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Abstract
Distributional analysis of large data-sets of chess games
played by humans and those played by computers shows the
following differences in preferences and performance:
(1) The average error per move scales uniformly higher the
more advantage is enjoyed by either side, with the effect
much sharper for humans than computers;
(2) For almost any degree of advantage or disadvantage, a
human player has a significant 2–3% lower scoring expecta-
tion if it is his/her turn to move, than when the opponent is to
move; the effect is nearly absent for computers.
(3) Humans prefer to drive games into positions with fewer
reasonable options and earlier resolutions, even when playing
as human-computer freestyle tandems.
The question of whether the phenomenon (1) owes more to
human perception of relative value, akin to phenomena docu-
mented by Kahneman and Tversky, or to rational risk-taking
in unbalanced situations, is also addressed. Other regulari-
ties of human and computer performances are described with
implications for decision-agent domains outside chess.

Keywords. Game playing, Computer chess, Decision mak-
ing, Statistics, Distributional performance analysis, Human-
computer distinguishers.

1 Introduction
What can we learn about human behavior and decision-
making agents via large-scale data from competitions? In
this paper we use data sets from high-level human and
computer chess matches totaling over 3.5 million moves
to demonstrate several phenomena. We argue that these
phenomena must be allowed for and reckoned with in
mainstream machine-learning applications aside from chess.
They also show new contrasts between human and com-
puter players. Computer chess-playing programs, called en-
gines, are rated markedly higher than all human players even
on ordinary personal computer hardware (Banks and others
2013). They are observed to make fewer blunders than hu-
man players (see (Guid and Bratko 2006; 2011)) even after
adjusting for difference in overall playing strength.

Here blunder means a mistake of sizable cost, whose cost
can be demonstrated over a relatively short horizon. We dis-
tinguish this from aggregate error as judged by a third party.
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In our case the third parties are computer chess programs
analyzing the position and the played move, and the error
is the difference in analyzed value from its preferred move
when the two differ. We have run the computer analysis
to sufficient depth estimated to have strength at least equal
to the top human players in our samples, depth significantly
greater than used in previous studies. We have replicated our
main human data set of 726,120 positions from tournaments
played in 2010–2012 on each of four different programs:
Komodo 6, Stockfish DD (or 5), Houdini 4, and Rybka 3.
The first three finished 1-2-3 in the most recent Thoresen
Chess Engine Competition, while Rybka 3 (to version 4.1)
was the top program from 2008 to 2011.

All computer chess programs give values in units of cen-
tipawns, figuratively hundredths of a pawn. They may differ
in how they scale these units—in particular, our work con-
firms that versions of Stockfish give values about 1.5 times
higher magnitude than most programs, while Rybka, Hou-
dini, and Komodo are close to each other. The value of the
computer’s best move in a position denotes the overall value
v of the position. In all except the small PAL/CSS dataset
of games by human-computer tandems and some computer-
played sets, for which we used a much slower analysis mode
that evaluates all “reasonable” moves fully, we reckoned the
value of the played move (when different) as the value v′ of
the next position from the same player’s perspective (con-
trast (Guid and Bratko 2006; Guid, Pérez, and Bratko 2008;
Guid and Bratko 2011)). The proper subtraction v − v′ is
added to the running error total, and dividing by the to-
tal number of positions gives the (raw) average difference
(AD) statistic. Now we can state the three main phenomena
demonstrated in this contribution:

1. When the AD ad(v) in positions of value v in human-
played games is graphed against v, it grows markedly
with |v|—indeed the marginal AD is nearly proportional
to |v|. Ratios of the form ad(c · v)/ad(v) for c > 1 are
largely independent of the skill level of the human play-
ers, but smaller by half in games played by computers.

2. The proportion p(v) of points scored (1 for win, 0.5 for
draw) by human players with positions of value v is 2–
3% less when those players are to move, than in positions
where it is the opponent’s turn to move. The effect is
absent in computer-played games.



3. Positions in games played by humans—even by human-
computer tandems—have a significantly smaller range
of reasonable moves than positions played by computers
alone.

Before presenting the data for these results, we discuss
potential wider significance and motivations. The first phe-
nomenon was already reported by (Regan, Macieja, and Ha-
worth 2011) but for unstructured data without controls—in
particular, without investigating possible dependence on the
player’s skill rating. They interpreted it as owing to hu-
man psychological perception of differences in value be-
tween moves in marginal proportion to the overall absolute
value of the position, with reference to human consumer be-
havior demonstrated by Kahneman and Tversky (Kahneman
and Tversky 1981). Stedile (Stedile 2013) argued instead
that it can be explained rationally with regard to risk tak-
ing. The graph of p(v) approximately fits a logistic curve
(1/(1 + e−cv) where c depends on the scaling) with slope
greatest near v = 0, so that the marginal impact of an er-
ror on the points expectation is greatest when the game is
balanced. The argument is that players rationally take fewer
risks in close games, while the strong computer analyzers
expose the riskier played moves as errors to a greater de-
gree than human opponents; hence more error is recorded
by them from the riskier played moves in unbalanced posi-
tions (v away from 0).

Can these two hypotheses—psychological perception ver-
sus rational risk-taking—be teased apart? Stedile did not
claim to resolve the issue, nor did either (Stedile 2013) or
(Regan, Macieja, and Haworth 2011) distinguish according
to the difference in ratings between players in the games.
Human chess players are rated on the well-established and
well-documented Elo rating scale, which gives numbers
ranging from 600–1200 for “bright beginner,” 1200–1800
for regular “club players,” 1800–2200 for expert players,
2200–2500 for master players (many of whom frequent in-
ternational tournaments), and 2500–2800+ for typical hold-
ers of the Grandmaster title to the world’s best players (fewer
than 50 above 2700 as of this writing). The rating system is
designed so that a difference d in rating gives expectation
p(d) = 1/(1 + 10d/400) to the weaker player, which means
about 36% when he/she is 100 points lower rated, 30% for
150 points lower, 24% for 200 points lower, 15% for 300
lower, and so on.1 Our figures emphasize 150-point rating
differences and 30/50/70% expectation.

The second phenomenon is robust up and down the value
curve: the human player to move scores 2–3% worse for
positions of constant value v to him/her than when the op-
ponent is to move. The difference is somewhat greater when
weaker players are to move, but is not significantly affected
by the difference in ratings. We seem to be left with a
pessimistic, even cynical, explanation: the player to move

1That observed scores are a few percentage points higher for
the lower player is ascribed to uncertainty in ratings by (Glickman
1999). Whether such a “globbing” effect is present due to uncer-
tainty over value seems harder to pin down, even though both map
to points expectations p(·) via logistic curves that are identical up
to scale units.)

has the first opportunity to commit a game-clarifying blun-
der. Indeed the frequency of blunders matches the 2–3%
observed difference. The effect is absent in our computer
data. This demonstrated aspect of human error highlights a
generic advantage of using computerized decision agents.
Natural human optimism would view having the turn to
move as greater value of opportunity.

The third phenomenon addresses the question of a generic
human tendency to try to force earlier skirmishes in unre-
solved situations, when better value may be had by strategies
that keep a wider range of good options in reserve. Compare
the hotter inclinations of Kirk or McCoy versus the cooler
counsels of Spock in the first halves of many “Star Trek”
episodes. In our situation the computers playing the role of
“Spock” are proven to be stronger players than the humans.
It is thus all the more significant that in so-called “Freestyle”
tournaments where humans freely use (often multiple) com-
puters for analysis but have the final say in choice of moves,
the pattern of forcing play is close to that of human games,
and significantly stronger than in games played by comput-
ers alone. Again with reference to computerized decision
agents, we regard this as a “natural” demonstration of factors
that must be specifically addressed in order for the agents to
best please their human masters.

2 Data
The “Human” dataset comes entirely from games played in
208 tournaments in the years 2010 through 2012. It includes
all round-robin chess tournaments rated “Category 9” and
higher by the World Chess Federation (FIDE) that were held
in those years. Each “category” is an interval of 25 points in
the average rating of the players. Category 9 denotes aver-
ages from 2451 to 2475, while the strongest category in the
set (and of any tournament ever played before 1/30/14) is
22, denoting 2776–2800. The set also includes several coun-
tries’ national or regional championships that were held as
“Open” rather than invitational round-robin events, which
hence provide a reasonable sample of players at lower rat-
ing levels. It does not have any team competitions or events
played at time controls faster than those licensed by FIDE
for standard Elo ratings.

The total of 10,317 games includes 726,120 analyzed
moves, excluding turns 1–8 of all games. Moves inside re-
peating sequences were also eliminated, leaving 701,619 rel-
evant moves. Of these:

• 108,663 are by players rated 2700 and above;

• 43,456 are by players rated 2300 and below;

• 59,532 are in games between players rated 150 or more
points apart.

An issue in judging statistical significance for results on
this dataset is correlation for moves in the same game. Sup-
pose Black has an advantage in the range 0.21–0.30 (in the
standard “centipawn” units of chess engines) at move 10 and
again at move 40. The result of that game will thereby count
twice in the histogram for that range. Hence the two turns
are correlated. However, since they are 30 game turns apart



they are largely independent as situations with that advan-
tage.

We take the conservative policy of regarding all moves
from the same game as correlated, and use this to justify the
following rough approach: Our target minimum sample size
is 41,000 moves. The average number of analyzed moves
per game rounds to 70, which ignoring White’s frequency
of playing one more move than Black gives 35 by each
player. From these, one move for each player is typically
eliminated, leaving 34 each. Since the samples will never or
rarely involve both players from the same game, a sample
size of 41,000 expects to involve at least 1,200 games. Now
1,200 is a common poll-size target giving roughly a ±3%
two-sigma margin-of-error for frequencies even as far from
0.5 as 0.25 or 0.75. The difference between two independent
such samples allows about a 2% difference to count as sig-
nificant. For samples of about 160,000 moves this becomes
1%, and for halves of the whole data set it is about 0.7%.
Note also that each move involves two situations: one for
the player to move and one for the player not-to-move, so
the overall space has over 1.4 million entries.

These moves were analyzed in the regular playing mode
(called Single-PV mode) of four computer chess programs,
to the indicated fixed search depths, at which head-to-head
matches have indicated approximately equal strength each
within 50–100 points of the 2700 mark.
• Rybka 3, depth “13+3.”2

• Houdini 4, depth 17.
• Stockfish DD (5), depth 19—emphasized in figures.
• Komodo 6, depth 17.

The “Computer” dataset comprises games played
by major chess programs running on standard-issue
quad-core personal computers, run by the “Com-
puter Engine Grand Tournament” (CEGT) website
(http://www.husvankempen.de/nunn/). This is the only
site known to publish games played at full standard time
controls (40 moves in 120 minutes, the next 20 moves in 60
minutes, then 20 minutes plus a 10-second bonus per move
for the rest of the game, one core per engine), like those in
effect for FIDE world championship events. These games
were all analyzed in Single-PV mode using the previous
version 4 of Stockfish.

The PAL/CSS “Freestyle” dataset comprises 3,226 games
played in the series of eight tournaments of human-computer
tandems sponsored in 2005–2008 by the PAL Group of
Abu Dhabi and the German magazine Computer-Schach und
Spiele. All of these games were analyzed with Stockfish 4
in the same mode as for CEGT.

In addition the round-robin finals of the 5th, 6th, and 8th
tournaments, comprising 45, 45, and 39 games, respectively,
were analyzed in 50-PV mode with Rybka 3 to depth 13.
Insofar as chess positions rarely have more than 50 valid
moves, let alone reasonable ones, this mode produced equal-
depth analysis of all reasonable moves, as required for the
predictive model of (Regan and Haworth 2011). These tour-
naments were played in 2007–2008, before the August 2008

2Rybka regards the bottom 4 ply of its search as one depth level.

release of Rybka 3. In the same timeframe, CEGT ran 50-
game matches that included a round-robin of 7 of the very
strongest programs which were in common use by PAL/CSS
participants, including the previous version 2.32a of Rybka.
We synthesized one 42-game tournament by taking the first
and last game of each match, and another by taking the 25th
and 26th games. These were also analyzed by Rybka 3 in
the 50-PV mode.

3 Average Error Versus Overall Value
As stated above, chess engines give values in common units
called centipawns, which are written either as whole num-
bers or with two decimal places. For the most part they do
not use finer units internally, and until recently the Stock-
fish engine rounded units of 1/197 to the nearest multiple
of 8/197 during its search, not just for display. Hence the
values are more discrete than continuous.

Figure 1: AD for human games measured by 4 engines, and
CEGT computer games measured by Stockfish 4.

Figure 1 shows that the phenomenon of increasing hu-
man error in unbalanced games is recorded similarly by all
four analyzing engines, and the error is immediately steeper
when players of all kinds are behind than ahead, by any
amount. When computer players are ahead, however, the
error curve is nearly flat.

4 Scoring Expectation Versus Value, By
Player to Move

As observed also in (Stedile 2013), the graph of percentage
score by all players to move in positions of value v closely
fits a logistic curve, for all four engines analyzing the human
games. In particular, the graph for Stockfish DD fits

0.9837

1 + 1.03457e−.0078v
(1)

with average error 0.0155. When forced to fit 1
2 (1 +

tanh(ax)) it gives a = 0.0038 with slightly higher error
0.0179. The distortion between this and the constants near
unity in (1) appears mostly due to the discrepancy from 50%



expectation when the player is to move, which is detectable
also in the graphs in (Stedile 2013) but not remarked there.

Figure 2 shows this discrepancy clearly for human games,
and shows a robust 2–3% lower expectation for players to
move compared to when the opponent is to move across po-
sitions of all values. As argued above about sample size the
differences are significant. However, the effect is completely
absent for games between computers, as shown by Figure 3.

Figure 2: Points expectation versus position evaluation by
Stockfish DD, for human player to move versus not to move.

Figure 3: Expectation vs. eval for computer players, to move
and not to move.

Figures 4 and 5 show that the effect does not depend
greatly on whether the player is high-rated or lower-rated,
nor whether the player is facing a higher or lower rated op-
ponent. The observed frequency near 4% of large mistakes
in our tabular data supports the explanation that the player to
move has the first opportunity to blunder, while most blun-
ders simplify the game into a clear loss. The near absence of
crass mistakes by computers makes the effect disappear.

Combining player-to-move and opponent-to-move turns
makes a perfectly symmetrical curve. Figure 6 shows that
the stage of the game matters little until well past move 40.

Figure 4: Expectation vs. eval for humans rated over 2700
and under 2300, to move and not to move.

Figure 5: Expectation vs. eval in games with opponent rated
150 higher/lower, player to move and not to move.

5 Psychological Versus Rational Preferences
When a player is rated significantly higher or lower than the
opponent, the curve of expectation versus position value nat-
urally shifts higher or lower, as shown in Figure 7. Being
150 points higher rated appears to offset over a 1.00 disad-
vantage for Stockfish, though as noted above the value is
closer to 0.60–0.70 for the other engines.

This enables a partial test of the hypothesis in (Stedile
2013) that the error phenomenon in Section 3 results from
rational risk taking. Differences over 100 points are anecdo-
tally psychologically felt as “being out-rated” in tournament
games, and conventional wisdom does advise the lower-
rated player to carry the fight and try to “scare” the stronger,
rather than sit tight and try not to lose. Were this advice
to show up as taking more risk where the win-probability
curve is less steep, we might expect the graph of AD versus
evaluation to shift over similarly by ±1.00. However, Fig-
ure 8 shows that the bottom of the curve is at 0 regardless
of whether the opponent’s rating is lower or higher. It also
shows that players who are out-rated make notably higher
error when they are ahead, while there may be too little data
to tell significant differences when the players are behind.



Figure 6: Expectation vs. eval within game intervals, using
Stockfish DD.

Figure 7: Shift in expectation versus eval when opponent is
rated 150 points higher/lower.

6 Computer-Freestyle Comparison
Anecdotal accounts of the PAL/CSS Freestyle tournaments
(Cowen 2013) relate that the best human teams used mul-
tiple computer programs, and did not blindly play the first
move recommended by any of them. Instead the human
players looked for moves consistent with their conceived
strategies and tactical plans. We ran Multi-PV analysis of
the last three 10-team round-robin finals (the 7th PAL/CSS
championship was a Swiss System event without a final) of
the best teams. The TCEC competition had a six-program
semifinal of 90 games total, advancing two to the final. The
TCEC data gives a comparison to any of the PAL/CSS finals.

Figure 9 measures that the two CEGT and three PAL/CSS
data sources are respectively close to each other, that per-
sonal computer engines under similar playing conditions
were significantly stronger in 2013 than in 2007–08, and
that the human-computer tandems were significantly ahead
of the engines playing alone even without aggregating the
events together. The 2-sigma confidence intervals are the
empirically-tested “adjusted” ones of (Regan and Haworth
2011); we show them to four digits although the rating val-
ues themselves should be rounded to the nearest 5 or 10.

Figure 8: AD versus eval when opponent is rated
lower/equal/higher.

Figure 9: Analyzed Ratings of CEGT and PALCSS in 2007–
08, plus TCEC Nov. 2013.

Event Rating 2σ range #gm #moves
CEGT g1,50 3009 2962–3056 42 4,212
CEGT g25,26 2963 2921–3006 42 5,277
PAL/CSS 5ch 3102 3051–3153 45 3,352
PAL/CSS 6ch 3086 3038–3134 45 3,065
PAL/CSS 8ch 3128 3083–3174 39 3,057
TCEC 2013 3083 3062–3105 90 11,024

Notice that the CEGT games have significantly more
moves, especially the set drawn from games 25 and 26 of
each match. (There was no “memory” during the matches.)
To equalize this factor, we eliminated turns after turn 60.

Figure 10: Aggregate comparisons, with and without move-
60 game cutoff.

Sample set Rating 2σ range #gm #moves
CEGT all 2985 2954–3016 84 9,489
PAL/CSS all 3106 3078–3133 129 9,474
TCEC 2013 3083 3062–3105 90 11,024
CEGT to60 3056 3023–3088 84 7,010
PAL/CSS to60 3112 3084–3141 129 8,744
TCEC to60 3096 3072–3120 90 8,184

Imposing the move-60 cutoff significantly affects the
analyzed rating of the CEGT games, but not the others.
The commonly-voiced assertion that the computer-human
tandems played at a higher level, which was largely borne
out by results in the qualifying stages of the PAL/CSS tour-
naments (see (Cowen 2013)), survives the use of the cutoff
but with under 3-sigma significance. The TCEC results are
enough to indicate that the difference does not survive to
today, while unfortunately no Freestyle events of compara-
ble level and prize funds have been held between 2008 and
a tournament begun by InfinityChess.com in February 2014
through April 10. Our purpose here is to argue a larger hu-
man effect on the style of play.



Relatively few of the PAL/CSS games extended beyond
move 60, and only 730 moves total were eliminated from
those games (5.66 per game), compared to 2,479 moves
being eliminated from the CEGT data (29.51 per game).
This already hints that the PAL/CSS games were driven to
quicker conclusions than the games by 2007–08’s best com-
puter programs playing alone.

The comparison is made fully quantitative by employing
the model of (Regan and Haworth 2011). Given parameter
settings denoting a rating such as 2500 or 3050, the model
computes prior estimates for expected performance by play-
ers of that rating on any given set of analyzed positions.
The performance estimates are given as aggregate statistics,
including the projected frequency f1 of choosing the com-
puter’s first move, and the projected average difference ad.

Most in particular, the projection of f1 itself acts as an in-
dex of how forcing the position is. Here forcing means that
there is only one move to prevent speedy defeat, or to pre-
serve one’s advantage. When such positions are analyzed by
strong computers, the “forced” move is given a significantly
higher value than any other. The model then projects sig-
nificantly higher probability for players—of any sufficient
skill—to choose that move, compared to non-forcing posi-
tions which have alternative moves of near-optimal value.
Thus a higher aggregate f1 means that the set of positions in
the sample are more forcing.

Figures 11 and 12 show the projections for parameters
denoting Elo 2500 and Elo 3050. (The actual printed val-
ues are 2499 and 3052, but differences in the last digit are
not significant, while the (s, c) pairs are individually close
to the “central fit” diagonal identified in (Regan and Ha-
worth 2011).) Elo 3050 is chosen as midway between the
analyzed ratings for the CEGT and PAL/CSS players them-
selves in the above tables. Again the recent TCEC entries
are included only to witness that the CEGT comparison in
2007–2008 retains its point currently.

Figure 11: Agreement frequency projections, with and with-
out move-60 game cutoff.

For 2500 (s = 0.10, c = 0.50)
Sample set f1 2σ range #gm #moves
CEGT all 50.0% 49.1–51.0% 84 9,489
PAL/CSS all 54.5% 53.5–55.4% 129 9,474
TCEC all 48.0% 47.1–48.8% 90 11,024
CEGT to60 51.7% 50.6–52.8% 84 7,010
PAL/CSS to60 54.9% 53.9–55.9% 129 8,744
TCEC to60 48.9% 47.9–50.0% 90 8,184

The projections for both skill levels show a tangibly sig-
nificant difference in the forcing nature of the games, even
after the move-60 cutoff is applied to make the position sets
more comparable. We conclude that human oversight of the
computer programs drove the games to earlier crises than
computers playing alone have judged to do.

7 Conclusions
We have demonstrated several novel phenomena from direct
analysis of the quality of game decisions made by human

Figure 12: Agreement frequency projections, with and with-
out move-60 game cutoff.

For 3050 (s = 0.05, c = 0.55)
Sample set f1 2σ range #gm #moves
CEGT all 59.5% 58.5–60.4% 84 9,489
PAL/CSS all 65.0% 64.1–65.9% 129 9,474
TCEC all 57.1% 56.2–57.9% 90 11,024
CEGT to60 62.2% 61.2–63.3% 84 7,010
PAL/CSS to60 65.7% 64.8–66.7% 129 8,744
TCEC to60 58.9% 57.9–59.9% 90 8,184

and computer players. These phenomena establish stylistic
differences in perception and preferences. The comparison
in Section 5 supports the hypothesis that humans perceive
differences according to relative rather than absolute valua-
tions, while only the latter affect choices made by computers
(at least when they are not behind in the game). There is a
significant human disadvantage in the onus to choose a move
first. This is legion with betting in poker but perhaps a sur-
prise to find so robustly in chess, and tempers the optimism
humanly associated with going first. Section 6 shows a sig-
nificant preference in computer players for “wait-and-see,”
while this is overruled when humans use the same computer
programs to inform rather than execute their decisions. It
is possible, however, that human-computer cooperation pro-
duces better results than either acting separately.3
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