CSE341 - COMPUTER ORGANIZATION - SPRING 2018

HOMEWORK 4 and 5 - DUE 03/05/2018 10:00am
Show detailed steps for solutions for each problem. (Counts as two homework) 100 pts (Required problems: 1, 2, 4a, 5, 7, 8 only; Needd not turn in the rest $(3,4 b, 6)$, which are practice problems)

1. Consider the following code:
lbu \$t0, $0(\$ \mathrm{t} 1)$
sw \$t0, 0(\$t2)
Assume that the register \$t1 contains the address 0x1000 0A00 and the register \$t2 contains the address 0×1000 0A10. Note the MIPS architecture utilizes big-endian addressing. Assume that the data (in hexadecimal) at address $0 \times 10000 \mathrm{~A} 00$ is:
$0 x 22331144$. What value is stored at the address pointed to by register $\$ \mathrm{t} 2$?
2. What decimal number does the bit pattern $0 \times 0 \mathrm{C} 000100$ represent if it is a floating point number? Use the IEEE 754 standard.

CSE341 - COMPUTER ORGANIZATION - SPRING 2018

A2: Wed 1-1.50pm \square
A4: Th $3-3.50 \mathrm{pm} \square$
A5: Wed 8-8.50am \square
3. What decimal number does the bit pattern $0 \times 0 \mathrm{C} 000009$ represent if it is a two's complement integer
(optional)
4.
a. Write down the binary representation of the decimal number 68.25 assuming the IEEE 754 single precision format.
b. Write down the binary representation of the decimal number 63.55 assuming the IEEE 754 double precision format. (b part is optional)

CSE341 - COMPUTER ORGANIZATION - SPRING 2018

A2: Wed 1-1.50pm \square
A4: Th $3-3.50 \mathrm{pm} \square$
A5: Wed 8-8.50am
5. Multiply the two following IEEE floating point numbers: 0x 41500000 and $0 x 40300000$. Express your result as a 32 bit hexadecimal number. Convert it to human-readable decimal format.
6. Represent 639.6875 as a single precision floating point number. (Optional)
7. Consider two registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ holding the values 0 x 00000002 and 0×80000003.

Multiplication of two 32 bit values result in a 64 -bit product.
a. Write a MIPS code using 'mult' to multiply the above given values and to hold the upper 32 bits of the product in $\$$ s 2 and the lower 32 bits of the product in $\$$ s 3 .
b. Write a MIPS code using 'multu' to multiply the above given values and to hold the upper 32 bits of the product in $\$ \mathrm{a} 0$ and the lower 32 bits of the product in $\$ \mathrm{a} 1$.
c. Write a MIPS code using shift instructions to multiply the contents of $\$ \mathrm{~s} 2$ with 4 , storing the result in $\$ v 0$ and divide the contents of $\$ \mathrm{~s} 3$ with 2 and store the results in \$v1.
Write down the contents of registers $\$ \mathrm{~s} 2, \$ \mathrm{~s} 3, \$ \mathrm{a} 0, \$ \mathrm{a} 1, \$ \mathrm{v} 0$ and $\$ \mathrm{v} 1$.
8. Consider two registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ holding the values 0 x 0000004 E and 0 x 00000015 . Write a MIPS code to divide the value in $\$ s 0$ by the value in $\$ s 1$. Store the quotient in $\$ \mathrm{~s} 2$ and the remainder in $\$ \mathrm{~s} 3$.
Write the contents of the registers $\$ \mathrm{~s} 2$ and $\$ \mathrm{~s} 3$.

