CSE 241 Digital Systems

Homework 1 (Updated) Due: Wed, June 15, 2016, 2:00pm
(No late submissions accepted)

1. Convert the decimal number to Binary and Hexadecmal values a. 529 b. 24.275
2. Express the following numbers in decimal a. $(1010.11)_{b}$ b. $(9 A B C . A)_{16}$
3. Perform subtraction by 2 's complementing the subtrahend and adding. Assume the numbers to be of 8 bits

$$
\text { a. }(10001101)_{\mathrm{b}}-(10010)_{\mathrm{b}} \quad \text { b. }(10010)_{\mathrm{b}}-(10001101)_{\mathrm{b}}
$$

4. Write the expression "SOS 16 " in ASCII, using an eight-bit code. Include the space. Treat the left most bit of each character as a parity bit. Each 8-bit code should have even parity.
5. Problem 1.30 from Text (given below)

The following is a string of ASCII characters whose bit patterns have been converted into hexadecimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits, the leftmost is a parity bit. The remaining bits are the ASCII code.
(a) Convert the string to bit form and decode the ASCII.
(b) Determine the parity used: odd or even?
6. Minimize the following Boolean expression to minimum number of literals
a. $\left(x+y+z^{\prime}\right)\left(x^{\prime} y+z\right)$
b. w'xy + wxy' + wxy + w'xy'
7. (Text 2.12) We can perform logical operations on strings of bitsbyconsidering each pair of corresponding bits separately (called bitwise operation). Given two sixteen-bit strings $A=(\mathrm{F} 00 \mathrm{~F})_{16}$ and $B=(\mathrm{F} 0)_{16}$, evaluate the sixteen-bit result after the following logical operations:
(a) A AND B
(b) A OR B
(c) A XOR B (d) NOT A
(e) NOT B
8. (Textbook 2.17 d) Obtain the truth table of the following function, and express the function in sum-of-minterms and product-of-maxterms form:

$$
b d^{\prime}+a c d^{\prime}+a b^{\prime} c+a^{\prime} c^{\prime}
$$

9. (Text 2.21) Convert each of the following to the other canonical form:
(a) $F(x, y, z)=\Sigma(1,3,5)$
(b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(3,5,8,11)$
10. Complement the following function using DeMorgan's theorem.
$\mathrm{f}=\left(\left(\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}\right)^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime}\right)^{\prime}$
