CSE341 - SPRING 2018 HOMEWORK 2 Due: Feb 19, 2018 10:00am

1. For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, and h , are given and are assigned to registers $\$ \mathrm{~s} 2, \$ \mathrm{~s} 3$, and \$s4 respectively. Use a minimal number of MIPS assembly instructions. $\mathrm{f}=(\mathrm{g}-\mathrm{h})+5$;
2. Show how the value $0 x 1$ badcef 5 would be arranged in memory of a little-endian and a big endian machine. Assume the data is stored starting at address 0x2000 (specify memory byte content at address 0x2000 0x2001 0x2002 and 0x2003 in each case.
3. Translate the following C code to MIPS. Assume that i, and j have fixed values of 4 and 8 respectively. Assume that the base address of the arrays A and B are in registers $\$ \mathrm{~s} 2$ and $\$ \mathrm{~s} 3$, respectively. Assume that the elements of the arrays A and B are 32 bit words:
$\mathrm{B}[4]=\mathrm{A}[\mathrm{i}]+\mathrm{A}[\mathrm{j}]$
4. Assume that registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ hold the values 0×80000010 and $0 x A 0000001$, respectively.
a. What is the value of $\$ t 0$ for the following assembly code? add $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
b. For the contents of registers $\$ s 0$ and $\$ s 1$ as specified above, what is the value of $\$ t 0$ for the following assembly code? sub $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
c. For the contents of registers $\$ s 0$ and $\$ s 1$ as specified above, what is the value of $\$ \mathrm{t} 0$ for the following assembly code sequence add $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$ add $\$ \mathrm{t} 0, \$ \mathrm{t} 0, \$ \mathrm{~s} 0$
5. Provide the type and assembly language instruction for the following binary value: $00000010000100001000000000100000_{\text {two }}$
6. Provide the type, assembly language instruction, and binary representation of instruction described by the following MIPS fields:
$\mathrm{op}=0, \mathrm{rs}=3, \mathrm{rt}=2, \mathrm{rd}=3$, shamt $=0$, funct $=34$
