CSE 493/593 FALL 2023 - HOMEWORK 4

1. Consider the circuit in Fig. 1. Assume that all input combinations are equally likely. Let $\mathrm{Cx}=0.8 \mathrm{fF}$, and $\mathrm{CL}=12 \mathrm{fF}$.
a. Calculate the activity factor for the output (F).
b. Calculate the dynamic power consumption if the inputs are switching at rate of 200 MHz at a supply voltage of 2.5 V
(Hint 1: If input probabilities are not given, consider them to be 0.5)
(Hint 2: For total dynamic power consumption, calculate and add dynamic power consumption for all gates)

2. For the circuit shown in Fig. 2, derive the transitional probability $\mathrm{P}_{0 \rightarrow 1}$, given $\mathrm{P}_{\mathrm{A}}=0.3, \mathrm{P}_{\mathrm{B}}=0.5, \mathrm{P}_{\mathrm{C}}=0.8, \mathrm{P}_{\mathrm{D}}=$ 0.4. $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}$ and P_{D} indicate the probabilities that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are 1 respectively.

Fig. 2
3. Compute the switching probability of the output node F for both the chain and tree implementations of the circuit. $\mathrm{P}(\mathrm{A}=1)=\mathrm{P}(\mathrm{B}=1)=\mathrm{P}(\mathrm{C}=1)=\mathrm{P}(\mathrm{D}=1)=0.3$. Which is better with regard to dynamic power?

Chain structure

Tree structure

Fig. 3
4. Considering the logic circuit in Fig. 3, identify the critical path. Describe how you can achieve low power using
a. Multi- ${ }_{\text {DD }}$ technique
b. Multi- V_{T} technique.

Justify your answer.

Fig. 4

