p̄0 ∧
m∧
i=0

(xi = zi) = p̄0 ∧
m∧
i=0

(x̄i ∨ zi) ∧ (xi ∨ z̄i).

Given any a, b ∈ { 0, 1 }m, we have p+0 (a, b) = 1 if a = b and 0 otherwise, and we always have
p+0 (a, b) = 0 since there are no negative paths. The formula ψ0[x = a, z = b] equals ⊥ (false)
unless a = b, in which case it simplifies to p̄0. This has one satisfying assignment when p0 = 0
and none with p0 = 1. So Lemma 1 holds in this initial case. The induction goes as follows:

1. To add a Hadamard gate Hr on qubit line i, allocate a new variable yr and define µ′ =
µ⊕ (ui ∧ yr). Then yr becomes the new “ui” on line i for the next stage.

2. To add a CNOT gate with source on line i and target on j, allocate a new variable vj ,
leave µ alone, and conjoin to η the equation (vj = uj ⊕ ui). Then vj becomes the new
“uj” for the next stage.

3. To add a Toffoli gate with sources on lines i and j and target on k, allocate a new variable
vk, leave µ alone, and conjoin to η the equation (vk = uk ⊕ (ui ∧ uj)).
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To prove correctness first in the case of a Toffoli gate, let any a, b be given, and consider C
and µC and ηC before the gate was added to form C ′. By inductive hypothesis, p+C(a, b) equals
the number of satisfying assignments to (µ ∧ η)[x = a, z = b] with p0 = 0 and p−C(a, b) the
number with p0 = 1. Then η′[x = a, z = b] replaces the equation (bk = uk) in η by

(bk = vk) ∧ (vk = uk ⊕ (ui ∧ uj)).

Both have the equations (bi = ui) and (bj = uj). If (bi ∧ bj) is false, then a positive path goes
from a to b in C if and only if its unique extension in C ′ goes also to b, and ditto for a negative
path. Hence

p+C′(a, b) = p+C(a, b) = #sat((µ ∧ η)[x = a, z = b])[p0 = 0]

p−C′(a, b) = p−C(a, b) = #sat((µ ∧ η)[x = a, z = b])[p0 = 1].

Any satisfying assignment of (µ ∧ η′) must make ui ∧ uj false and hence make vk = uk true, so
it yields a unique satisfying assignment of (µ ∧ η). Conversely, every satisfying assignment of
(µ ∧ η) induces one of (µ ∧ η′) with vk = uk. Hence the right-hand sides remain true with η′ in
place of η.

If bi = bj = 1, then let b′ equal b with the bit bk flipped. For every path that goes from a to
b in C there is a unique path of the same sign that goes from a to b′ in C ′ and vice-versa. Thus
we have

p+C′(a, b) = p+C(a, b′) = #sat((µ ∧ η)[x = a, z = b′])[p0 = 0],

p−C′(a, b) = p−C(a, b′) = #sat((µ ∧ η)[x = a, z = b′])[p0 = 1].

Now an assignment that satisfies µ ∧ η with uk = b′k extends to one of µ ∧ η′ uniquely with
vk = ¬uk since it makes (ui ∧ uj) true. Thus it makes vk = bk back again and so satisfies
(µ ∧ η)[x = a, z = b]. The correspondence is 1-to-1 for the cases p0 = 0 and p0 = 1 separately
(simply because p0 does not appear in the clauses that differ between η and η′), so we obtain

p+C′(a, b) = p+C(a, b′) = #sat((µ ∧ η′)[x = a, z = b])[p0 = 0],

p−C′(a, b) = p−C(a, b′) = #sat((µ ∧ η′)[x = a, z = b])[p0 = 1].

in this case too, as needed to be proved. The case of a CNOT gate is similar and simpler.
In the case of a Hadamard gate on line i, now define b′ to be b with bit i flipped. Let ψ

abbreviate µ ∧ η with the substitutions xj = aj and zk = bk for all k 6= i, and similarly ψ′

in relation to µ′ ∧ η′. So for instance, #sat((µ ∧ η)[x = a, z = b])[p0 = 0] is abbreviated by
#sat(ψ[zi = bi])[p0 = 0].

Let us first suppose bi = 0, so b′i = 1. Then positive paths from a to b in C split into two
positive paths going to b and to b′ in C ′, likewise negative paths. Whereas, positive paths from
a to b′ in C split into a positive path going to b in C ′ and a negative path going to b′ in C ′,
while negative paths from a to b′ in C split in C ′ into a negative path to b and a positive path
to b′. Focusing on the destination b, it follows that

p+C′(a, b) = p+C(a, b) + p+C(a, b′) = #sat(ψ[zi = bi])[p0 = 0] + #sat(ψ[zi = b′i])[p0 = 0],

p−C′(a, b) = p−C(a, b) + p−C(a, b′) = #sat(ψ[zi = bi])[p0 = 1] + #sat(ψ[zi = b′i])[p0 = 1].

Now ψ′ differs from ψ only in having µ′ = µ⊕ (ui ∧ yi) and η′ replacing ui = bi in η by yi = bi
instead. Since bi = 0, any satisfying assignment to ψ′ sets yi = 0 and hence makes (ui ∧ yi)
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false. It follows that satisfying assignments to ψ′ are in 1-to-1 correspondence with satisfying
assignments to ψ that make ui = 0 plus those that make ui = 1 (whatever variable is being
referred to as ui), which are the same as those that make zi = 0 in ψ plus those that make
zi = 1. Because this applies separately for p0 = 0 and for p0 = 1, we’ve shown

p+C′(a, b) = = #sat(ψ′[zi = 0])[p0 = 0] = #sat((µ′ ∧ η′)[x = a, z = b])[p0 = 0], (3)

p−C′(a, b) = #sat(ψ′[zi = 0])[p0 = 1] = #sat((µ′ ∧ η′)[x = a, z = b])[p0 = 1]. (4)

In the case bi = 1 we have b′i = 0. The previous reasoning about splitting paths applies with
the roles of b and b′ switched, so we get:

p+C′(a, b) = p−C(a, b) + p+C(a, b′) = #sat(ψ[zi = bi])[p0 = 1] + #sat(ψ[zi = b′i])[p0 = 0],

p−C′(a, b) = p+C(a, b) + p−C(a, b′) = #sat(ψ[zi = bi])[p0 = 0] + #sat(ψ[zi = b′i])[p0 = 1].

In both cases this is because the paths going straight across from b at the end of C to b at the
end of C ′ flip sign. Satisfying assignments to ψ′[zi = bi] now make yi = bi = 1, so (ui ∧ yi)
simplifies to ui. Conditioned on ui = 0, they satisfy ψ′ if and only if they satisfy ψ. Conditioned
on ui = 1 = bi, they satisfy ψ′ with p0 = 0 if and only if they satisfy ψ with p0 = 1. The
correspondence goes the other way as well: assignments satisfying ψ with p0 = ui extend to
satisfying assignments of ψ′ with p0 = 0 and those with p0 6= ui extend with p0 = 1. Hence

#sat(ψ′)[p0 = 0] = #sat(ψ[zi = bi])[p0 = 1] + #sat(ψ[zi = b′i])[p0 = 0],

#sat(ψ′)[p0 = 1] = #sat(ψ[zi = bi])[p0 = 0] + #sat(ψ[zi = b′i])[p0 = 1].

This finally implies (3) and (4) in this case too, as needed to be proved.

To give a direct proof of Theorem 3, no further argument about paths in circuits is needed—
the rest only manipulates the Boolean formulas into conjunctive normal form by introducing
the phase variables.

The final construction invariant is to maintain a variable pr reflecting the current truth value
of µ = p̄0⊕ (u1∧ y1)⊕· · ·⊕ (ur ∧ yr), which we abstract to p̄0⊕µ1⊕· · ·⊕µr. Note, incidentally,
that our indexing convention φ0 = φ[p0 = 0] for the positive paths and p0 = 1 for negative
reflects (−1)0 = 1 and (−1)1 = eπi = −1, while an empty expression µ1 ⊕ · · · ⊕ µr with r = 0
has the value false. Hence we actually make p̄r equal the truth value of µ at stage r.

Lemma 2. Given any formula µ ∧ η with µ = p̄0 ⊕ µ1 ⊕ · · · ⊕ µr, if we allocate new variables
p1, . . . , pr and define

µ′ = (p̄0 ⊕ µ1 = p̄1) ∧ (p̄1 ⊕ µ2 = p̄2) ∧ · · · ∧ (p̄r−1 ⊕ µr = p̄r) ∧ p̄r,

then #sat(µ′ ∧ η)[p0 = 0] = #sat(µ∧ η)[p0 = 0] and #sat(µ′ ∧ η)[p0 = 1] = #sat(µ∧ η)[p0 = 1].

Proof of Lemma 2 and Theorem 3. First suppose an assignment has p0 = 0. Then it satisfies µ
if and only if it makes an even number of the µi true. Since we must have pr = 0, µ′ simplifies
to

(1⊕ µ1 = p̄1) ∧ (p̄1 ⊕ µ2 = p̄2) ∧ · · · ∧ (p̄r−1 ⊕ µr = 1). (5)

This is satisfiable if and only if an even number of the µi are satisfied, and the values of
p1, . . . , pr−1 are forced. Going the other way, an assignment that satisfies µ′ with p0 = 0 must
satisfy (5) with an even number of µi made true, hence it satisfies µ with p0 = 0. Note that this
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folds in the above reasoning for the case r = 0. Since η involves none of the variables p1, . . . , pr−1
(nor p0 nor pr, in fact), its presence does not affect the 1-to-1 correspondence.

If the assignment has p0 = 1 then it satisfies µ if and only if it makes an odd number of the
µi true. Then µ′ simplifies to

(0⊕ µ1 = p̄1) ∧ (p̄1 ⊕ µ2 = p̄2) ∧ · · · ∧ (p̄r−1 ⊕ µr = 1), (6)

which is likewise satisfiable—uniquely—if and only if an odd number of the µi are made true.
Once again this respects the case r = 0 and the presence (or absence) of η. This also completes
the proof of Theorem 3.

The above argument goes through regardless of which signs we choose for p1, . . . , pr, provided
the sign of pr is the same in the last equation and the last conjunct. We have chosen the signs
all negative to facilitate one further observation: we can now flip them all to have positive sign.
This changes the interpretation of the indices: now φ0 ≡ φ[p0 = 0] corresponds to p−C rather than
p+C . But since the final acceptance probability is a function of (p+ − p−)2 even this difference
does not matter to the simulation.
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