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Abstract: Robustness and security of services like localisation, routing and time synchronisation
in Wireless Sensor Networks (WSNs) have been critical issues. Efficient mathematical
(graph-theoretic) models for these services exist. Since, these services were not designed with
robustness and security in mind, new mathematical models are needed to address these issues.
In this paper, we propose a practical approach for modelling these services using weighted
undirected graphs called Partially Consistent Grounded Graphs (PCGG). In such graphs, malicious
behaviour or inaccurate information reporting is modelled as a function that assigns incorrect or
inconsistent values (weights) to the edges connecting the corresponding nodes, called inconsistent
edges. We formulate two optimisation problems, namely MAX-CON and LARGEST-CON.
Given a PCGG, these are the problems of determining the largest induced subgraph (obtained
by eliminating a subset of vertices) containing only consistent edges. MAX-CON maximises
the number of vertices, while LARGEST-CON maximises the number of consistent edges of
the resulting subgraph. We also discuss the practical implications of solving these problems,
analyse their computational hardness and provide a comparitive analysis of heuristics-based
algorithms for them.
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1 Introduction

A Wireless Sensor Network (WSN) is an ad hoc network
of minute devices with limited computation ability and
battery power that communicate with each other using
radio or ultra-sound signals. By attaching highly specialised
sensors to these devices, WSNs can be used in a variety
of applications including but not limited to environmental
monitoring, healthcare, emergency response and military
applications (Lorincz et al., 2004; Robinson, 2004; Shnayder
et al., 2005; Tollefsen et al., 2004). An example of such a
setup is a network of MICA2 or MICAz motes (processor
modules) fitted with MDA/MTS series data acquisition
modules, developed by Crossbow Technologies. The success
ofWSNs in these applications depends on the various services
like routing, location discovery and time synchronisation.
Extensive research on distributed algorithms for routing
(Hong et al., 2002; Ko and Vaidya, 1998; Yu et al., 2001),
location discovery (Bahl and Padmanabhan, 2000; Fang
et al., 2005; He et al., 2003; Hightower and Borriello,
2001; Priyantha et al., 2000; Ray et al., 2003) and time
synchronisation (Elson and Estrin, 2001; Ganeriwal et al.,
2003) has already been done. Since the term ‘mote’ is still
not an industry standard, we will refer to all such small, low
power and autonomous sensing devices as ‘nodes’.

As with any new technology, there are security and
robustness issues associated with these services. Majority
of the algorithms for these services use inter-mote
communications and/or distance estimates (computed using
techniques like Received Signal Strength, Angle of Arrival,
Time Difference of Arrival, etc.) to neighbouring nodes,
assuming that the neighbours are honest (non-malicious).
This assumption is no longer valid in highly obstructive
terrains and hostile environments like emergency situations,
battlefields and enemy territories. Nodes can be captured
and compromised or external conditions like obstructions,
weather, environment, etc. may prevent the nodes from
functioning normally. These factors introduce inaccuracy and
errors in the measurement of physical properties like time
difference, distance, etc. which we refer to as inconsistencies.
Some research has already been done in securing location
discovery and time synchronisation services for WSNs
(Ganeriwal et al., 2005; Liu et al., 2005a,b). These techniques
provide intelligent ways to overcome adversary. For example,
Liu et al. (2005b) provides techniques for detecting malicious
sensor nodes by deploying special nodes (their identities
hidden) specifically for detection purposes. But, it rests on
the assumption that these extra nodes will always be

honest, which might not always be true. These special
nodes can behave maliciously by reporting benign nodes in
the network as malicious, thus rendering the entire scheme
ineffective.

Due to such limitations, existing schemes are no
longer viable when deployed in emergency situations
and hostile environments. Researchers working in this
direction are posed with important questions. Are there
efficient techniques for detecting inconsistency-causing
nodes with at least a high probability, if not with certainty?
Do current modelling techniques for WSNs take into account
inconsistencies introduced due to malicious behaviour of
the nodes? Is it possible to efficiently eliminate these
inconsistencies assuming they can be detected easily?
In this paper, we attempt to provide answers to these
questions. It may be noted that in this paper we do not intend
to propose a new scheme for securing WSNs but aim to shed
some light on problems that may arise when assumptions
about the honest behaviour of sensor nodes are dropped.

1.1 Background and motivation

WSNs like any other network can be efficiently represented as
a graph where each vertex of the graph corresponds to a sensor
node and each edge represents certain association between
the two nodes. In other words, an edge exists between two
nodes if they are associated by some predefined, application
dependent relation. One such relation, for example, is if two
nodes are in the radio range of each other. Two nodes that are
connected by an edge are called neighbours of each other.
The relation that defines these edges varies from application
to application. But in most cases, an edge exists between two
nodes if they are in the radio range of each other. Eren et al.
(2004) and Goldenberg et al. (2005) use a model similar to
the one described above to formulate the problem of location
discovery in WSNs. The graph-based model of WSN used
by them is also referred to as Grounded Graphs. In the
grounded graph model described by Eren et al. (2004), a
function called the Distance Function assigns each edge a
distance value indicating the separation between the two
connecting nodes. It is similar to assigning weights or costs to
edges. Depending on the application one is trying to model,
this function may vary, quantifying different properties like
time difference, wellness of routes, etc. For example, in
routing services a routing function can assign probabilities
to edges based on its usefulness to routes. Similarly, in
a time synchronisation service a time function can assign
each edge the time difference between the two connected
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nodes. We refer to this function by a more generalised name,
the Property Function, that assigns each edge an estimated
property value. A subtle point over here is that the value of
this function is only an estimate and not necessarily the true
value of the property (parameter). This will become more
clear later.

Eren et al. (2004) and Goldenberg et al. (2005) assume
that the distance function is honest that is, it always assigns
the correct or consistent distance to each edge. The main
motivation for our work is to propose a more practical model
by dropping this assumption. In other words, malicious
or inconsistent behaviour of nodes can be modelled as a
dishonest property function. This is also very intuitive as the
property function for an edge is computed by the connecting
nodes themselves or by using information obtained from
these nodes. Thus, malicious behaviour by the nodes
will be transformed into an incorrect or inconsistent value
of the property function. The graph-based model with a
dishonest property function, as described above, is referred
by us as a Partially Consistent Grounded Graph (PCGG).
To clarify how the above concepts map onto real world
applications in WSNs, we give a few examples. Consider
a location discovery service in which nodes determine
their own locations by hearing from beacon nodes that
know their own locations. By computing distances to these
beacons using techniques like received signal strength, time
difference of arrival, etc. nodes can compute their own
location using multilateration or triangulation techniques.
Beacon nodes can cheat by advertising incorrect self
locations or by manipulating the power of the sent signal.
This results in nodes receiving inconsistent information
from these beacons and end up computing their locations
incorrectly. The edges between the nodes and the malicious
beacons, in this case, are the inconsistent edges. Similarly,
in routing applications malicious nodes can advertise
inconsistent routes to divert all the traffic through them.
Such nodes eventually drop packets instead of forwarding
them resulting in retransmissions and lower throughput.
Thus, edges connecting the benign nodes to such malicious
nodes can be labelled as inconsistent. Apart from malicious
behaviour, low battery power, obstacles, extreme weather
conditions, etc. can all result in inconsistencies. It can also be
a result of malicious behaviour or inconsistencies propagated
from remote parts of the network through communication
channels. The existence of inconsistent edges implies that
either or both nodes connected by these edges are responsible
for the inconsistency. Either the nodes that compute
the function values may have caused it or the ones that
generate information for these functions may have caused it.
Pires et al. (2004) and Sastry et al. (2003) present techniques
for detecting and verifying such inconsistent information
transmission by the nodes.

Given a PCGG, we focus on the problem of determining
an induced subgraph, such that it has only consistent
edges. In other words, we would like to eliminate
vertices such that the resulting subgraph is fully consistent.
Such a consistent subgraph is useful for various reasons.
Firstly, the sparsity of the consistent subgraph can help
the network administrator to make important decisions like
redeployment, application abortion, etc. Secondly, with a
high probability, the eliminated vertices can be assumed

to be the problem causing nodes. This information is
also useful during redeployment, as the deployment area
previously occupied by such malicious or problem causing
nodes can be avoided during the deployment of new nodes.
Also, routing services can use this information to avoid
particular routes while making routing decisions. Readers,
please note that we will be using the terms nodes and vertices
interchangeably. Depending on the context of its usage, it
would either mean an actual sensor mote or its corresponding
graph abstraction.

The first problem we study is that, given a PCGG, how
to identify a maximum subset of vertices such that the
subgraph induced by the vertices consists only consistent
edges. We refer to this problem as the MAX-CON problem.
Maximising the number of vertices is important as an
administrator would like to replace or redeploy only a
minimum number of new vertices. Moreover, if the
sparsity (in terms of the vertices) of the resultant
consistent subgraph is used to make redeployment decisions,
one would like to know the maximum such consistent
subgraph to justify a redeployment. The next optimisation
problem we discuss is that, given a PCGG, how to identify
a subset of vertices (need not be maximum) such that the
subgraph induced by the vertices consists only consistent
edges and the number of consistent edges is maximised.
We refer to this problem as the LARGEST-CON problem.
This problem is relevant in situations where quality is more
important that quantity. More number of consistent edges
would mean more number of accurate property (parameter)
values which in turn results in better overall accuracy
of applications. More importantly, the ideas and results
presented in this paper not only apply to sensor networks
but also can be used in any application (or domain) that can
be modelled as a PCGG.

1.2 Contributions

This paper introduces PCGG as a practical modelling
approach for WSNs. PCGG as discussed before, consists
of an edge set which can be partitioned into a set of consistent
and a set of inconsistent edges. We present two optimisation
problems associated with PCGGs. We first provide a formal
treatment of the MAX-CON problem and prove that it is
NP-complete. We also show that an efficient approximation
algorithm for VERTEX-COVER can be used to solve this
problem.

Next, we prove that the LARGEST-CON problem is
NP-complete. We give an elegant reduction from MAX-2SAT
(Karp, 1972), known to be NP-hard, to this problem. We also
give the inapproximability result for LARGEST-CON and
provide two solution strategies for this problem. The first
algorithm uses a greedy approach. The second one uses a
technique called Local Solution Search (LSS). Currently, we
are unable to bound the solution quality of these algorithms.
We perform experiments to test these algorithms on randomly
generated graphs and present a comparative analysis of their
solution quality. In summary, we have the following main
contributions.

• A formal technique for modelling WSN services and
two graph-theoretic optimisation problems associated
with this model.
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• Analysis of the combinatorial hardness of
these problems and testing the efficiency of
heuristics-based algorithms for LARGEST-CON
on randomly generated graphs with the help of
computer simulations.

1.3 Paper organisation

Section 2 outlines the formal model of WSNs and
introduces the concept of PCGG. In Section 3, we
formulate and present hardness results for MAX-CON.
In Section 4, we formulate and present hardness results
for LARGEST-CON. Section 5 presents heuristics-based
algorithms for LARGEST-CON and Section 6 provides
experimentation results for these algorithms. Finally, we
conclude this paper with a discussion of current contributions
and proposed future work.

2 Mathematical formulation

2.1 Network model

Before introducing the graph model we define the current
state vector of a node. The current state is the current value
of a certain physical characteristic of the node and the current
values of all the different physical characteristics (defined by
the application) are represented in a current state vector. For
example, in a location discovery service the current state
vector pi = (xi, yi) is the current position of each node and
pi ∈ R

d , where d is the dimension of the position coordinates.
In a time synchronisation service the current state vector,
pi = ti s.t. ti ∈ R, is the current local time (crystal frequency)
of each node. In most cases, a node i may not know pi at
the start when it is deployed, however, some special
nodes may know their own pi . For example, in a location
discovery service, every beacon node knows its own position
but other nodes may not and they use the location discovery
service of the network to determine their own pi . Using
specialised algorithms and communications from other
nodes, each node in the network determines its own current
state vector pi .

Let N = {1, 2, . . . , n} be the set of n nodes and let
P = {p1, p2, . . . , pn} be the set of their corresponding
current state vectors. We now define the graph G = (V, E)

for the network as follows. The set V = {v1, v2, . . . , vn}
of vertices contains a vertex corresponding to each node in
the network. An edge exists between two vertices i and j

in the graph G if and only if the current states pi and pj of
the corresponding nodes are associated in some way. One
important assumption we make here is that this relationship
is symmetric. For example, if two nodes are associated by the
distance between them, then by symmetric we mean that if
node i is in the radio range of node j , then node j is also
in the radio range of node i. Thus, the edges in this graph
model of the network are undirected. The set E is the set
of all the edges as defined above. Two nodes are said to be
neighbours if and only if there exists an edge connecting
their corresponding vertices. In other words, E gives the
neighbourhood relation for each node in the network. For
simplicity we assume that the graph is a connected graph that

is, every vertex is reachable from every other vertex through
a sequence of edges.

The graph G, as described above, is associated with a
property function δ, δ : E→ R, such that δ assigns a value
to an edge signifying the estimated value of the associated
property. In other words, it quantifies the associated property
(defined by the edge) and is similar to assigning weights to
the edges. The exact details of this function will vary from
application to application and we do not discuss it further as
it is out of scope of this paper. We can safely assume that
such a function exists and can be efficiently computed. The
actual property value is the true or correct property value. The
difference between the property function value and the actual
value is called the estimation error. For example, in location
discovery schemes, a distance function assigns distance
estimate values (distance between two nodes) to each edge.
The actual property value in this case is the Euclidean distance
between the two nodes. The actual property value between
two nodes i and j with position coordinates pi(xi, yi) and
pj (xj , yj ) can be computed as shown in Equation (1)

Euci,j =
√

(xi − xj )
2 + (yi − yj )

2 (1)

Similarly, in time synchronisation applications, the property
function could assign an estimate of the time difference to
each edge. As noted before, Eren et al. (2004) use a similar
graph theoretical model called Grounded Graphs where the
current state of each node is its position in d-dimensional
space and the property function associates a value to each
edge that is an estimate of the distance between the two nodes.
What we have described above is a more generalised version
of this model.

2.2 Partially consistent grounded graph

In the definition of grounded graphs proposed by Eren et al.
(2004), they implicitly assume that the property function δ

(distance function) that estimates the distance di,j between
the nodes i and j is honest that is,

δ(i, j) = di,j s.t. (Euci,j − ε) ≤ di,j ≤ (Euci,j + ε),∀i, j
Here ε, called the error tolerance factor, is the maximum
estimation error allowed by the application. Ideally, the value
of ε should be zero but in most practical cases it is assumed
to have a very small value. More generally, δ(i, j) is always
assumed to be within the actual property value ± ε, ∀ i, j

that is, the value of the property function is very close
to the actual property value. We now introduce the notion
of consistent and inconsistent edges where this assumption
about the honest property function is dropped.

Definition 1: Consistent edge: an edge (i, j) in the
grounded graph is said to be consistent if and only if the
estimated property value (value of the property function)
associated with it is within some small error tolerance
factor ε.

An edge that is not consistent is said to be an inconsistent edge
and the property function that assigns inconsistent values to
edges is called a dishonest property function. At this point,
there are three important observations we make.



On extracting consistent graphs in WSNs 153

• The implementation of the property function varies
from application to application. But, property function
computations normally use information collected from
the nodes and other inter-node communications in the
network. Thus, cheating or dishonest behaviour in part
by the nodes would result in an incorrect value being
assigned by the function to the corresponding edge.
This incorrect value can also be due to other factors
(low battery power, obstacles, extreme weather
conditions, etc.) and not necessarily due to cheating by
the nodes but it is not possible to differentiate between
the two cases. The eventual goal of this research is to
effectively eliminate the inconsistencies. We will not be
concerned with how they are caused.

• Nodes do not behave maliciously all the time.
Malicious behaviour is random. In other words, not all
edges coming out of a particular node will be
inconsistent. If they do, then such a behaviour is trivial
to detect. Nodes will behave maliciously at random and
intermittently to avoid easy detection. There will be
some nodes that are an exception to this rule but we
assume that their numbers are small.

• In this paper, we assume that inconsistent edge values
for most applications in WSNs can be detected
efficiently. We do not go into the details of how this can
be acheived as it is out of scope of this paper. Some
techniques for inconsistency/malicious behaviour
detection are discussed by Sastry et al. (2003), Ray
et al. (2003), Liu et al. (2005b) and Pires et al. (2004).

We are now ready to define a PCGG.

Definition 2: PCGG: a PCGG G′ = (V ′, E′ ∪ E′′) is a
grounded graph associated with a dishonest or malicious
property function. The set of vertices is denoted by V ′ and
edge set can be partitioned into two disjoint subsets, namely
the set of consistent edges (E′) and the set of inconsistent
edges (E′′).

Definition 3: Consistent Subgrounded Graph (CSG):
a CSG G = (V , E) is an induced subgraph of a PCGG
G′ = (V ′, E′ ∪ E′′), where E′′ �= φ, such that the vertex set
V ⊂ V ′ and the edge set E contains only consistent edges
that is, E ⊆ E′.

A CSG is obtained by eliminating vertices (and the
corresponding edges) from a PCGG such that the resulting
induced subgraph is consistent. The size of a CSG is the
cardinality of its vertex set. The edge size of a CSG is the
cardinality of its edge set. A CSG is maximal if its vertex
set is not a proper subset of the vertex set of any other CSG.
A maximum CSG is a maximal CSG with maximum size.

Definition 4: Largest CSG: the Largest Consistent
Subgrounded Graph (LCSG) of a PCGG is a CSG that has
the maximum edge size, if more than one CSG exists.

Figure 1(a) shows a PCGG G′ = (V ′, E′ ∪E′′), Figure 1(b)
its corresponding maximum CSG and Figure 1(c) its largest
CSG. In the next two sections, we formulate two optimisation
problems for obtaining a CSG from a PCGG.

3 Maximum consistent subgrounded graph

3.1 Problem statement

The maximum CSG problem can be stated as follows. Given
a PCGG G′ = (V ′, E′ ∪ E′′), find the maximum CSG
G(V, E) of G′. This problem is denoted by MAX-CON. All
the notations have the same meaning as discussed before.
The problem can be alternatively stated as the problem of
eliminating a minimum number of vertices from G′ such
that the subgraph induced by the remaining vertices consists
of only consistent edges. MAX-CON is an optimisation
problem and the decision version can be stated as:

MAX-CON
Input: A PCGG G′ = (V ′, E′ ∪ E′′) and a positive integer k

s.t. k ≤ ‖V ′‖.
Question: Does G′ contain a CSG of size k or more?

3.2 Hardness of MAX-CON

In this section, we show that MAX-CON is NP-complete.
This result implies that MAX-CON ∈ NP and the
deterministic complexity of MAX-CON is as hard as
any problem in NP. Thus, MAX-CON does not have
a deterministic polynomial time solution. We prove this
result by a polynomial time many-one reduction from
VERTEX-COVER. VERTEX-COVER problem is a well
known NP-complete problem. A vertex cover of an
undirected graph G = (V , E) is a subset of vertices
C ⊆ V that contains at least one vertex of every edge
e ∈ E and the VERTEX-COVER problem (also called
minimum vertex cover problem) is to find such a
subset C of the smallest cardinality. VERTEX-COVER,
NP-completeness and polynomial time many-one
reductions are explained in the seminal paper by
Karp (1972). Before proceeding ahead we would like
to state the decision version of VERTEX-COVER
(Homer and Selman, 2001).

VERTEX-COVER
Input: A graph G = (V , E) and a positive integer k s.t.
k ≤ ‖V ‖.
Question: Is there a vertex cover of size ≤ k for G?

Theorem 1: MAX-CON is NP -complete.

Proof: It is easy to see that MAX-CON ∈ NP: Given a graph
G′ = (V ′, E′ ∪E′′), guess a set of vertices V (s.t. ‖V ‖ ≥ k)
and check whether the subgraph induced by V consists of
only consistent edges (i.e. all the induced edges only belong
to the set E′). This clearly can be done deterministically
in polynomial time, provided it can be decided whether
an edge is inconsistent or not in polynomial time. Now
we show that VERTEX-COVER ≤P

m MAX-CON, that is,
VERTEX-COVER many-one (m) reduces in polynomial
time (P ) to the MAX-CON problem.

Construction: we describe a polynomial time construction
that maps an instance G = (V , E) of the VERTEX-COVER
problem to an instance G′ = (V ′, E′ ∪ E′′) of the
MAX-CON problem such that G has a vertex cover of size
≤ k (k ≤ ‖V ‖) if and only if G′ has a CSG of size≥ ‖V ‖−k.
The construction is shown in Figure 2.
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Figure 1 (a) PCGG, G′ = (V ′, E′ ∪ E′′); (b) OPTMAX−CON and (c) OPTLARGEST−CON
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V = {1, 2, 3, 4, 5, 6, 7} OPTMAX−CON = {2, 3, 4, 6, 7} OPTLARGEST−CON = {4, 5, 6, 7}
E′ = {(2, 6), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)} Number of consistent edges in solution = 5 Number of consistent edges in solution = 6

E′′ = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}

(a) (b) (c)

Figure 2 (a) Input graph for the VERTEX-COVER problem, G = (V , E) and (b) input graph for the MAX-CON problem,
G′ = (V ′, E′ ∪ E′′)

3 4

1 2

3 4

1 2

V = {1, 2, 3, 4} V ′ = {1, 2, 3, 4}
E = {(1, 2), (2, 3), (2, 4), (3, 4)} E′ = {(1, 3), (1, 4)}

E′′ = {(1, 2), (2, 3), (2, 4), (3, 4)}
(a) (b)

1 For each vertex v in the vertex set V of G, place a
vertex v in the vertex set V ′ of G′.

2 For each edge (u, v) ∈ E s.t. u, v ∈ V , add an edge
(u, v) in the inconsistent edge set E′′ of G′. These
edges are shown as dotted lines in Figure 2(b).

3 For each edge (u, v) /∈ E s.t. u, v ∈ V , add an edge
(u, v) in the consistent edge set E′ of G′. These edges
are shown as solid lines in Figure 2(b).

It is clear that the above construction can be completed in
polynomial time. We now show that the graph G has a vertex
cover of size k if and only if the graph G′ has a CSG of size
‖V ‖ − k.

Suppose the graph G in Figure 2 has a vertex cover
C (C ⊆ V ) of size k (‖C‖ = k). Since C is a vertex
cover, ∀(u, v) ∈ E, either u or v or both are in C. By our
construction, ∀(u, v) ∈ E, (u, v) ∈ E′′ (inconsistent edge
set). Thus, C also covers all the inconsistent edges in G′.
In other words, V − C is a CSG. ‖V − C‖ = ‖V ‖ − k.
Thus, if G has a vertex cover of size k, G′ has a CSG of size
‖V ‖ − k.

Now we prove the other direction. Let C ′ be the CSG of G′
of size m (m ≤ ‖V ′‖). By definition of CSG, C ′ contains only
consistent edges that is, for all edges (u, v) in C ′, (u, v) ∈ E′.
Thus, V ′−C ′ covers all edges in the inconsistent edge set E′′.
If this was not true, that means there is an edge (u, v) ∈ E′′
s.t. both u and v are not in V ′ − C ′. Thus, both u and v

are in C ′ and it is not a CSG which is a contradiction. Thus,
V ′ −C ′ covers all inconsistent edges. From our construction,

V ′ − C ′ is a vertex cover of the graph G (there is a one-one
mapping of edges in G to inconsistent edges in G′) and its
size is ‖V ′‖ −m that is, ‖V ‖ −m since ‖V ′‖ = ‖V ‖.

Thus, VERTEX-COVER many-one reduces in
polynomial time to MAX-CON. Since VERTEX-COVER is
NP-complete, MAX-CON is NP-complete.

3.3 Approximation algorithm for MAX-CON

Lemma 1: MAX-CON many-one reduces in polynomial time
(≤P

m) to the VERTEX-COVER Problem.

Proof: The proof of this lemma has a construction that is very
similar to the one in Theorem 1. This construction maps an
instance G′ = (V ′, E′ ∪ E′′) of the MAX-CON problem to
an instance G = (V , E) of theVERTEX-COVER problem in
polynomial time such that G′ has a CSG of size k (k ≤ ‖V ′‖)
if and only if G has a vertex cover of size ‖V ′‖ − k.

1 For each vertex v in the vertex set V ′ of G′, place a
vertex v in the vertex set V of G.

2 For each inconsistent edge (u, v) ∈ E′′ add an edge
(u, v) in the edge set E of G. These edges are shown as
dotted lines in Figure 3(a) and as solid lines in
Figure 3(b).

It is clear that the above construction can be completed in
polynomial time. We now show that G′ has a CSG of size k

(for any k ≤ ‖V ′‖) if and only if G has a vertex cover of size
‖V ‖ − k.
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Figure 3 (a) Input graph for the MAX-CON problem, G′ = (V ′, E′ ∪E′′) and (b) input graph for the VERTEX - COVER problem,
G = (V , E)
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V ′ = {1, 2, 3, 4, 5, 6, 7} V = {1, 2, 3, 4, 5, 6, 7}
E′ = {(2, 6), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)} E = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}
E′′ = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}

(a) (b)

Suppose G′ has a CSG C of size k. This implies
that C contains only consistent edges that is, edges from the
edge set E′. Thus, V ′ −C contains all the inconsistent edges
(from E′′) and the remaining consistent edges (from E′).
Also, ‖V ′ − C‖ = ‖V ′‖ − k. By our construction E = E′′
and V = V ′. Thus V ′ − C covers all edges in E and
is a vertex cover of size ‖V ′‖ − k. Similarly, the other
direction.

Lemma 1 implies that any efficient algorithm for
solving the VERTEX-COVER problem can be used as a
subroutine to solve the MAX-CON problem. The minimum
VERTEX-COVER problem is a fundamental problem in
graph theory and combinatorial optimisation and is a
vastly studied problem with a large number of constant
and fixed ratio approximation algorithms. Hastad (1997)
has shown that VERTEX-COVER cannot be approximated
within a factor of 7/6. It was further improved to
10
√

5 − 21 by Dinur and Safra (2005). Gavril introduced a
2-approximation algorithm for the VERTEX-COVER
problem in Garey and Johnson (1979). This was improved
to 2 − (loglog|V|)/(2log|V|) (Bar-Yehuda and Even,
1985; Monien and Speckenmeyer, 1985) and later to
2 − (lnln|V|)/(ln|V|)(1 − o(1)) (Halperin, 2000) before
it was eventually improved to 2 − �(1/

√
log n) by

Karakostas (2005). An interesting generalisation of
the VERTEX-COVER problem is the weighted
VERTEX-COVER problem in which positive weights are
assigned to each vertex and the problem is to find the
vertex cover with minimum cumulative weight. The first
well-known 2-approximation algorithms for the weighted
VC problem were discovered independently by Bar-Yehuda
and Even (1981) and Hochbaum (1982). An important point
to note here is that all the approximation results for the
unweighted case also hold for the weighted case.

We are now ready to state the approximation algorithm
for the MAX-CON problem. The approximation algorithm
for MAX-CON is as shown in Algorithm 1. Let A(V, E)

be an algorithm for solving the VERTEX-COVER problem,
where V and E are the set of vertices and edges respectively
of the input graph G. Algorithm A returns the set of vertices
that form the minimum vertex cover for the graph G. The
approximation algorithm for MAX-CON is simple and uses
the approximation algorithm A for the VERTEX-COVER
problem as a subroutine. The for loop runs no more than

(‖V ′‖
r

)
times. Also, the running time and solution quality

of Algorithm 1 is bounded by the running time and solution
quality of algorithm A.

Algorithm 1 Calculating the maximum CSG of the PCGG
G′ = (V ′, E′ ∪ E′′)

E ⇐ E′′ {place all inconsistent edges in E}
for all edge (u, v) ∈ E′′ do

if u /∈ V then
V ← u {and corresponding vertices in V }

end if
if v /∈ V then

V ← v

end if
end for
C = A(V, E) {execute approx algorithm for VERTEX-COVER}
return V ′ − C {solution of MAX-CON}

4 Largest consistent subgrounded graph

4.1 Problem statement

The largest CSG problem can be stated as, given a
PCGG G′ = (V ′, E′ ∪ E′′), to find the largest CSG
G(V, E) (Definition 4) of G′. This problem is denoted by
LARGEST-CON. The problem can be alternatively stated
as the problem of eliminating vertices from G′ in such a
way that the subgraph induced by the remaining vertices
consists of only consistent edges and the cardinality of these
edges is maximised. From Figure 1, we can clearly see
that an optimal solution for MAX-CON is not necessarily
an optimal solution for LARGEST-CON. These two are
different problems with different combinatorial hardness and
approximation schemes. The decision version of the problem
can be stated as:

LARGEST-CON
Input: A PCGG G′ = (V ′, E′ ∪ E′′) and a positive integer k

s.t. k ≤ ‖E′‖.
Question: Does G′ contain a CSG of edge size k or more?

4.2 Hardness of LARGEST-CON

In this section, we show that LARGEST-CON is
NP-complete. This result implies that LARGEST-CON∈NP
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and the deterministic complexity of LARGEST-CON is
as hard as any problem in NP. Thus, LARGEST-CON does
not have a deterministic polynomial time solution. We prove
this result by a polynomial time many-one reduction from
MAX-2SAT or Maximum 2-Satisfiability. MAX-2SAT is a
known NP-complete problem (Garey and Johnson, 1979).
MAX-2SAT is a restricted version of another NP-complete
problem called the Maximum Satisfiability or MAX-SAT.
MAX-SAT is the problem, given a set S of disjunctive
form clauses, to find a truth assignment to the literals such
that maximum number of clauses are satisfied (Garey and
Johnson, 1979). MAX-2SAT is restricted to at-most two
literals per clause. It can be formally stated as:

MAX-2SAT
Input: A Conjunctive Normal Form (CNF) formula
F on Boolean variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm, each containing at most two literals, where
each literal is either Boolean variable xi or its negation x̄i

(¬xi) and a positive integer k (k < m).
Question: Is there a truth assignment to the variables that
satisfies k or more clauses?

Theorem 2: LARGEST-CON is NP -complete.

Proof: We use a technique similar to the polynomial time
reduction from 3-SAT used to prove the NP-completeness
of VERTEX-COVER problem (Homer and Selman, 2001).
It is easy to see that LARGEST-CON ∈ NP: Given a graph
G′ = (V ′, E′ ∪ E′′), guess a set of consistent edges E

(s.t. ‖E‖ ≥ k and E ⊆ E′). Let V be the set of vertices of
all these guessed edges. Check in polynomial time whether
the other edges induced by V are consistent. This procedure
clearly can be accomplished in polynomial time and thus
LARGEST-CON ∈ NP. Now we show that MAX-2SAT ≤P

m

LARGEST-CON, that is, MAX-2SAT many-one reduces in
polynomial time to LARGEST-CON. We can then claim
that since MAX-2SAT is NP-complete, LARGEST-CON is
NP-complete.

Construction of G′ = (V ′, E′UE′′): we describe a
polynomial time construction that maps an instance F of
MAX-2SAT to an instance G′ = (V ′, E′UE′′) of the
LARGEST-CON problem such that F satisfies k clauses if
and only if G′ has a CSG of edge size k. Figure 4 shows
the construction of a PCGG G′ = (V ′, E′ ∪ E′′) from the
MAX-2SAT formula F = (x1∨x2)∧ (x2∨x3)∧ (x1∨ x̄3)∧

(x̄1 ∨ x̄2). The consistent edges are shown as solid lines and
the inconsistent edges are shown as dotted lines.

The construction of G′ consists of the following
three steps, each adds a different component to the graph.

1 Let U = VAR(F ), be the set of variables in the Boolean
formula F . For each variable ui ∈ U , put ui and ūi in
the vertex set V ′ and put (ui, ūi) into the edge set E′′
that is, the set of inconsistent edges in graph G′. This is
the first component of the graph.

2 Let C = CLAUSE(F ) be the set of clauses in F that is,
F =∧

cj∈Ccj . For each clause cj in the formula F put

vertices c1
j and c2

j in V ′. Put an edge (c1
j , c

2
j ) in the set

E′′ that is, the set of inconsistent edges. This is the
second component of the graph G′.

3 In this step we create a new component by connecting
components from the first two steps. This component
depends on the literals that are contained in the clauses.
As mentioned before, each clause cj ∈ C is a
disjunction of two literals and literals are variables or
their negations. Consider one such clause
cj = (xj ∨ yj ), where xj and yj are literals. For each
clause cj , put edges (xj , c

1
j ) and (yj , c

2
j ) in E′ that is,

the set of consistent edges of G′. This forms the third
set of components of the graph G′.

We need to show that PCGG G′ has a CSG G = (V , E) of
edge size k that is, ‖E‖ = k if and only if F has k satisfiable
clauses. Suppose, there exists an assignment t s.t. exactly
k clauses are satisfied. Then for each variable ui ∈ U either
t (ui) = 1 or t (ūi) = 1 but both cannot be 1. Place ui in the
vertex set V of the subgraph G of the PCGG G′ if t (ui) = 1 or
place ūi in V if t (ūi) = 1. Thus, V contains one vertex of each
edge in the first component. Now, for a clause cj = (xj ∨yj ),
cj is satisfiable if either literals xj or yj or both are true. Thus,
either xj or yj or both are in the set V based on their truth
assignment. If both xj and yj are in V , randomly (with a
probability 1/2) select vertex c1

j or c2
j and add it to V (never

both). If only one of xj or yj is 1, pick the corresponding
ci
j (based on the construction of component 3) and place

it V . One thing to note here is that when the clause cj is
satisfied, only one c1

j or c2
j is in the set V . When it is not

satisfied none of them are in V . It follows that the vertex set
V induces edges only from E′. Thus the graph induced by V

is consistent and G = (V , E) is a CSG. Also from the above

Figure 4 Construction of a PCGG G′ = (V ′, E′ ∪ E′′) from the MAX-2SAT formula F = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x̄3)

∧ (x̄1 ∨ x̄2)
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procedure, if k clauses are satisfied then exactly k consistent
edges get induced in E. Thus G = (V , E) is a CSG with
edge size k. We now prove the other direction.

Suppose, G = (V , E) is a CSG of the PCGG G′ s.t.
‖E‖ = k, for some positive integer k. From the construction
it is clear that all the consistent edges are of the form (ui, c

i
j ),

where ui is the ith (i ∈ 1, 2) literal in the j th clause cj of the
formula F . Also, if ui ∈ {xi, x̄i}, since the graph G is a CSG,
the edges of the form (xi, x̄i) and (c1

j , c
2
j ) cannot be in E,

that is, both xi and x̄i or c1
j and c2

j cannot be in the vertex set
V of the CSG G. Now define an assignment t : U → {0, 1}
s.t. t (ui) = 1 if ui ∈ V and t (ui) = 0 if ui /∈ V . Similarly,
t (ūi) = 1 if ūi ∈ V and t (ūi) = 0 if ūi /∈ V . We claim
that this assignment is consistent and if there are k edges
in E then there are k satisfied clauses by the above
assignment. Since G is a CSG of G′, none of the edges
in the first two components of our construction can be
present in G. Thus, for any variable xi , both xi and x̄i cannot
be in V . As a result the assignment t above will consistent.
Similarly, for a clause ci , both c1

i and c2
i cannot be in V .

Thus, both edges in the third component of our construction
above of the form (u, c1

j ) and (v, c2
j ) cannot be in G at the

same time, whereu andv are some literals. If this was not true,
(c1

j , c
2
j ) would also be induced in G making it inconsistent.

Thus, there is a one-one correspondence between an edge
in G and the corresponding satisfied clause and since all
these edges span distinct clauses there are exactly k satisfied
clauses.

Lemma 2: Let OPTLAR(G′) and OPTMAX(G′) be the
optimal solutions of the LARGEST-CON and MAX-CON
problems resp. on any input PCGG G′. Let LAR(G′) and
MAX(G′) be the set of all the feasible solutions for the
LARGEST-CON and MAX-CON problems resp. on G′. Then,

1 Cost (OPTLAR(G′)) ≤ cost (OPTMAX(G′)) that is,
‖OPTLAR(G′)‖ ≤ ‖OPTMAX(G′)‖.

2 LAR(G′) = MAX(G′).

3 Let, A ∈ LAR(G′) (MAX(G′)) and B ∈ LAR(G′)
(MAX(G′)) s.t. C = A ∩B and C �= φ. Then, A ∪B /∈
LAR(x) (MAX(x))⇒ ∃u ∈ A− C and ∃v ∈ B − C

s.t. (u, v) ∈ E′′ that is, in the set of inconsistent edges
of G′.

Proof:

1 Assume that there exists a PCGG x such that the
inequality 1 above is not true. This means, that there
exists an optimal solution of LARGEST-CON that has
more vertices than an optimal solution for MAX-CON.
But, then the solution for MAX-CON is not a maximum
CSG, thus not optimal and that is a contradiction. Thus,
no such PCGG exists.

2 The proof of this point is trivial and follows directly
from the definitions of MAX-CON and
LARGEST-CON.

3 Since, A and B are both feasible solutions, there are no
two vertices u and v both in A s.t. (u, v) is inconsistent.
Similarly, there are no such vertices in either B or C.
Also, since A ∪ B is not a feasible solution which

implies that there exists two vertices u, v ∈ (A ∪ B)

s.t (u, v) is inconsistent. The above two points imply
that ∃u ∈ A and v ∈ B s.t. (u, v) is inconsistent.

4.3 Inapproximability of LARGEST-CON

In this section, we show the inapproximability of
LARGEST-CON. CLIQUE is a well known problem and is
one of the first problems shown to be NP-complete (Bomze
et al., 1999). It can be stated as (Homer and Selman, 2001):

CLIQUE
Input: A graph G = (V , E) and a positive integer j ≤ ‖V ‖.
Question: Does G contain a clique of size j or more?

Bomze et al. (1999) have listed important combinatorial
results for the CLIQUE problem. In summary, there is
strong evidence that clique does not have a polynomial time
approximation algorithm. In other words, unless P = NP,
CLIQUE cannot be approximated with any ratio less than 1.

Thoerem 3: If there exists an approximation algorithm that
can approximate LARGEST-CON with an approximation
ratio ε, then there exists an algorithm that approximates
CLIQUE with ratio 1−√1− ε/2.

Proof: Suppose we have an instance of CLIQUE,
G = (V , E). We can construct a new graph G′ = (V , E′)
such that the new graph G′ has the same vertex set as G and
E′ = E ∪Ec where Ec contains all the edges that are not in
E (in the complete graph induced by the vertex set). Now, if
we take E to be the set of consistent edges and Ec to be the
set of inconsistent edges, then G′ is a PCGG. Also, it is easy
to see that any CLIQUE in graph G corresponds to a CSG in
G′ and vice versa. Let A be the ε-approximation algorithm
for solving the LARGEST-CON problem. We apply A on the
graph G′ to get the largest CSG in G′. Let this largest CSG
be Ĝ = (V̂ , Ê). Also, let |V̂ | = m and M be the vertex
cardinality of the optimal solution.

Since A has an approximation ratio ε, we have
∣∣∣∣∣
(

M
2

)− ( m
2 )(

M
2

)
∣∣∣∣∣ =

M2 −M −m2 +m

M2 −M
≤ ε

Then,

1− ε ≤ m2 −m

M2 −M
<

m2

M2 −M

Without loss of generality we can assume M ≥ 2. Then we
have,

1− ε < 2
( m

M

)2
which is,

M −m

M
< 1−

√
1− ε

2

This means we have found an approximation algorithm for
CLIQUE with ratio 1−√1− ε/2.

Corollary 1: Unless P = NP , the approximation threshold
of LARGEST-CON is 1.

Proof: This directly follows from the fact that CLIQUE
cannot be approximated with any ratio less than 1 under the
hypothesis P �= NP.



158 M. Jadliwala et al.

The above corollary implies that LARGEST-CON cannot be
approximated with any ratio less than 1 under the hypothesis
P �= NP.

5 Heuristics-based algorithms for
LARGEST-CON

In this section, we present approximation algorithms for
LARGEST-CON based on well known heuristics. Currently,
we do not know if the quality of the solutions produced by
these algorithms can be bounded.

5.1 Greedy algorithm

Let G′ = (V ′, E′ ∪ E′′) be an instance of LARGEST-CON,
where E′ and E′′ are the sets of consistent and inconsistent
edges, respectively. For a vertex v ∈ V ′, let con(v) be the
number of consistent edges of v and let incon(v) be the
number of inconsistent edges of v. A greedy approach for
obtaining the largest CSG of G′ is shown in Algorithm 2.

Algorithm 2 Greedy algorithm
C ⇐ φ; {Initialise the solution to empty set}
C = {v| v ∈ V ′ and incon(v) = 0}
V ′ ← V ′\C;
while E′′ �= φ do

pick a vertex v ∈ V ′ of minimum con(v);
V ′ ← V ′\{v}
E′′ ← E′′\{e|v ∈ e}

end while
C ← C + V ′;
return C {solution of LARGEST-CON}

This approach eliminates a vertex of inconsistent edge degree
at least one and minimum consistent edge degree in each
iteration. The greedy approach is pretty straightforward, with
a running time bounded by the execution of the while loop
that is O(n2) where |V | = n. The above algorithm can be
modified slightly as shown in Algorithm 3. It picks a vertex
v with minimum con(v)incon(v) that is, eliminates vertices
with the lowest ratio of consistent to inconsistent edges.

Algorithm 3 Modified greedy algorithm
C ⇐ φ; {Initialise the solution to empty set}
C = {v| v ∈ V ′ and incon(v) = 0}
V ′ ← V ′\C;
while E′′ �= φ do

pick a vertex v ∈ V ′ of minimum con(v)

incon(v)
;

V ′ ← V ′\{v}
E′′ ← E′′\{e|v ∈ e}

end while
C ← C + V ′;
return C {solution of LARGEST-CON}

5.2 Local solution search

LSS is an algorithm design technique for optimisation
problems. Before giving details on this technique we

introduce a few important concepts. Let U be an optimisation
problem and x be an input problem instance for U . Let M(x)

be the set of feasible solutions of the problem U for the input
instance x.

Definition 5: Neighbourhood: For an optimisation problem
U and for every input instance x, a neighbourhood on the set
of feasible solutions (M(x)) is any mapping fx : M(x) →
Pot(M(x))(Pot denotes the power set) such that

1 α ∈ fx(α) for every α ∈ M(x)

2 if β ∈ fx(α) for some α ∈ M(x), then α ∈ fx(β) and

3 for all α, β ∈ M(x) there exists a positive integer k and
γ1, . . . , γk ∈ M(x) such that γ1 ∈ fx(α), γi+1 ∈ fx(γi)

for i = 1, . . . , k − 1, and β ∈ fx(γk).

If α ∈ fx(β) for some α, β ∈ M(x), we say that α

and β are neighbours in M(x). The set fx(α) is called
the neighbourhood of the feasible solution α in M(x)

(Hromkovič, 2004).

We now introduce the concept of local optima.

Definition 6: Let U be an optimisation problem and let for
every input instance x, the function fx be the neighbourhood
on M(x). Let cost be the cost function that assigns a positive
real number to each feasible solution. A feasible solution
α ∈ M(x) is a local optima for the input instance x of U

according to fx , if

cost(α) = (max) or (min){cost (β)|β ∈ fx(α)} (2)

We denote the set of all local optima for x according to the
neighbourhood fx by LocOPT U(x, fx) (Hromkovič, 2004).

Neighbourhood definition for LARGEST-CON : The
formalisms of functions and relations does not work
when introducing neighbourhoods on M(x) in practical
problems like LARGEST-CON. The standard way to
introduce a neighbourhood on M(x) is to use a
so-called local transformation on M(x). Informally, a local
transformation transforms a feasible solution α to a feasible
solution β by some local changes of the specification of α.
To define a neighbourhood for an instance of the
LARGEST-CON problem, we introduce a transformation
called a n-neighbourhood transformation. For simplicity,
we first introduce a 1-neighbourhood transformation.
Let x = G′(V ′, E′ ∪ E′′) be an instance of the
LARGEST-CON problem. Let M(x) be the set of feasible
solutions for LARGEST-CON on input x. For α ∈ M(x),
we define the 1-neighbourhood of α as follows.

To define a 1-neighbour of a feasible solution α, pick a
vertex v ∈ V ′\α s.t. v has an inconsistent edge degree of
exactly one and this inconsistent edge connects v to a vertex
in α. Let this vertex in α be called w. If there are no such
vertices thenα has no 1-neighbours. Now to get a 1-neighbour
of α, add v in α and remove w from α. It is clear that this
resultant subgraph is also a feasible solution since the
inconsistent edge which was covered by v previously is now
covered by w. Also, addition of v does not induce
any inconsistent edge in the resultant subgraph since its
inconsistent edge degree is one and that edge is covered
by w. We call this a 1-neighbour of the solution α.
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The set of all the 1-neighbours of α is called the 1-
neighbourhood of α and is represented as Neigh1

x(α).
Similarly, to define a 2-neighbourhood, a vertex v ∈ V ′\α
with inconsistent edge degree of exactly two (to vertices
in α) is selected. This vertex is added in α and the two
vertices that v connects by inconsistent edges are removed
from α. One thing to note here is that 1-neighbours of
α have the same vertex set cardinality as α while its
2-neighbours have their vertex set cardinality reduced by 1.
Similarly 3-neighbourhoods are defined.

LSS Algorithm for LARGEST-CON: Roughly speaking,
a LSS algorithm starts off with an initial solution and
then continually tries to find a better solution by searching
neighbourhoods. If there is no better solution in the
neighbourhood, then it stops. Having a structure on the set
of feasible solutions M(x) determined by a neighbourhood
Neighx for every input instance x of an optimisation problem
U , one can describe a general scheme of local search as shown
in Algorithm 4.

Algorithm 4 Local Search Scheme according to a
neighbourhood Neigh

Find a feasible solution α ∈ M(x)

while α /∈ LocOPT U(x, Neighx) do
find a β ∈ Neighx(α) such that cost (β) < cost (α) if
U is a minimisation problem or cost (β) > cost (α) if
U is a maximisation problem;
If such a β is found, α = β;

end while
return α

The success of a local search algorithm depends on the choice
of the neighbourhood. If a neighbourhood Neighx has the
property that Neighx(α) has a small cardinality for every
α ∈ M(x), then one iterative improvement of the while
loop of Algorithm 4 can be executed efficiently but the risk
that there are many local optima (potentially with a cost
that is very far from the optimal solution) can substantially
grow. On the other hand, large |Neighx(α)| can lead to
feasible solutions with costs that are closer to the optimal
solution than smaller neighbourhoods can, but the complexity
of the execution of one run of the while cycle can increase
too much. Besides the choice of the neighbourhood there
are two other factors that affect the execution of the local
search algorithm. The first factor is the method by which
the initial feasible solution is computed. The choice of the
initial solution can essentially influence the quality of the
resultant local optimum. The initial feasible solution can
be either chosen randomly for problems in which the structure
of the feasible solution is simple or it can be precomputed. In
the LSS algorithm for LARGEST-CON the initial feasible
solution is precomputed. From Lemma 2 we know that
a solution for the MAX-CON problem is also a solution
for the LARGEST-CON problem. Thus, any algorithm that
produces an optimal solution for MAX-CON can be used as
a good starting solution for the LARGEST-CON problem.
Further improvement can be done by starting the LSS
algorithm with multiple initial feasible solutions. The second
factor affecting the performance of the LSS algorithm is the
way in which a cost-improving feasible solution is selected

inside the while loop. There are two strategies in doing this,
namely, first improvement and best improvement. The first
improvement strategy means that the current feasible solution
is replaced by the first cost-improving feasible solution
found by the neighbourhood search. The best improvement
strategy replaces the current feasible solution by the best
feasible solution in the neighbourhood. A LSS for solving
LARGEST-CON is outlined in Algorithm 5.

Algorithm 5 Local Search Scheme for LARGEST-CON
using Neigh1

x

Let x = G′(V ′, E′ ∪ E′′) be a PCGG and an instance of
LARGEST-CON and let A be an efficient algorithm for
solving MAX-CON.
Let α = A(x) be the initial feasible solution.
while α /∈ LocOPT U(x, Neigh1

x(α)) do
Either by first improvement or best improvement, find
a β ∈ Neigh1

x(α) such that cost (β) > cost (α)

{cost function outputs the edge count (consistent) of
a solution}
If such a β is found, α = β;

end while
return α

One shortcoming of this approach is that in one iteration
of the while loop only the 1-neighbourhood (Neigh1

x) of
the feasible solution α is checked. But α might not have
1-neighbourhoods at all or there might be better solutions
in the 2-neighbourhoods and 3-neighbourhoods. The above
algorithm can be further improved by also checking the
2-neighbourhoods and 3-neighbourhoods.

6 Experimental evaluation

We implemented the greedy and LSS algorithms in
C++ language and tested them on randomly generated graphs.
The random graphs are generated in the following way: All
vertices in the graph represent the nodes in the sensor network
that are randomly distributed in a 500 m × 500 m region.
If the distance between two nodes is less than or equal to the
radio range (all nodes are assumed to have the same radio
range), then the two corresponding vertices are connected by
an edge in the graph.

The number of nodes (n) and the radio range (r) are
adjustable parameters. We, then randomly assign one third
of the nodes as malicious and for any edge between a
malicious node and an honest node, we assign the edge to
be inconsistent with a probability of 1/2. All other edges are
assigned to be consistent. It is obvious that if we remove all
the malicious nodes and the corresponding edges then the
resulting subgraph becomes consistent. This subgraph may
or may not be the optimal solution. Such a subgraph is called a
suboptimal solution and the number of edges in a suboptimal
solution is called its value.

We tested the two greedy algorithms and the two local
search algorithms with some fixed values for n and r . Since
it is computationally infeasible to get the true optimal solution
for large graphs, we measure the solution quality of the
algorithms by evaluating the ratio of the value (number of
edges in the solution) returned by these algorithms to the
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value of the suboptimal solution. All data values are the
average of 100 runs. The data diagrams in Figure 5(a)–(c)
plot the data values of the algorithms with n = 80, n = 100
and n = 120, respectively. The radio range is along the x-axis
and the ratio of the solution value to the suboptimal solution
value is along the y-axis.

Figure 5 Plot of solution quality versus radio range for a
network with (a) 80 nodes; (b) 100 nodes and
(c) 120 nodes

(a)

(b)

(c)

We make the following observations:

1 None of the algorithms discussed above returns a
solution that is better than the suboptimal solution.

2 The performance difference of the two greedy
algorithms is negligible (for this reason we only indicate
one data curve for greedy algorithms in the diagrams).

3 The performance difference of the two local search
algorithms is negligible (for this reason we only
indicate one data curve for local search algorithms in
the diagrams).

4 The local search algorithm has some improvement over
the greedy algorithm, but the improvement is not
significant.

5 The performance of both the algorithms decreases as
the number of nodes increases.

6 The performance of both the algorithms decreases as
the radio range increases (i.e. the graph is more dense)
and becomes stable after the radio range reaches a
certain threshold value.

7 The solution quality does not deteriorate below 0.4 and
the average solution quality is close to 0.5.

Despite the negative inapproximability result for
LARGEST-CON, we can see that both the greedy and local
search algorithms produce good solutions even for large
graphs. Also, the solution quality is close to 0.5 even for
highly sparse graphs. These results are encouraging. In
our experiments, we found only a negligible difference
between the two greedy algorithms and the local search
algorithms. Moreover, the above algorithms and results
are true only for general graphs. We have not investigated
the LARGEST-CON problem in specific types of graphs like
planar graphs. There is a possibility that we might be able to
find a lower bound on the solution quality for such graphs.

7 Conclusion and future work

In this paper, a formal model for WSNs that takes into
account the inconsistencies (inaccuracies) introduced due to
malicious node behaviour or external factors is proposed.
Using this model as a basis, we formulate two optimisation
problems that aim to eliminate these inconsistencies in an
efficient way, namely MAX-CON and LARGEST-CON.
The hardness of these optimisation problems is indicative
of the difficulty involved in eliminating inconsistency
causing nodes in a WSN and is an important factor
when considering redeployment, network termination, etc.
We prove the above problems to be NP-complete and give
the inapproximability result for LARGEST-CON. We also
provide two approximation algorithms for LARGEST-CON
based on popular heuristics like greedy choice and LSS.
Finally, using experiments we show that LSS performs
slightly better than greedy algorithms for randomly generated
graphs and performance of both the algorithms deteriorates
as the number of nodes and radio range increases.

As part of our future work in this direction, we
would first like to get a lower bound on the solution
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quality of LARGEST-CON. We are currently working
on another solution strategy for solving LARGEST-CON.
We would like to formulate, test and compare it against
the existing strategies. Moreover, the combinatorial results
for LARGEST-CON presented in this paper hold for graphs
in general. As part of future research, we would like to
investigate whether WSNs can be modelled as specific types
of graph and whether or not the inapproximability result for
LARGEST-CON holds for such graphs.
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