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ABSTRACT

PRIVACY PRESERVING AND INCENTIVE

COMPATIBLE PROTOCOLS FOR COOPERATION IN
DISTRIBUTED COMPUTATIONS

MAY 2011

TINGTING CHEN

Ph.D., State University of New York at Buffalo

Directed by: Professor Sheng Zhong

In today’s society, advanced cyber-infrastructure are connecting a huge number

of mutually unfamiliar people, and forming a computing environment with untrusted

parties. The human factors of untrusted parties, especially the considerations of pri-

vacy, security and incentives, bring new challenges in designing our systems, services

and software with distributed computations. This thesis addresses the incentive and

privacy issues in distributed computing with untrusted parties.

Wireless networks with recent technical advances have become one of the most

popular platforms for computing with untrusted parties. However, in civilian wireless

networks, nodes often belong to different users and those users may be selfish. Ex-

isting protocols that were designed without considering user incentives often require

nodes to spend their own resources for others. Hence selfish users may deviate from

these protocols, in order to maximize their benefits. It causes serious problems to per-

formance and even functioning of wireless networks. So, it is of great importance to

provide incentives to those selfish users in wireless networks. First part of this thesis

v



focuses on designing incentive-compatible packet forwarding protocols for three differ-

ent types of wireless networks, i.e., ad hoc wireless networks, wireless networks using

network coding and vehicular ad hoc networks. First, for traditional ad hoc wireless

networks, the first reputation system that has rigorous analysis and guaranteed incen-

tive compatibility in a practical model is proposed, to enhance the cooperation among

nodes in forwarding packets for others. Second, for newly emerging wireless networks

using network coding, the first-ever enforceable incentive scheme to stimulate packet

forwarding is proposed that uses a combination of game theoretic and cryptographic

techniques. Third, the problem on how to stimulate message forwarding in vehicu-

lar ad hoc networks that have no end-to-end connections is solved, and an incentive

scheme with rigorous analysis based on coalitional game theory is proposed.

In the distributed computing environments with untrusted parties, besides incen-

tive issues, privacy concerns from the participants also impede the process of obtaining

better computation results. To address the privacy concerns, the second part of this

thesis focuses on designing privacy preserving distributed data mining protocols, when

the input data comes from different parties. In particular, the first privacy preserving

back-propagation learning algorithms for multi-layer neural networks with vertically

partitioned data, using cryptographic tools, with provable security is proposed. Fur-

thermore, a privacy preserving algorithm for growing neural gas with input data from

two parties is also presented. This algorithm allows two parties to jointly conduct

grow neural gas algorithm without revealing any party’s data.
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INTRODUCTION

In today’s society, advanced networking technologies connect a huge number of

mutually unfamiliar people. The pervasive cyber-infrastructure forms a distributed

computing environment with untrusted parties. The human factors of untrusted

parties, especially the considerations of privacy, security and incentives, bring new

challenges in designing our systems, services and software with distributed compu-

tations. On one hand, in many computing scenarios, incentive problems exist and

become increasingly prevail. For instance, the selfish users in user-contributed net-

works only want to take advantage of peer users’ services, but are not willing to

contribute their own resources. It creates the famous free-rider problem [2]. On the

other hand, privacy concerns have also become very important in many applications

of data usage. For example, FCC [31] restricted the use of individually identifiable

information in users’ phone call records. It means that telecommunication companies

must take consider their customers’ privacy issues when designing data mining pro-

tocols for market research. This thesis addresses the incentive and privacy issues in

distributed computing with untrusted parties.

Wireless networks with recent technical advances have become one of the most

popular platforms for computing with untrusted parties. However, existing protocols

that were designed without considering user incentives often require nodes to spend

their own resources for others. Hence selfish users may deviate from these protocols,

in order to maximize their benefits. It causes serious problems to performance and

even functioning of wireless networks. Therefore, it is of great importance to provide

incentives to those selfish users in wireless networks.

1



The studies on incentives in this thesis have focused on designing incentive-

compatible packet forwarding protocols for three different types of wireless networks,

i.e., ad hoc wireless networks, wireless networks using network coding and vehicular

ad hoc networks. The first part of thesis focuses on designing incentive-compatible

packet forwarding protocols because packet forwarding is essential in providing reli-

able end-to-end packet transmission services in wireless networks. On the other hand,

different types of wireless networks require different packet forwarding protocols ac-

cording to their network conditions and quality of service needs. As a result, the

work is divided into three parts, with each part particularly addressing the packet-

forwarding incentive problems in one type of wireless networks. In this thesis, in

order to rigorously show the system-wide performance with presence of selfish users,

models and concepts in game theory are applied [48, 49] in the analysis.

To address the privacy concerns, in this thesis, the second part focuses on de-

signing privacy preserving distributed data mining protocols, when the input data

comes from different parties. In the recent years, privacy preserving data mining has

attracted a lot of research efforts. The existing works can be classified into three

categories, i.e., summarization-based approaches (e.g., [3, 118]), perturbation-based

approaches [4, 43, 23] and cryptography-based approaches [69, 70, 101, 102, 65]. As

discussed in Section 1.3.2, there is always a three way tradeoff among the metrics

of result accuracy, efficiency and security. Any approach, if it aims to optimize one

metric, must sacrifice at least one of the other two metrics. The works in this thesis

fall into the category of cryptography-based approaches. The reason why to choose

cryptography-based approaches is that in many applications especially in the health-

care related applications, patients’ privacy and result accuracy are the top consider-

ations. Cryptographic-based approaches can minimize the accuracy loss and provide

provable security guarantee. Different from the general secure multi-party computa-

tion [115], specific privacy preserving protocols for different mining applications are
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designed and thus these protocols achieve better efficiency than the existing general

multi-party computation methods.

The rest of this thesis is organized as follows.

Part I: Preliminaries

In Chapter 1, first some concepts in game theory and the cryptographic techniques

that will frequently be use in this thesis are briefly reviewed. Then the related work

for incentive-compatible protocols in wireless networks and for privacy preserving

data mining are reviewed respectively.

Part II: Incentive-Compatible Packet Forwarding in Wireless Networks

This part of thesis mainly focuses on solving the incentive issues for packet for-

warding in wireless networks.

In Chapter 2, for traditional ad hoc wireless networks, the first reputation system

that has rigorous analysis and guaranteed incentive compatibility in a practical model

is proposed, to enhance the cooperation among nodes in forwarding packets for others.

In Chapter 3, for newly emerging wireless networks using network coding, the

first-ever enforceable incentive scheme to stimulate packet forwarding, is proposed

which uses a combination of game theoretic and cryptographic techniques.

Chapter 4 studies how to stimulate message forwarding in vehicular ad hoc net-

works that have no end-to-end connections, and proposes an incentive scheme with

rigorous analysis based on coalitional game theory.

Part III: Privacy Preserving Distributed Data Mining

Part III focuses on designing privacy preserving distributed data mining protocols

to address the privacy concerns in computations with untrusted parties.

In Chapter 5, the first privacy preserving back-propagation learning algorithms

for multi-layer neural networks with vertically partitioned data is proposed, using

cryptographic tools, with provable security.
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In Chapter 6, a privacy preserving algorithm for growing neural gas with input

data from two parties is proposed. This algorithm allows two parties to jointly conduct

grow neural gas algorithm without revealing any party’s data.
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Preliminaries
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CHAPTER 1

TECHNICAL PRELIMINARIES

1.1 A Review of Some Concepts in Game Theory

1.1.1 Non-cooperative Strategic Game

In a non-cooperative strategic game, any player i in player set N tries to maximize

its own utility (payoff), denoted by ui. We denote one strategy of player i by si and

the strategy space of i by Si. The set of chosen strategies of all players constitutes a

strategy profile, written as s = {s1, s2, · · · , s|N |}. Note that a strategy profile includes

one and only one strategy for each player. s−i is the strategies set chosen by all the

other players except player i. Formally, s−i = {s1, · · · , si−1, si+1, · · · , s|N |}. Every

player prefers strategy si to s′i, if si brings higher utility, ui(si, s−i) > ui(s
′
i, s−i).

In game theory, Nash equilibrium is an important solution concept. The formal

definition as in [83] is described below.

Definition 1. Nash Equilibrium: The strategy profile s∗ constitutes a Nash equilib-

rium, if for each player i,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀si ∈ Si. (1.1)

A Nash equilibrium solution guarantees that no players can benefit by deviating

from it if other players do not change their strategies.

1.1.2 Repeated Games

A repeated game is is divided into T stages. When T > 0 is a finite number, we

call the game a finite repeated game; otherwise, we call it an infinite repeated game.

6



In each stage of the game, there is an action set available to player vi. In stage t,

player vi chooses an action ai,t from Ai. The utility of player vi in stage t is decided

by the actions of all players in the game. When taking an action, a player knows the

actions previously chosen by the other players.

One of the most popular forms of preference relations that can be used to model

in an infinitely repeated game is discounting form, where a discounting total utility

in the entire game is considered. Let δ < 1 be a constant—we call it the discount

factor. The total utility of vi in the entire game is

ui,total =

∞
∑

ℓ=1

δℓ−1ui,ℓ.

Intuitively, this means the player vi has more interest in the current stage and the

near future than in the far future.

In a repeated game, a history refers to a number of continuous stages starting

from the beginning of the entire game, such that the actions of all players in all these

stages have been chosen. The length of a history is defined as the number of stages

in it. Given a history, the players can play the rest of the game, which constitutes a

subgame. In each subgame, we can consider the utility of each player just as in the

entire repeated game. For example, for a history H of length L, the utility of vi in

the subgame immediately following H is

ui|H =
∑

ℓ>L

δℓ−1ui,ℓ.

For the entire game, a strategy si for each player vi specifies what action vi should

choose after each possible history. Clearly, once every player has determined its

strategy, the utilities of all players are also fixed. Hence, for each player vi, the total

utility, the utility in any stage, or the utility in any subgame, is always a function of

the profile of all players’ strategies. Denote by s (s = (s1, . . . , sn)) the profile of all
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players’ strategies. We use ui|H(s), to represent the utility of node vi in the subgame

immediately following history H , when the strategy profile s is used by the players.

We say a strategy profile s = (s1, . . . , sn) induces a Nash equilibrium in the sub-

game immediately following history H if for all vi, for all s′i 6= si,

ui|H(s1, . . . , si−1, s
′
i, si+1, . . . , sn) ≤ ui|H(s).

We say s is a subgame perfect equilibrium if s induces a Nash equilibrium in every

subgame.

1.1.3 Coalitional Games

In coalitional game theory, the central concept is the formation of coalitions. Each

coalition is a subset of game players who cooperatively join their forces. Each selfish

player always tries to join the coalition that can maximize its own payoff share.

Denote by R the set of real numbers. Formally, a coalitional game can be defined as

follows.

Definition 2. A coalitional game is an ordered pair (N, v), where N is the set of

players and v is a characteristic function from 2N to R such that v(φ) = 0. Each

subset of N is called a coalition. Hence, the characteristic function v actually assigns

a real number to each coalition, called the payoff of that coalition. The coalition N,

which consists of all players, is called a grand coalition.

Intuitively, for a coalition S, v(S) is the amount of overall benefit that can be

obtained by the players in S from cooperation agreements among them.

Ideally, we want all players to join the grand coalition, so that any two players

cooperate with each other. Since each player has the freedom to choose the coalition

to join based on its own interests, we must ensure that joining the grand coalition

is to the best interest of every player. In coalitional game theory, there is a classic

solution concept, core, which gives us such a guarantee.
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Definition 3. In a coalitional game (N, v), the core C(v) is the set of payoff alloca-

tions x ∈ RN , s.t.

C(v) = {x ∈ RN |
∑

i∈N

xi = v(N);
∑

i∈S

xi ≥ v(S), ∀S ⊆ N}

From the above definition we can see that an allocation lies in the core is efficient

[83] in that
∑

i∈N xi = v(N), which means no payoff is wasted. Moreover, because

xi ≥ v({i}), an allocation in the core is individually rational [83], which means each

player can obtain a payoff share no less than acting alone. (In fact, each player’s

payoff share is no less than joining any other coalition.)

Note that the core of a coalitional game may be of any size; it may even be empty.

If the core is empty, then we cannot guarantee it is to the best interest of every player

to join the grand coalition.

1.2 Frequently Used Cryptographic Techniques

1.2.1 ElGamal Encryption Scheme

ElGamal is a public-key encryption scheme which can be defined on any cyclic

group. Let G be a cyclic group of prime order q with generator g. We assume that

decisional Diffie-Hellman assumption (DDH) [14] holds in G such that ElGamal is

semantically secure.

Components. ElGamal scheme consists of three components, i.e., key generation,

encryption and decryption.

• Key Generation.

A value x ∈ Zp is randomly chosen as the private key. The corresponding public

key is (G, q, g, h), where h = gx.

• Encryption.
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A message m ∈ G is encrypted as follows. A value r ∈ Zp is chosen as random.

Then the ciphertext is constructed as (C1, C2) = (gr, m · hr).

• Decryption.

The plain text is computed as

C2

Cx
1

=
m · hr

gx·r
=

m · hr

hr
= m.

Homomorphic Property. ElGamal scheme is homomorphic in that for two mes-

sages, m1 and m2, an encryption of m1 + m2 can be obtained by an operation on

E(m1, r) and E(m2, r) without decrypting any of the two encrypted messages.

Probabilistic Property. ElGamal scheme is also probabilistic, which means that

besides clear texts, the encryption operation also needs a random number as input.

Let an encryption of message m using public key (G, q, g, h) and a random number

r be denoted as E(G,q,g,h)(m, r). For simplicity we use notation E(m, r) instead of

E(G,q,g,h)(m, r).

In probabilistic encryption schemes, there are many encryptions for each message.

ElGamal allows an operation that takes one encrypted message as input and outputs

another encrypted message of the same clear message. This is called rerandomization

operation. For instance, taking the encrypted message (C1, C2) = (gr, m·hr) as input,

one can do the rerandomization and obtain another cyphertext of m as,

(C ′
1, C

′
2) = (C1 · g

s, C2 · h
s) = (gr+s, m · hr+s).

1.3 State of Art

1.3.1 Incentive Compatible Protocols in Wireless Networks

There has been extensive study of the incentive problems in routing and packet

forwarding of wireless ad hoc networks. Generally, the solutions proposed follow one
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(or both) of the two approaches: the approach of reputation systems [15, 16, 52, 78,

9, 74, 79, 88] and the approach of credit-based systems [19, 96, 97, 119, 12, 7, 59, 105,

120, 106, 107, 121].

1.3.1.1 Reputation-based systems

In a reputation system, the behavior of a node is observed by other nodes in the

network; it gets a bad reputation if it appears to have dropped packets. Reputation

systems can be divided into two categories: end-to-end reputation systems and the

more recently proposed hop-by-hop reputation systems.

The first solution to the incentive-compatible packet forwarding problem is an

end-to-end reputation system proposed by Marti, et al. [76]. They design a watch

dog and a path rater, which monitor the reputation of nodes. Another early solution

by Buchegger and Le Boudec, is called CONFIDANT [16, 15]. It maintains a state

machine at each node for the reputation of other nodes. These two systems are good

examples of end-to-end reputation systems in that each node monitors nodes that are

not its neighbors and calculates their reputations.

In recent years, hop-by-hop reputation systems have been proposed to reduce

the overheads of reputation systems. Good example are SORI, proposed by He, et

al.[52] and Catch, proposed by Mahajan, et al. [74]. In SORI, each node calculates

the reputation of its neighbors only based on the observations made by itself and

its other neighbors. Another example of hop-by-hop reputation systems is Catch,

proposed by Mahajan, et al. [74].

The above reputation systems, along with many other reputation systems (e.g., [78,

9, 79, 88]), have a common limitation: they do not have rigorous analysis of their

incentive compatibility. Hence, it is not clear what guarantee they can provide in

terms of incentive compatibility.
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As far as we know, Milan, et al.’s GTFT [80](which was first studied in a different

content by Wu and Axelrod [110]) and Jaramillo and Srikant’s DARWIN [60] are two

reputation systems in wireless networks that have rigorous analysis. Both of them

are shown to provide SPNE solutions.

1.3.1.2 Credit-based Systems

Buttyan and Hubaux [19, 12] are the first to propose to use credit-based systems

for the packet forwarding problem in wireless ad hoc networks. Zhong, et al. propose

Sprite [119] that does not need tamper-proof hardware. Another credit-based system

is due to Ben Salem, et al. [93], which uses symmetric key cryptography as the main

tool. Later, Wan, et al. [105] design a credit-based system for multicast.

Other important credit-based systems include [59, 41, 42, 106, 107, 121], among

others.

There are also systems like OCEAN[9], which use a combination of reputation

system and credit-based system.

Some ideas in combinatorial auctions [87, 85, 103, 32, 38] may be helpful in pro-

viding incentive compatible solutions for the packet forwarding problem in wireless

networks. For example, Rassenti et. al. [87] presented a sealed-bid combinatorial auc-

tion for the allocation of airport takeoff and landing slots to competing airlines. An-

other example is the most famous combinatorial auction, the Vickrey-Clarke-Groves

(VCG) mechanism. In a VCG auction, bidders report their valuations for all goods

and items are allocated efficiently to maximize total value. If we model the packet

forwarding process among nodes as a combinatorial auction, then such ideas could

possibly be applied to solve the packet forwarding issue in network coding. For ex-

ample, we may consider maximizing total utility by choosing different combinations

and consideration of incentive compatibility for the auctioneer. However, deriving a

solution in this way is not trivial.
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1.3.2 Privacy Preserving Distributed Data Mining

The notion of privacy preserving data mining was proposed by two different papers

([4] and [69]) in the year 2000. Both of the two papers addressed the problem of

performing data analysis on distributed data sources with privacy constraints. In [4],

Agrawal et al. presented a solution by adding noise to the source data, while in [69]

Lindell and Pinkas used cryptographic tools to efficiently and securely build a decision

tree classifier.After these two papers, a good number of data mining tasks have been

studied with the consideration of privacy protection, for example classification [118],

clustering [56, 101], association rule mining [43], etc.

In particular, privacy preserving solutions have been proposed for the following

classification algorithms (to name a few): decision trees [69, 70, 39], Naive Bayes

classifier [102, 108], and SVM [23, 116, 65]. Generally speaking, the existing works

have taken either randomization based approaches (e.g., [4, 23]) or cryptography based

approaches (e.g., [70, 101, 102, 65]). Randomization based approaches, by perturbing

data, only guarantee a limited degree of privacy. In contrast, cryptography based

approaches provide better guarantee on privacy than randomized based approaches,

but most of the cryptography based approaches are difficult to be applied with very

large databases, because they are resource demanding. For example, although Laur

et al. proposed an elegant solution for privacy preserving SVM in [65], their protocols

are based on circuit evaluation which is considered very costly in practice.

In cryptography, there is also a general-purpose technique called secure multi-

party computation. The works of secure multi-party computation originate from the

solution to the millionaire problem proposed by Yao [115], in which two millionaires

can find out who is richer without revealing the amount of their wealth. In [114], a

protocol is presented which can privately compute any probabilistic polynomial func-

tion. Although secure multi-party computation can theoretically solve all problems

of privacy-preserving computation, it is too expensive to be applied to practical prob-
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lems [50]. This general solution is especially infeasible for cases in which parties hold

huge amounts of data.

Now we review the related works on privacy preserving neural networks learning as

it is the particular data mining problem that we have studied. There are few works on

the problem of privacy preserving neural networks learning (limited to [22, 10, 104]).

The most recent one is [104]. As discussed above, the difference between our work

and their is that we focus on privacy preserving neural networks and provide a light-

weight algorithm applicable to more complex neural networks configurations, while

their protocol is for gradient descent methods in general and thus loses some power

for neural networks in particular.

Protocols in [22, 10] are also designed for privacy-preserving neural-network-based

computations. In particular, Chang and Lu [22] proposed a cryptographic protocol

for non-linear classification with feed-forward neural networks. Barni et al. in [10]

presented three algorithms with different levels of privacy protections, i.e., protecting

private weight vectors, protecting private activation functions, and preventing data

providers from injecting fake cells to the system.

The fundamental difference between our work and the protocols in [22] and [10]

is that they work in different learning scenarios. In [22] and [10], it is assumed that

there is a neural network owner; this neural network owner owns a neural network,

but does not have any data to train it. In addition, there are some data providers

who have data that can be used to train the neural network. The goal of [22] and

[10] is to ensure that the neural network owner does not get any knowledge about the

data, and at the same time, the data providers do not get the knowledge embedded

in the neural network (e.g., the node activation functions). In constrast, we consider

a totally different scenario in which there are at least two neural network owners,

each having his own set of data. The two parties want to jointly build one neural

network based on all the data, but each party does not want to reveal his own data.
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As a result, protocols in [22] and [10] cannot be applied in the scenario that we are

studying.

Moreover, [22] and [10] are of theoretical interests only; they have not implemented

their protocols, neither have they tested their protocols in any experiments. In con-

trast, we have implemented our algorithm and carried out extensive experiments.

The results of our experiments show that our algorithm is practical.

15



Part II

Incentive-Compatible Packet
Forwarding in Wireless Networks
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CHAPTER 2

PACKET FORWARDING COOPERATION IN WIRELESS

AD-HOC NETWORKS[26]

2.1 Background and Motivation

A wireless ad hoc network does not have an infrastructure. In such a network,

the cooperation of nodes is needed for forwarding other nodes’ packets. If nodes do

not forward each other’s packets, the entire wireless ad hoc network cannot function

properly. Nevertheless, in civilian ad hoc networks, nodes belong to different users

and thus have their own interests. Consequently, we need to give nodes incentives to

make them cooperative.

There are mainly two approaches to give nodes incentives: reputation-based sys-

tems and credit-based systems. In this chapter, we focus on the reputation-based

approach, which is highly efficient and has been effectively applied to wireless ad hoc

networks.

The existing works on reputation systems suffer from one of two problems. First,

most of them (e.g., [76, 16, 15, 52, 74]) do not have rigorous analysis of incentive-

compatibility. Hence, it is not clear what guarantee for cooperation these reputation

systems can provide. Second, although some other reputation systems [80, 60] do have

rigorous analysis, their analyses are in unrealistic models. Therefore, in practice, their

work cannot guarantee cooperation as well.

Specifically, the existing reputation systems which have rigorous analyses study

the interaction between each pair of neighbor nodes, as an infinite repeated reputa-

tion game. Hence, their analyses of incentive compatibility can be valid only if the
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reputation game between each pair of nodes continues infinitely. However, in real-

ity, the games are finite. Therefore, even though their analyses are mathematically

correct for an infinite repeated game, they do not really guarantee cooperation in a

finite repeated game, i.e., in reality.

To see more clearly the problem caused by a finite repeated game, let us consider

a simple example of two selfish neighbor nodes, v0 and v1. Suppose v0 knows that his

game will end, say, after two hours ( e.g., he is going to move out of the transmission

range of his neighbors at that time). Recall that a finite repeated game consists of

a finite number of stages. As a selfish node, his best strategy is to figure out the

total number of stages in the repeated game and refuse to cooperate in the last stage,

because no punishment can be made after that. Unfortunately, his neighbor v1 is as

smart as him. She is also aware of his best strategy. Consequently, given the strategy

of v0 that drops all packets of v1 in the last stage, the best strategy for v1 is not to

cooperate in the last two stages, because no matter v1 cooperates or not, her own

packets are not forwarded by v0 in the last stage, and if she chooses to not cooperate

in the last two stages, no more punishment she will receive. This sounds pretty bad,

but is still not the end of story. Considering the strategy of v1, v0 decides that he had

better change his strategy to no cooperation in the last three stages . . . Therefore,

we will have a cascade of no cooperation, until finally both v0 and v1 decide not to

cooperate in the entire game.

In fact, we can prove that, not only the existing reputation systems, but also

any reputation system designed in the traditional way, will fail to provide incentive

compatibility in the realistic model (see Theorem 4).

To overcome the difficulty in the realistic model, in this chapter we propose FITS

(FInite-Time reputation System). It is the first reputation system that has a proof

of incentive compatibility in a practical model. FITS uses a novel technique called

Threat To Interfere (TTI). The idea of TTI is very simple. We allow a node to
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threaten to interfere with his neighbor’s communications after a finite reputation

game if his neighbor does not cooperate in the last stage of the game. In this way,

the cascade of no cooperation is prevented from its very beginning. Hence, all nodes

will cooperate in the entire reputation games, and thus no real interference is needed.

(For more details, see Section 2.4.)

Our contributions are briefly summarized below:

• First, we show that traditional reputation systems cannot provide any Sub-

game Perfect Nash Equilibrium (SPNE) solution in a finite reputation game.

Therefore, it is necessary to enhance the reputation system approach.

• Second, we enhance the reputation system approach by introducing the novel

TTI technique. Using this technique, we design the FITS-D scheme and show

that, when the FITS-D scheme is used, under an assumption called Perceived

Probability Assumption (PPA), there is a SPNE in which the forwarding prob-

abilities of all nodes are close to 1.

• Third, we also propose the FITS-I scheme, which does not need the PPA. With-

out the PPA, we show that it also has a SPNE in which the forwarding proba-

bilities of all nodes are close to 1.

• Finally, experiments verify that our FITS schemes provide strong incentives for

nodes to cooperate.

The rest of this chapter is organized as follows. Section 2.2 presents technical

preliminaries. In Section 2.3, we show that traditional reputation systems cannot

provide SPNE solutions when the reputation game has a finite number of stages.

In Sections 2.4 and 2.5, we present the FITS-D and FITS-I schemes, respectively.

Evaluation results are presented in Section 2.6. We summarize in Section 2.7.
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2.2 Technical Preliminaries

In this chapter, we study a wireless ad hoc network in which the nodes are in

promiscuous mode. That is, each node can hear the transmissions of its neighbors.

Furthermore, each link in this network is bidirectional. That is, if a node can receive

packets from another node, then the latter node can also receive packets from the

former node. Like in [60], we assume that nodes are selfish not malicious. That is,

each node is interested only in maximizing its own utility.

Same as in a lot of previous works [52, 74, 80, 60], we consider a hop-by-hop

reputation system and isolate each pair of neighbors (v0, v1). We study the reputation

game between them. (What we describe in the rest of this section is the basic model

of the reputation game, which is used to model traditional reputation systems in this

chapter. In Section 2.4, the model is extended so that it can model reputation systems

using a newly introduced technique.) The reputation game is divided into T stages,

where T > 0 is a finite number. In each stage, a sufficiently large number of packets

are transmitted between v0 and v1.

Formally, our reputation game is a finite repeated game. The players of this game

are the pair of neighbor nodes, v0 and v1. In each stage of the game, there is an

action set available to player vi (i ∈ {0, 1}): Ai = {ai|0 ≤ ai ≤ 1}. In stage t, player

vi chooses an action ai,t from Ai. Intuitively, ai,t is the probability that vi forwards

v1−i’s packets in stage t. The utility of player vi in stage t is decided by the actions

of both players:

ui,t = a1−i,tu− ai,tc,

where u is the amount of benefit player vi can receive if all its packets are forwarded

by v1−i in the entire stage, and c is the amount of cost needed by vi for forwarding

all v1−i’s packets in the entire stage. In this chapter, we assume that all nodes have

the same (u, c) in all stages. Clearly, u > c > 0.
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The utility of player vi in the entire reputation game is the sum of its utilities in

all stages:

ui =
T

∑

t=1

ui,t.

Note that ui is a function of the two players’ actions in all stages, sometimes written

as ui((a0,1, a1,1), . . . , (a0,T , a1,T )). However, unlike in a standard repeated game, in our

reputation game, the actions of each player are invisible to the other player. That

is, player vi cannot directly see player v1−i’s actions a1−i,t (for t = 1, . . . , T ), because

there are collisions. Suppose pc is the probability that a packet forwarded by vi cannot

be overheard by v1−i due to collision. (As in previous work, we assume all nodes have

the same pc in all stages.) Then, what player vi can see in stage t is a perceived

probability that player v1−i forwards its packets:

â1−i,t = (1− pc)a1−i,t.

In the basic model, we also call â1−i,t the perceived action of player v1−i. Previous

work [60] has introduced an assumption that we call the Perceived Probability As-

sumption (PPA): both players (v0 and v1) can see both perceived actions (â0,t and

â1,t) in every stage. Note that here the actions refer to the actions (i.e., forwarding

probabilities) defined in the finite repeated game. In this chapter, our FITS system

has two schemes, FITS-D which uses the PPA, and FITS-I which does not.

Consequently, our definition of strategy is also different from that in a standard

repeated game. Based on whether the PPA assumption is used or not, we distinguish

two types of strategies: PPA-dependent strategies and PPA-independent strategies.

Here a PPA-dependent strategy si for player vi is a function defined on all possible

histories of both players’ perceived actions in stages 1 through t, where t ≤ T − 1,

together with other information vi obtains in these stages. For each such history, si

specifies an action for player vi to take in the next stage. Formally, if vi uses strategy
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si, the action vi should take in stage t + 1 is si((âi,1, â1−i,1, Ii,1), . . . , (âi,t, â1−i,t, Ii,t)),

where (âi,1, â1−i,1), . . . , (âi,t, â1−i,t) are the perceived actions of the two players in

the first t stages, and (Ii,1, . . . , Ii,t) is other information vi obtains from vi−1 about

its forwarding probabilities in stage 1 through t. (If there is no other information,

(Ii,1, . . . , Ii,t) = (⊥, . . . ,⊥), where ⊥ is a special symbol denoting no information.)

In particular, in the first stage, the history is an empty history (also denoted by ⊥).

Thus, si(⊥) is the action vi should take in the first stage if vi is using PPA-dependent

strategy si.

Besides PPA-dependent strategies, we also study PPA-independent strategies.

Here a PPA-independent strategy si for player vi is a function defined on all pos-

sible histories of vi’s own actions and v1−i’s perceived actions in stages 1 through t,

where t ≤ T − 1, together with other information vi obtain in these stages. For each

such history, si specifies an action for player vi to take in the next stage. Formally,

si((ai,1, â1−i,1, Ii,1), . . . , (ai,t, â1−i,t, Ii,t)) is the action vi should take in stage t + 1 if

vi is using strategy si, where (ai,1, . . . , ai,t) are the actions taken by vi in the first t

stages, and (â1−i,1, . . . , â1−i,t) are the perceived actions of v1−i in the first t stages.

Note that, as we have mentioned, (Ii,1, . . . , Ii,t) is other information vi obtains in stage

1 through t; it does not include the perceived probabilities. In particular, si(⊥) is

the action vi should take in the first stage if vi is using PPA-independent strategy si.

Let s = (s0, s1) be a profile of PPA-dependent or PPA-independent strategies.

If the two players are using this strategy profile, then the actions they take in all

strategies can be easily determined. These actions are called the outcome of s, denoted

by O(s). The utility of player vi when s is used by the two players is defined as the

utility of vi when O(s) are taken by the two players. Denote this utility by ui(s).

Consequently, ui(s) = ui(O(s)).
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2.2.1 SPNE and One Deviation Theorem

The main objective of this chapter is to design a system that converges to a SPNE

in which both players forward packets with probability 1. To define SPNE, we first

briefly review the definition of subgame.

A subgame of our reputation game starts in stage t0 (1 ≤ t0 ≤ T ) of the reputation

game and ends in stage T of the reputation game. Hence a subgame can be viewed

as a finite repeated game of T − (t0 − 1) stages. We can identify a subgame with its

initial history, i.e., what happened in stages 1 through t0 − 1. Suppose the initial

history is h = ((a0,1, a1,1), . . . , (a0,t0−1, a1,t0−1)). Then the corresponding subgame is

denoted by Γ(h).

The players of Γ(h) are the two players of the reputation game, v0 and v1; the

action set available to each player in the subgame is also the same as that in the

reputation game. The utility of player vi in the subgame Γ(h) is the sum of vi’s

utilities in all stages of Γ(h):

ui,Γ(h) =
T

∑

t=t0

ui,t.

Since ui,Γ(h) can be determined by the actions taken in stages t0 through T , or by

the strategy profile the two players use, we can write it as ui,Γ(h)((a0,t0 , a1,t0), . . . ,

(a0,T , a1,T )) or ui,Γ(h)(s0, s1).

A strategy (resp., strategy profile) in the reputation game induces a strategy

(resp., strategy profile) in any subgame. For simplicity of notation, we often use the

same symbol to represent a strategy (resp., strategy profile) and its induced strategy

(resp., strategy profile).

In the reputation game, a PPA-dependent (resp., PPA-independent) strategy pro-

file s∗ = (s∗0, s
∗
1) is a Nash equilibrium (NE) if for all i ∈ {0, 1}, for all PPA-dependent

(resp., PPA-independent) strategy si,

ui(s
∗) ≥ ui(si, s

∗
1−i).

23



Similarly, in subgame Γ(h), a PPA-dependent (resp., PPA-independent) strategy

profile s∗ induces a NE if for all i ∈ {0, 1}, for all PPA-dependent (resp., PPA-

independent) strategy si,

ui,Γ(h)(s
∗) ≥ ui,Γ(h)(si, s

∗
1−i).

We say a PPA-dependent (resp., PPA-independent) strategy profile s∗ is a SPNE of

the reputation game if for every subgame Γ(h), s∗ induces a NE in Γ(h).

Since a finite repeated game is also a finite-horizon extensive game, we can apply

the famous One Deviation Theorem [83] to our reputation game. In the context of

our reputation game, the theorem states that s∗ is a SPNE if and only if for each

player, a deviation from s∗ in any single stage cannot bring more utility to the player

in the subgame starting from the stage of deviation. Formally, s∗ is a SPNE if and

only if for i ∈ {0, 1}, for every subgame Γ(h), for all ai ∈ Ai,

ui,Γ(h)(s
∗) ≥ ui,Γ(h)(s

∗
i |h→ai

, s∗1−i),

where s∗i |h→ai
denotes a strategy in which action ai is taken right after history h, and

the action specified by s∗i is used after any other history.

2.3 Impossibility Of SPNE Solution for Traditional Reputa-

tion Systems

Given the basic model of finite reputation game, now we show that it is impossible

to design a traditional reputation system (in which punishment can only be dropping

packets) that provides a SPNE solution in this model. Intuitively, this impossibility

result means that we cannot use any traditional reputation systems to achieve strong

incentive compatibility in finite reputation games. More precisely, if a traditional
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reputation system is used in a finite reputation game, then in all SPNE, both players

of the game drop all packets of each other. A formal theorem and proof are given

below.

Theorem 4. In the basic model of reputation game (as defined in Section 2.2), for

all SPNE s∗, and all history h such that its length |h| < T , the outcome of s∗ in the

subgame Γ(h) is

OΓ(h)(s
∗) = (0, 0)T−|h| = ((0, 0), . . . , (0, 0)).

In particular, this implies that, ∀i ∈ {0, 1}, ui(s
∗) = 0.

Proof. Here we prove this theorem for the case s∗ is PPA-dependent. If s∗ is PPA-

independent, we can easily obtain a similar proof.

Note that it suffices to show that for all SPNE s∗, all history h such that its length

|h| < T , and all i ∈ {0, 1}, we have s∗i (h) = 0.

We prove this theorem by induction on |h|. If |h| = T − 1, by the definition of

SPNE, s∗(h) is a NE in stage T . Hence,

s∗i (h) = arg max
ai,T

(a1−i,T u− ai,T c) = 0.

Now, suppose that the above proposition is true for |h| ≥ h0, where h0 ∈ N+ and

1 ≤ h0 ≤ T − 1. We show that it is true for |h| = h0 − 1 as well. Let h′ =

(h, (âi, ŝ
∗
1−i(h),⊥)), where âi and ŝ∗1−i(h) are the perceived probabilities of ai and

s∗1−i(h), respectively. For all i ∈ {0, 1}, all ai, we have

ui,h0(ai, s
∗
1−i(h)) = ui,Γ(h)(s

∗
i |h→ai

, s∗1−i)

−ui,Γ(h′)(s
∗)

≤ ui,Γ(h)(s
∗)− ui,Γ(h′)(s

∗)

= ui,Γ(h)(s
∗)−

∑

T
t=h0+1(a

h′

1−i,tu

−ah′

i,tc),
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where ((ah′

i,h0+1, a
h′

1−i,h0+1), . . . , (a
h′

i,T , ah′

1−i,T )) is the outcome of s∗ in Γ(h′).

By the induction assumption, we get that, for all i ∈ {0, 1}, for t = h0 + 1, . . . , T ,

ah′

i,t = 0. Therefore,

ui,h0(ai, s
∗
1−i(h)) ≤ ui,Γ(h)(s

∗). (2.1)

Let h′′ = (h, (ŝ∗(h),⊥)), where ŝ∗(h) is the perceived probabilities of s∗(h). Similar

to the above, we can obtain that

ui,h0(s
∗(h)) = ui,Γ(h)(s

∗)−
∑

T
t=h0+1(a

h′′

1−i,tu− ah′′

i,t c),

where ((ah′′

i,h0+1, a
h′′

1−i,h0+1), . . . , (a
h′′

i,T , ah′′

1−i,T )) is the outcome of s∗ in Γ(h′′). By the

induction assumption, we also have that, for all i ∈ {0, 1}, for t = h0 + 1, . . . , T ,

ah′′

i,t = 0. Therefore,

ui,h0(s
∗(h)) = ui,Γ(h)(s

∗). (2.2)

Combining (2.1) and (2.2), we get that

ui,h0(ai, s
∗
1−i(h)) ≤ ui,h0(s

∗(h)). (2.3)

Since (2.3) is true for all ai, it must be the case that

s∗i (h) = arg max
ai

ui,h0(ai, s
∗
1−i(h)) = 0,

which means the proposition is true for |h| = h0 − 1.

2.4 Extended Model and FITS-D Scheme

Since traditional reputation systems cannot provide SPNE solutions, in this sec-

tion, we introduce a new technique and use it to significantly enhance the incentive

compatibility of reputation systems. This technique is called Threat To Interfere

(TTI).
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The main idea of TTI is that a node can threaten to drop a neighbor’s packets and

to interfere with the neighbor’s communications. In contrast, in traditional reputation

systems, a node can only threaten to drop its neighbor’s packets, which is the only

way to force its neighbor to forward packets. Because the combined threat (of packet

dropping and communication interference) is stronger than a single threat of packet

dropping, it can be a more effective method to force the neighbor to forward packets.

Note that TTI does not require real interference with communications. In fact, our

analysis will show that there is no real interference at all when the system converges

to a stable state.

2.4.1 Extended Model

To allow formal analysis of TTI, we extend the basic model by introducing an addi-

tional action INTERFERENCE to each node vi, which means vi drops all packets of v1−i

and interferes with the communications of v1−i (using dumb packets containing its own

identity). Formally, we replace the action set Ai with A′
i = Ai ∪ {INTERFERENCE}.

Correspondingly, the perceived action of player vi in stage t is redefined as

â′
i,t =











INTERFERENCE if a′
i,t = INTERFERENCE

(1− pc)a
′
i,t otherwise,

(We note that, in the extended model, perceived actions are different from perceived

probabilities.) Furthermore, the utility of player vi in stage t is redefined as

u′
i,t =















































a1−i,tu− ai,tc if ai,t 6= INTERFERENCE

and a1−i,t 6= INTERFERENCE

a1−i,tu if ai,t = INTERFERENCE

and a1−i,t 6= INTERFERENCE

uINT if a1−i,t = INTERFERENCE.
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where uINT < 0. Here we assume that uINT < −u. Intuitively, this means the

loss caused by communication interference is greater than the benefit of forwarding

packets. The utility in the entire game is still the sum of utilities in all stages:u′
i =

∑T
t=1 u′

i,t.

2.4.2 FITS-D Scheme

Now we design the FITS-D scheme using the TTI technique.

The first idea of our design is that a node following the scheme can simply choose

the “worst” action appeared in the history as its new action. That is, assuming no

node has ever taken the action INTERFERENCE, then a cooperative node should take

the lowest forwarding probability ever appeared in the history of the game. (Note

that this lowest forwarding probability in the history can be easily computed by a

node: it knows all its own forwarding probabilities in the history; by the PPA, it also

knows all the perceived probabilities in the history, which allows it to compute the

forwarding probabilities of the other node in the history.) The advantage of such a

scheme is clear: if a misbehaving node drops packets of its neighbor with a certain

probability in a stage, then its cooperative neighbor drops its packets with at least

the same probability in all future stages. This threat of punishment is strong enough

to prevent a misbehaving node from dropping packets.

Recall the problem caused by the finite repeated game model, which we have dis-

cussed in Section 2.1. To solve this problem, we introduce an additional stage in which

there is no data transmission, and use our TTI technique in this stage. Intuitively,

we can view this stage as a brief extension period of the reputation game. In this

additional stage, a cooperative node examines whether the other node was coopera-

tive in the last stage of data transmission. If so, the cooperative node does nothing;

otherwise, the cooperative node interferes with the other node’s communications.
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In this way, we can effectively prevent packet dropping in the last stage of data

transmission (i.e., in the second last stage of the entire game), because communication

interference is a strong threat to any misbehaving node. Furthermore, we do not need

to worry about misbehavior in the additional stage (i.e., in the last stage of the entire

game), because a misbehaving node cannot benefit from cheating in a stage that has

no data transmission at all. (For detailed analysis, see Theorem 5 and its proof.)

A detailed description of the FITS-D scheme is given in Figure. 2.1.

⊲ (vi, v1−i) is a pair of neighbors.
⊲ t is the index of stage in the reputation game.

if t = 1,
then ai,t ← 1;

else if ∃t′ ∈ {1, . . . , t− 1} s.t. âi,t′ = INTERFERENCE

or â1−i,t′ = INTERFERENCE,
then ai,t ← INTERFERENCE;

else if t < T ,

then ρi,t ←
min1≤t′≤t−1{âi,t′ ,â1−i,t′}

âi,t−1
;

ai,t ← ρi,tai,t−1;
else if â1−i,t−1 < min1≤t′≤t−2{âi,t′ , â1−i,t′}

then ai,t ← INTERFERENCE;
else ai,t ← 0.

Figure 2.1. FITS-D scheme

2.4.3 Analysis of FITS-D Scheme

Now we present a formal analysis of the FITS-D scheme. We show it is a SPNE

solution to the packet forwarding problem. More precisely, we show that, in a SPNE,

nodes forward packets with probability 1 in all stages except the last stage that does

not have any data to forward.

Theorem 5. In the extended model of reputation game (as defined in Section 2.4.1),

if the FITS-D scheme is used, assuming u > 2c, then there is a SPNE s∗ such that
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O(s∗) = (1, 1)T−1(0, 0) = ((1, 1), . . . , (1, 1), (0, 0)),

which implies that, for all i ∈ {0, 1}, ui(s
∗) = (T − 1)(u− c).

Proof. It is easy to see that, if all participants follow the FITS-D scheme, then the

outcome is (1, 1)T−1(0, 0). Hence, denote by s∗ the strategy profile defined by our

FITS-D scheme; it suffices to show that s∗ is a SPNE.

Let h = ((â0,1, â1,1,⊥), . . . , (â0,|h|, â1,|h|,⊥)). Let t = |h|. Let si = s∗i |h→ai
, where

ai 6= s∗i (h). We distinguish a number of cases to analyze the relationship between

ui,Γ(h)(s
∗) and ui,Γ(h)(si, s

∗
1−i) (We will use notation uΓ(h)(s

∗) (resp. uΓ(h)(si, s
∗
1−i))

instead of ui,Γ(h)(s
∗) (resp. ui,Γ(h)(si, s

∗
1−i)) in this proof for convenience):

Case A: There exists t′ ∈ {1, . . . , t} s.t. âi,t′ = INTERFERENCE or â1−i,t′ =

INTERFERENCE. In this case,

OΓ(h)(s
∗) = (INTERFERENCE, INTERFERENCE)T−t

⇒ uΓ(h)(s
∗) = (T − t)uINT,

and

OΓ(h)(si, s
∗
1−i) = (ai, INTERFERENCE)(INTERFERENCE, INTERFERENCE)T−t−1

⇒ uΓ(h)(si, s
∗
1−i) = (T − t)uINT.

Hence, uΓ(h)(s
∗) = uΓ(h)(si, s

∗
1−i).

Case B: t = 0. In this case,

OΓ(h)(s
∗) = (1, 1)T−t−1(0, 0)

⇒ uΓ(h)(s
∗) = (T − t− 1)(u− c),

We have two subcases.
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Case B.1: ai = INTERFERENCE.

OΓ(h)(si, s
∗
1−i) = (INTERFERENCE, 1)(INTERFERENCE, INTERFERENCE)T−t−1

⇒ uΓ(h)(si, s
∗
1−i) = (T − t− 1)uINT + u.

Since uINT < −u < −c, we can easily obtain that

uΓ(h)(s
∗) ≥ uΓ(h)(si, s

∗
1−i).

Case B.2: ai 6= INTERFERENCE.

OΓ(h)(si, s
∗
1−i) = (ai, 1)(ai, ai)

T−t−2(0, 0)

⇒ uΓ(h)(si, s
∗
1−i) = (T − t− 2)ai(u− c) + u− aic.

Since u > 2c, we can easily obtain that

uΓ(h)(s
∗) ≥ uΓ(h)(si, s

∗
1−i).

Case C: ∀t′ ∈ {1, . . . , t}, âi,t′ 6= INTERFERENCE and â1−i,t′ 6= INTERFERENCE,

and 0 < t < T − 1. In this case,

OΓ(h)(s
∗)

= (
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′},

ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′})

T−t−1(0, 0)

⇒ uΓ(h)(s
∗)

= (T − t− 1)(u− c) · ai,t−1

·min1≤t′≤t{âi,t′, â1−i,t′}/(âi,t−1).

We have four subcases.
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Case C.1: ai = INTERFERENCE. Thus we have

OΓ(h)(si, s
∗
1−i)

= (INTERFERENCE,
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′, â1−i,t′})

(INTERFERENCE, INTERFERENCE)T−t−1

⇒ uΓ(h)(si, s
∗
1−i)

=
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′}u

+(T − t− 1)uINT.

Clearly, uΓ(h)(si, s
∗
1−i) < 0 < uΓ(h)(s

∗).

Case C.2: ai 6= INTERFERENCE and ai > s∗i (h).

OΓ(h)(si, s
∗
1−i)

= (ai,
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′, â1−i,t′})

(
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′},

ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′})

T−t−2

(0, 0)

⇒ uΓ(h)(si, s
∗
1−i) = (T − t− 2)(u− c) · ai,t−1

·min1≤t′≤t{âi,t′, â1−i,t′}/(âi,t−1)− aic

+u · ai,t−1 ·min1≤t′≤t{âi,t′, â1−i,t′}/(âi,t−1).

Hence, uΓ(h)(s
∗) > uΓ(h)(si, s

∗
1−i).

Case C.3: ai 6= INTERFERENCE and ai < s∗i (h), and t < T − 2.
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OΓ(h)(si, s
∗
1−i)

= (ai,
ai,t−1

âi,t
·min1≤t′≤t{âi,t′, â1−i,t′})

(ai, ai)
T−t−2(0, 0)

⇒ uΓ(h)(si, s
∗
1−i) = (T − t− 2)(u− c) · ai − aic

+u · ai,t−1 ·min1≤t′≤t{âi,t′, â1−i,t′}/(âi,t−1).

Since u > 2c and t < T − 2, we can easily obtain that uΓ(h)(s
∗) > uΓ(h)(si, s

∗
1−i).

Case C.4: ai 6= INTERFERENCE and ai < s∗i (h), and t = T − 2.

OΓ(h)(si, s
∗
1−i)

= (ai,
ai,t−1

âi,t−1
·min1≤t′≤t{âi,t′ , â1−i,t′})(INTERFERENCE, INTERFERENCE)

⇒ uΓ(h)(si, s
∗
1−i) = uINT − aic

+u · ai,t−1 ·min1≤t′≤t{âi,t′, â1−i,t′}/(âi,t−1).

Since uINT < −u < −c, we can easily obtain that uΓ(h)(s
∗) > uΓ(h)(si, s

∗
1−i).

Case D: ∀t′ ∈ {1, . . . , t−1}, âi,t′ 6= INTERFERENCE and â1−i,t′ 6= INTERFERENCE,

and t = T − 1. We have two subcases.

Case D.1: s∗1−i(h) = INTERFERENCE. Hence, we have

uΓ(h)(s
∗) = uINT

= uΓ(h)(si, s
∗
1−i).

Case D.2: s∗1−i(h) = 0. If s∗i (h) = INTERFERENCE, then

uΓ(h)(s
∗) = 0

≥ uΓ(h)(si, s
∗
1−i).
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If s∗i (h) 6= INTERFERENCE, then, since t = T − 1, from the scheme we know that

s∗i (h) = 0. Hence,

uΓ(h)(s
∗) = −s∗i (h) · c

= 0

≥ uΓ(h)(si, s
∗
1−i).

Hence, we always have uΓ(h)(s
∗) ≥ uΓ(h)(si, s

∗
1−i). So, by the One Deviation The-

orem of finite repeated game, we know that s∗ is a SPNE.

2.5 FITS-I Scheme

The FITS-D scheme provides strong incentive for packet forwarding as long as the

PPA is valid. However, in reality there exist scenarios in which the perceived actions

of the two nodes can not be seen by both of them, i.e. the PPA is not valid.1 In these

cases, we need to use a scheme that is independent from the PPA. In this section, we

develop such a scheme.

2.5.1 Scheme for PPA-Independence

The main idea to achieve PPA-independence is to use (claimed) real forwarding

probabilities instead of perceived forwarding probabilities. We assume that, at the

beginning of each stage t, each node vi claims its real forwarding probability in this

stage to the other node v1−i. Denote this claim by ai,t. If vi is cooperative, we must

have ai,t = ai,t. (Of course, if vi is a misbehaving node, then we may have ai,t 6= ai,t.)

Using these claimed probabilities, we can establish a scheme that is similar to the

1In such scenarios, a node vi still knows â1−i,t, but does not know âi,t. Note that vi always knows
its own action ai,t, but it may have no idea about pc and thus may not know âi,t.
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FITS-D scheme but does not need any perceived probability, as long as we can make

sure there is no false claim of forwarding probability.

To prevent players from making false claims, we divide each stage into m small

time intervals. Each player is responsible for keeping a transcript of the packets it

has forwarded in the current time interval. At the end of each time interval, with

probability pv node vi chooses to verify the forwarding probability of v1−i in this

time interval. (To reduce the overall overheads of computation and communication,

vi does not verify the forwarding probability in all time intervals. Instead, vi ran-

domly picks some time intervals and verifies the forwarding probability in these time

intervals only.) If vi chooses to verify the forwarding probability in a time interval,

it requests the transcript from v1−i. Then it uses this transcript to decide whether

v1−i has really forwarded packets with probability a1−i,t. (There are various ways to

design a verification algorithm for this purpose. We give one example algorithm in

Section 2.5.3.) If cheating is detected, vi punishes v1−i by dropping its packets and

interfering with its communications in all future stages.2 If no cheating is detected in

this time interval, or if this time interval is not chosen for verification of the forward-

ing probability, then the transcript can be discarded at the beginning of next time

interval to save space.

The details of FITS-I scheme are shown in Fig. 2.2 and 2.3. In this scheme,

we use an algorithm VerProb() to verify the claimed forwarding probabilities. This

algorithm works by comparing two transcripts X1−i and X1−i,i. Here both of these

two transcripts are supposed to be the packets forwarded in the current time interval

by v1−i. However, they are from different sources: X1−i is provided by v1−i (and thus

should be consistent with the claimed forwarding probability of v1−i), while X1−i,i is

2Note that this strong punishment is to make sure that nodes do not cheat in reporting a1−i,t. As
shown later, when the system converges to the stable state (SPNE) under FITS-I, there is actually
no real intereference in the system.
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overheard by vi (and thus includes collisions it hears in addition to forwarded packets).

If v1−i is honest, these two transcripts should be consistent (except for collisions in

X1−i,i). Even though v1−i can provide a false X1−i by including the packets that it

has not forwarded, vi can detect the false claim by comparing X1−i and its own record

X1−i,i. We discuss how to design this algorithm in Section 2.5.3.

⊲ (vi, v1−i) is a pair of neighbors.
⊲ t is the index of stage in the reputation game.
⊲ rv = TRUE at the beginning of stage 1.

if rv = TRUE

then
if t = 1,

then ai,t ← 1;
else if ∃t′ ∈ {1, . . . , t− 1} s.t.

ai,t′ = INTERFERENCE or â1−i,t′ = INTERFERENCE,
then ai,t ← INTERFERENCE;

else if t < T ,
then ai,t ← min1≤t′≤t−1{ai,t′ , a1−i,t′};

else if a1−i,t−1 < min1≤t′≤t−2{ai,t′ , a1−i,t′}
then ai,t ← INTERFERENCE;

else
ai,t ← 0;

else
ai,t ← INTERFERENCE.

Figure 2.2. FITS-I scheme: deciding ai,t at beginning of stage t.

One may notice that the FITS-I scheme also uses the perceived forwarding prob-

ability â1−i,t′ . However, this perceived probability of node v1−i is always known to

node vi, regardless of whether the PPA is valid or not. So, the PPA-independence of

the scheme is not affected.

2.5.2 Analysis of FITS-I Scheme

The incentive compatibility of FITS-I scheme is formally stated in the following

theorem:
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⊲ (vi, v1−i) is a pair of neighbors.

⊲ X1−i is the transcript of packets sent by v1−i

that is provided by v1−i.
⊲ X1−i,i is the transcript of packets sent by v1−i

that is overheard by vi.

if rv = TRUE

With Probability pv

Request the transcript X1−i from v1−i;

Verify that X1−i is consistent with a1−i,t.

rv ← VerProb(X1−i,i,X1−i).

Figure 2.3. FITS-I scheme: end of a time interval in stage t.

Theorem 6. In the extended model of reputation game, if the FITS-I scheme is used,

and if ∀i ∈ {0, 1}, ∀t ∈ {1, . . . , T}, ai,t = ai,t, assuming u > 2c, then there is a SPNE

s∗ such that

O(s∗) = (1, 1)T−1(0, 0) = ((1, 1), . . . , (1, 1), (0, 0)),

which implies that, for all i ∈ {0, 1}, ui(s
∗) = (T − 1)(u− c).

The proof is analogous to that of Theorem 5. We omit the proof here.

One may ask whether we can have a similar formal analysis in the case when

ai,t = ai,t does not always hold. To achieve this goal, we need to redefine the finite

repeated game by adding the reports of ai,t into the action space. The result would be

a much more complex game. We conjecture that, in such a complex game, we will only

be able to prove a much weaker variant of SPNE, rather than the standard SPNE we

consider in this chapter. Hence, it would be very difficult to formally analyze the case

when ai,t = ai,t does not always hold. In this chapter, to guarantee ai,t = ai,t, we take

a lightweight approach for preventing players from making false claims of forwarding

probabilities. When this approach is used, with a certain probability making false

claims will be detected and punished (as shown in Theorem 7). Consequently, a

selfish node has incentives to report ai,t that is equal to ai,t.
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2.5.3 VerProb: Example Algorithm for Verifying Forwarding Probabilities

Now we design the algorithm VerProb that compares X1−i,i with X1−i.

Recall X1−i is the transcript provided by v1−i. Therefore, it is a sequence of

packets. In contrast, because X1−i,i is overheard by vi, it is a sequence of packets

and collisions. (Note that, when the packets forwarded by v1−i collide with other

transmissions, vi can hear the collisions, although it cannot determine what are the

collided packets.) If vi is honest, X1−i should be identical to X1−i,i, except that

some segments of X1−i correspond to collisions in X1−i,i. The restriction on these

segments is that each collision of time length τ can only match with a sequence of

τ
τmax
col

to τ
τmin
col

packets, where τmax
col (resp., τmin

col ) is the maximum (resp., minimum) length

of transmission time for a packet.

The above problem can be easily reduced to the problem of variable-length gap

matching. Hence, the main idea of the VerProb algorithm is to reduce it to variable-

length gap matching and then apply the Rahman-Iliopoulos-Lee-Mohamed-Smyth

(RILMS) algorithm [86]. Details of the VerProb algorithm are given in Fig. 2.4.

Theorem 7. Let N be the total number of packets that need to be forwarded by v1−i in

stage t. If the algorithm VerProb is used, and if X1−i includes Nai,t packets forwarded

for vi while only Nai,t packets are actually forwarded for vi (where ai,t > ai,t), then

with probability

pd ≥ 1− (1− pv(1− pc))
⌈

N(ai,t−ai,t)

nint
⌉
,

the algorithm VerProb outputs FALSE, where nint is an upper bound for the number of

packets transmitted in a time interval.

Proof. Let nj be the number of packets that v1−i falsely claims to be forwarded for

vi in time interval j. Clearly,

t
∑

j=1

nj = N(ai,t − ai,t). (2.4)
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⊲ (vi, v1−i) is a pair of neighbors.

⊲ X1−i is the transcript of v1−i’s messages
provided by v1−i.

⊲ X1−i,i is the transcript of v1−i’s messages
overheard by vi.

⊲ COL is the symbol for an overheard collision.
⊲ VLGSearch is the RILMS algorithm.

j ← 1; l ← 1; l′ ← 1;
J ← NumberOfPackets(X1−i,i);
while j ≤ J do

X ′[l]← longest prefix of X1−i,i[j · · · J ] that
does not contain COL;

if X ′[l] is not empty
then l ← l + 1;

j ← j + NumberOfPackets(X ′[l]);
if j ≤ J

then X ′′[l′]← longest prefix of
X1−i,i[j · · · J ] that contains only COL;
l′ ← l′ + 1;
j ← j + NumberofCOL(X ′′[l′]);

else

return VLGSearch(X1−i,X
′[1 · · · l − 1],

{COLPack(X ′′[j])}l
′−1
j=1 );

X ′[l]← empty string;

return VLGSearch(X1−i,X
′[1 · · · l],

{COLPack(X ′′[j])}l
′−1
j=1 );

COLPack(x)
L1 ← 0; L2 ← 0;
for each COL in x

τ ← Time of COL;

L1 ← L1 +
⌈

τ
τmax
col

⌉

;

L2 ← L2 +
⌊

τ
τmin
col

⌋

;

return(L1, L2);

Figure 2.4. VerProb: verification of forwarding probability.

Node vi detects cheating in this time interval if the algorithm VerProb is executed

in this time interval, and at least one of these nj packets is claimed to be sent at a

time when vi does not hear a collision. So the probability of detecting cheating in
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time interval j is

pd,j = pv(1− pnj
c ).

Recall m is the number of time intervals in stage t. Hence, the probability of detecting

cheating in the entire stage is

pd = 1−

m
∏

j=1

(1− pd,j)

= 1−
m
∏

j=1

(1− pv(1− pnj
c ))

≥ 1− (1− pv(1− pc))
⌈

N(ai,t−ai,t)

nint
⌉
.

The last inequality is due to (2.4) and the pigeonhole principle.

2.6 Evaluations

In the previous sections, we have presented the two schemes of FITS. To evaluate

the performance of FITS, we implement these two schemes in the network layer using

wireless network simulator GloMoSim [46] and perform three sets of experiments:

• The first set of our experiments study the punishment of FITS schemes on

misbehaving nodes. The objective is to verify that FITS schemes effectively

punish misbehaving nodes and thus give nodes incentives to cooperate in packet

forwarding.

• The second set of our experiments compare FITS with an existing reputation

system, in terms of their convergence to stable states. The objective is to

verify that FITS converges to a stable state with significantly higher forwarding

probabilities.

• The third set of experiments examine the effect of interference, in case it is

really used for punishment.
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• The fourth set of our experiments measure the efficiency of FITS schemes in

terms of computation and communication overheads.

In the remainder of this section, we describe the settings and results of our exper-

iments.

2.6.1 Settings

In our experiments, the MAC layer is based on IEEE 802.11; the Dynamic Source

Routing protocol (DSR) is used for routing. We use the two-ray propagation path-

loss model. The radio transmission power level is at 12 dBm and the radio to noise

ratio threshold is set to 8.0 dB. The network has a bandwidth of 2 Mbps.

Within an area of 2000 by 2000 meters, 50 nodes are randomly distributed. The

topology of the network is shown in Fig. 2.5.3 We generate the traffic of 50 sessions.

Every node is a session source and the destination of each session is randomly picked.

Throughout the simulation time each source transmits packets at a constant bit rate

of 2 packets/s with the packet size being 512 bytes. For FITS-I scheme, we set m = 20

(which means there are 20 time intervals in each stage) and pv = 0.2.

2.6.2 Punishment on Misbehaving Nodes

In the first set of experiments, we study the punishment that misbehaving nodes

receive in FITS schemes.

We randomly pick 5 nodes to be the misbehaving nodes, which means these nodes

do not implement FITS and drop packets that are not destined to them with a fixed

probability. All the other nodes are cooperative, i.e., they use FITS schemes to

forward packets for other nodes. There are 8 stages in the reputation game and each

stage lasts for 100 seconds. The entire simulation time is 800 seconds. The results

described below are the average of 200 runs.

3Here we assume that during each of our data sessions, network topology remains the same.
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Figure 2.5. Topology of the randomly generated network. Nodes are labeled with
their IDs. A link between two nodes represents that these two nodes are within each
other’s transmission range.

Fig. 2.6 shows the utilities of misbehaving nodes when they drop packets in the

FITS-D scheme (resp., FITS-I scheme) in subfigure (1) (resp., (2)). Here, we use

u = 3.0 and c = 1.0 when calculating the utility. From Fig. 2.6 we observe that, when

the packet dropping probability of misbehaving nodes grows, their utilities obtained in

the reputation games decrease quickly. This reflects that the FITS schemes effectively

punishes the misbehaving nodes in terms of utilities.

Another way to study the punishment on misbehaving nodes is to measure the

message success rates (the percentage of packets from the source node that successfully

arrive at the destinations) of the misbehaving nodes. Fig. 2.7 shows the results of

our measurements in the two FITS schemes. For comparison, we also include the

average message rates of cooperative nodes in these figures. We can see that the

message success rates of all misbehaving nodes are fast decreasing (as the packet

dropping probability grows), while the message success rates of cooperative nodes

only decrease slightly.
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Figure 2.6. Utilities of misbehaving nodes in FITS schemes.
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2.6.3 Comparison of Stable States

Our second set of experiments is to compare FITS with an existing reputation

system, DARWIN [60], and to observe their convergence to stable states. In this set

of experiments, nodes are allowed to choose any stage of the game to start dropping

packets. A stable state is a state such that for each node, changing its strategy in any

way cannot increase its utility. To find the stable state, in this set of experiments we

let nodes go through a sequence of reputation games and allow the nodes to change

their strategies between games. A node stops changing its strategy when it finds

that there is no way to improve its utility by changing the current strategy. When

the involved nodes stop changing their strategies, a reputation system is in its stable

state.

We randomly pick a pair of neighbors, Node 24 and Node 29, and observe how

their average forwarding probabilities for each other evolve in a sequence of reputation

games. These two nodes are selfish so try to maximize their utilities by dropping

packets. At the beginning of each experiment, each node forwards packets with

probability 1. In the sequence of reputation games, a node can make an attempt to

change its strategy as follows: it randomly picks a stage and drops all the packets in

and after that stage. Then it compares the utility it gets in this game with the utility

in the previous game. If there is a loss in utility, it goes back to the old forwarding

strategy, and stays with that strategy for 3 games before it makes another attempt.

If there is a gain in utility, it is happy for that and thus stays with the new forwarding

strategy for 20 more games before it makes the next attempt to drop more packets.

We test FITS and DARWIN, respectively, in the above experiments. Each stage is

30 seconds long and each game has 5 stages. Each experiment lasts for 500 minutes,

so that both reputation systems are guaranteed to converge to stable states.

Fig. 2.8 shows the results for DARWIN, FITS-D and FITS-I in subfigures (1),

(2) and (3) respectively. The forwarding probability of each node is the average
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Figure 2.8. Comparison of average forwarding probabilities of DARWIN and FITS
as system converges.

forwarding probability in the sequence of games that the node has been through from

the beginning. In subfigure (1) we can see that the average forwarding probabilities

of both Node 29 and Node 24 decrease as the system evolves. It implies that when

the system evolves, the nodes can find better strategies of dropping packets rather

than forwarding them with probability 1.

In contrast, in the two FITS schemes, as shown in subfigures (2) and (3), average

forwarding probabilities increase to a constant close to 1, after the oscillations in the

first few games. In fact, at the beginning the nodes make all possible attempts, and

find no way to increase their utilities by dropping packets (because they are punished

by FITS). Consequently, in the rest of the experiment they stay with the strategy to

forward all packets.

2.6.4 Effect of Interference

This set of experiments are to examine the effect of interference on cooperative

nodes, when interference is used to punish misbehaving nodes. We first measure the
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Figure 2.9. Number of Interference Actions introduced by FITS vs. Number of
Misbehaving Nodes.

number of interference actions taken by cooperative nodes, for different number of

misbehaving nodes in the network. Then we measure the average message success

rates of the cooperative nodes in their own sessions in the following two settings: In the

first setting, our FITS schemes are used; in the second setting, a modification of FITS

is used in which there is definitely no interference. We compare the cooperative nodes’

average message success rates in these two settings to show the effect of interference

on message success rates. In this set of experiments the misbehaving nodes drop

packets with probability 0.5.

In Fig. 2.9, we show the number of interference actions taken by cooperative nodes

in the network, when there are 5 to 15 misbehaving nodes. From our schemes, it is

easy to see that the number of interference actions taken by the cooperative nodes

in FITS-D scheme is the same as in FITS-I scheme. So we only use one figure to

illustrate the results. We can see that the number of interferences actions is below 20

when there are no more than 15 misbehaving nodes in the network.

Fig. 2.10 gives a comparison of cooperative nodes’ average message success rates

in the two settings, i.e., with and without interference introduced by FITS. We vary

the number of misbehaving nodes in the network from 5 to 20. From the figure, it is

clear that, when there are more misbehaving nodes, the message success rate becomes
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Figure 2.10. Message Success Rates of Cooperative Nodes in Their Own Sessions:
FITS vs. No Interference.

lower. However, the loss in average message rate caused by interference introduced

by FITS is very small.

2.6.5 Efficiency

In the third set of experiments, we measure the efficiency of FITS.

Fig. 2.11 shows the computation overheads of the two FITS schemes. Here by

computation overhead we mean the average extra computation time needed by FITS

for each node in each session, when the system is in the stable state. In this set of ex-

periments, we have 1600 packets in each session. Fig. 2.11 shows that the computation

overhead of FITS-D scheme always remains below 3 milliseconds. The computation

overhead of FITS-I scheme is slightly higher, but it is still less than 3.5 milliseconds.

Clearly, in addition to computation overheads, FITS also has communication

overheads—the time to send and receive control packets for the FITS schemes. How-

ever, for the FITS-D scheme, the communication overheads are only several microsec-

onds per session. For the FITS-I scheme, the communication overheads are several

hundred microseconds per session. Consequently, compared with computation over-

heads, communication overheads can be ignored.
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Figure 2.11. Computation overheads of FITS schemes.

2.7 Summary

Reputation system is an important approach to solve the incentive compatibility

problem in packet forwarding of wireless ad hoc networks. In this chapter, we present

the first formal study of reputation system in the model of finite repeated game. We

believe this is a more realistic model for reputation system and thus our results have

significant practical implications.

The first result we obtain is the impossibility of building a SPNE solution using

traditional reputation systems. This result implies that we must introduce a new

technique if we want to establish SPNE solutions for our problem.

Then we introduce the TTI technique and use it to build FITS, our new reputation

system. FITS provide strong incentive compatibility for nodes to cooperate in packet

forwarding. More precisely, there is a SPNE in which nodes forwards all packets.

This is proved theoretically and verified by experiments.

We note that our work has only addressed one aspect of reputation systems, and

left out many other aspects. For example, we have assumed a network of fixed topol-

ogy. In contrast, there are also networks with dynamically changing topologies in

reality. In these networks, building a reputation system is much more challegining.

It would be non-trivial to establish finite-time reputation systems with provable in-
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centive compatibility in these networks. Hence, this is an interesting topic for future

study.

We also note that, besides threat of interference, there are other techniques that

can possibly be used in building finite-time reputation systems. One such technique

is that a node shuts down its connection with a neighbor whenever it detects that

the neighbor is dropping its packets. Again, it is non-trivial to use such techniques to

establish a complete reputation system and prove the incentive compatibility. Hence,

we also leave this to future explorations.
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CHAPTER 3

PACKET FORWARDING COOPERATION IN

NETWORK-CODING-BASED WIRELESS NETWORK[28]

3.1 Background and Motivation

Recently, wireless mesh networks [6, 24, 77, 81] have been widely deployed to

provide broadband network access to schools, communities, and participants of var-

ious events. It is very challenging and highly important to improve the perfor-

mance of wireless mesh networks so that the throughput scalability of such net-

works can meet the needs of different users. One way to achieve significantly better

performance for wireless mesh networks is to apply a technique called network cod-

ing [57, 64, 21, 62, 63]. Unlike in conventional networks, in wireless networks using

network coding, intermediate nodes do not store and forward the same packets as

sent by the source node. In stead, intermediate nodes forward new coded packets

computed by themselves from the packets they have received. Hence, the data is

actually “mixed” at each intermediate node before it is forwarded. This idea of mix-

ing data at intermediate nodes takes advantage of the broadcast nature of wireless

transmissions, and achieves great performance gains.

Many wireless mesh networks have user-contributed wireless devices as their nodes.

Since users normally have their own interests, economic incentives become a crucial

problem. A selfish or economically rational user may let her wireless device deviate

from the communication protocol, as long as the deviation is beneficial to herself.

However, this deviation may harm the network’s performance, or even lead the net-

work to stop functioning in the worst case. Therefore, we need to make the com-
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munication protocol incentive compatible, so that nodes have incentives to faithfully

follow the protocol.

In this chapter, we consider the incentive compatibility in wireless mesh networks

using network coding. To be concrete, we assume that the network coding system

used is MORE [21]. (In fact, our results can be adapted to some other network cod-

ing systems like MIXIT [63], through moderate modifications.) In a wireless mesh

network using MORE, incentive compatibility is needed in at least two fundamental

aspects: routing and packet forwarding. Here routing refers to the procedure of com-

puting the number of transmissions each involved node should make for a data packet;

packet forwarding refers to the procedure after routing that actually transmits pack-

ets from the source to the destination. These are two closely related, but completely

different procedures. The incentive compatible routing problem in wireless networks

using MORE has been studied by Wu et al. [109]. They propose a protocol that gives

nodes incentives to honestly measure and report link loss probabilities in the routing

procedure, and prove that following the protocol in the routing procedure is to the

best interest of user nodes. Nevertheless, incentive compatible packet forwarding in

the same kind of wireless networks has not received sufficient attention.

The main objective of this chapter is to solve the incentive compatible packet

forwarding problem in wireless mesh networks using a network coding system like

MORE. We note that the incentive compatible packet forwarding problem has been

studied extensively in the context of conventional wireless networks, i.e., wireless net-

works not using network coding. A lot of solutions have been proposed, e.g., [76, 19,

20, 119, 59, 93]. However, we emphasize that these existing solutions for conventional

wireless networks cannot be used for wireless networks using MORE. For example,

consider one such solution, Sprite [119]. In Sprite, in order to stimulate cooperation

in packet forwarding, the source node makes payments to intermediate nodes along

the path to the destination (which is usually the shortest path). For each packet orig-
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inally sent by the source, the amount paid to each node is decided by whether this

particular packet has been received by the destination, and whether the next hop node

along the path reports having received this particular packet. In contrast, in a wire-

less mesh network using MORE, for at least three reasons we cannot use Sprite: (a)

Packets are not forwarded along a predetermined path from a source to a destination.

(b) Given an intermediate node, there is no well defined next-hop node. (c) Because

intermediate nodes only transmit newly computed coded packets, it is nontrivial to

decide the correspondence relationship between a packet sent by the source node and

a packet transmitted by an intermediate node. Consequently, we have to look for a

new solution for the incentive compatible packet forwarding problem in wireless mesh

networks using MORE.

In wireless mesh networks using MORE, the problem of incentive compatible

packet forwarding can be described as follows: Suppose that the routing procedure

has already computed the number of transmissions each node should make in order to

forward a packet from a source node to a destination. We need to design an incentive

scheme that stimulates nodes to faithfully follow the protocol and make exactly the

number of transmissions computed by the routing procedure.

This problem is technically challenging both in the economic aspect and in the

security aspect. To address the two-fold challenges, we use novel techniques from

game theory and cryptography as we briefly describe below.

The first technical challenge is in the economic aspect: It is nontrivial to find an

economic method that gives nodes incentives to make the right number of transmissions—

as far as we know, there is no existing method in game theory that we can directly

apply. To meet this challenge, we use game theoretic techniques to design a novel

formula for paying packet forwarders. As long as this payment formula is enforced,

we can guarantee that it is to the best interest of each forwarder to make the right

number of transmissions.
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The second technical challenge is in the security aspect: The enforcement of the

payment formula mentioned above requires monitoring the transmissions each node

has made to forward a packet, and this monitoring task must be carried out by some

other node(s). However, if the latter node(s) do not report their results of monitoring

correctly, we will not be able to calculate the right amount of payment that should be

paid to the former node, and thus the former node may lose its incentives to follow

the protocol. To address this challenge, we apply a combination of game theoretic

and cryptographic techniques to allow nodes to punish each other for misbehavior like

making incorrect reports. In this way, we can guarantee that our payment formula is

properly enforced.

In summary, we have the following major contributions in this chapter.

• We are the first to study the incentive compatible packet forwarding problem

in the context of wireless mesh networks with network coding.

• To solve this problem, we use novel techniques to address the technical chal-

lenges and design an incentive scheme, INPAC. We formally prove that, if IN-

PAC is used, then following the protocol faithfully is a subgame perfect equi-

librium.

• To make INPAC more practical, we also provide an extension of INPAC in which

two improvements are achieved: (a) an online authority is no longer needed; (b)

the computation and communication overheads are reduced.

• To guarantee that INPAC can be effectively used in practice, we consider pos-

sible security attacks on INPAC and discuss defenses against them.

• We have completely implemented INPAC on the Orbit Lab testbed [92]. Our

experimental evaluation results verify the incentive compatibility of INPAC and

demonstrate that it is efficient.
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The rest of this chapter is organized as follows. In Section 3.2, we describe the

network model; since our work assumes an existing network coding system, MORE,

we also briefly review MORE. In Section 3.2, we design the INPAC basic scheme. In

Section 3.3, we present a formal incentive analysis of the INPAC basic scheme. We

present the INPAC extended scheme in Section 3.4. We discuss two possible security

attacks and the defenses against them in Section 3.5. Our evaluation results are

described in Section 3.6. We conclude in Section 3.7.

3.2 Technical Preliminaries

Consider a wireless mesh network that has a set V of nodes. For vi, vj ∈ V ,

we denote by (vi, vj) the wireless link from node vi to node vj . Let ǫi,j be the loss

probability of this link (vi, vj). So, if a packet is sent by node vi, then node vj can

receive it with probability 1− ǫi,j.

We assume that this wireless mesh network uses the network coding system

MORE [21], and we will design our incentive scheme based on MORE. For com-

pleteness, we briefly review the packet forwarding procedure of MORE and some

related terminologies.

Brief Review of MORE When a source node S sends packets to a destination node

D, MORE works as follows:

Source Node: The source node S sends the packets in batches, where each batch has

K native (i.e., uncoded) packets NP1, NP2, . . . , NPK . S does not directly send these

native packets; in stead, it sends coded packets, where each coded packet CPj is a

random linear combination of native packets: CPj =
∑K

i=1 CVjiNPi. The vector ~CVj =

(CVj1, CVj2, . . . , CVjK) is called the coding vector of the coded packet CPj. A MORE

header is attached to each coded data packet, which contains the batch number, the

coding vector, the source and destination addresses, and a list of (potential) forwarder

nodes.
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The list of forwarders is decided by S using the ETX metrics [37]. For vi, vj ∈ V ,

the ETX distance from vi to vj is denoted by dist(vi, vj). Intuitively, this means

the expected number of transmissions to deliver a packet from vi to vj is dist(vi, vj).

Given the destination node D, we say vi is a downstream node of vj if dist(vi, D) <

dist(vj, D). The source S chooses all its downstream nodes as forwarders, and orders

them in the forwarder list according to their ETX distances to D.

Forwarder: When a node vi hears a data packet, it checks whether it is in the packet’s

list of forwarders. Then, it checks whether the packet is innovative (i.e., linearly inde-

pendent from all previous packets in the same batch that vi has heard). If so, vi makes

a number of transmissions to forward this packet, where each packet transmitted by

vi is a random linear combination of all packets it has heard from this batch.

The number of transmissions vi needs to make is precomputed in the routing

procedure of MORE. We denote this number by t⋆i . We assume that nodes follow the

protocol faithfully in the routing procedure. Our main objective of this chapter is

to guarantee that each forwarder vi will have incentives to make t⋆i transmissions for

forwarding each data packet.

Destination Node: The destination D counts the number of innovative packets it has

received. When it has received K innovative packets in the same batch, it sends an

acknowledgement (which stops all nodes from transmitting packets in this batch) and

decodes the received packets.

For further details of MORE, please refer to [21].

System Architecture The overall architecture of INPAC consists of a number of

wireless nodes, on which MORE is implemented, and a central authority, called Credit

Clearance Center (CCC). Note that having a central authority like the CCC is a

standard assumption for incentive mechanisms in wireless networks (e.g., [7, 106, 105,

68]). We assume that the CCC issues a certificate to each node in the wireless mesh

network and maintains an account of credit (i.e., virtual currency) for it, just like a
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central bank; so all the financial transactions between nodes will be cleared at the

CCC. This authority can be either online or offline. For conceptual simplicity, in the

basic scheme of INPAC as described in Section 3.2, we assume an online authority. In

Section 3.4, we present the INPAC extended scheme in which only an offline authority

is needed.

When a node forward packets, it will receive payments from the source nodes of

these packets as rewards. In other words, forwarders get credit for their forwarding

services and source nodes loses credit for receiving these services. In order to prevent

nodes from making false claims about their forwarding services, we require that their

downstream nodes submit reports to the CCC as evidence of such forwarding services.

Details about how to guarantee correct reports and how the CCC processes them are

presented in Sections 3.2 and 3.4.

sectionDesign of INPAC Basic Scheme

Given the network model and the system architecture, we now design an incentive

scheme—the INPAC basic scheme, which stimulates cooperation in packet forwarding.

Just like many existing incentive schemes in wireless networks (e.g., [7, 105, 120, 106,

121, 68]), INPAC uses credit to simulate cooperation. However, as we describe below,

INPAC uses novel techniques that have never been used in existing schemes.

3.2.1 Main Ideas of the Design

To develop the main ideas of our INPAC basic scheme, let us consider a node

vi, which receives a packet that it is supposed to forward. Node vi needs to decide

the number of transmissions to make in order to forward this packet. Each of the

transmissions vi makes induces a cost ci. However, the source node S will also make

a payment to compensate vi for the transmissions. For node vi, the utility of making

these transmissions equals the received payment minus the induced costs.
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Recall that our objective is to guarantee that vi has incentives to make exactly t⋆i

transmissions, where t⋆i is computed by the routing procedure of MORE. To achieve

this objective, we need to carefully design a payment formula, such that vi maximizes

the utility when it makes exactly t⋆i transmissions.

Payment Formula The first difficulty in designing the payment formula is that, in

practice, no one except vi itself can count precisely how many transmissions vi actually

makes; so, if the payment to vi is based on the number of transmissions made by vi,

then there is no way to enforce the payment in reality. To sidestep this difficulty, we

propose that node vi should be paid in a constant amount pi for each packet received

by at least one of its downstream nodes. In this way, the incentive scheme can be

enforced as long as the following two conditions are satisfied: (a) Every downstream

node correctly reports the transmissions it has received from vi. (b) There is a formula

for calculating pi, which does not need the number of transmissions actually made by

vi or any other node.

Now we develop a formula for calculating pi under the assumption that every node

correctly reports to the CCC the transmissions that it has heard as a downstream

node. (After developing the formula for pi, we will study the case in which this

assumption does not hold.)

When vi makes ti transmissions, the expected amount of payment vi receives is

p̄i(ti) = (1− ǫti
i )pi,

where

ǫi =
∏

dist(vh,D)<dist(vi,D)

ǫi,h (3.1)
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is the probability that a packet sent by vi is not received by any downstream node1.

Hence, vi’s utility of making ti transmissions is

ūi(ti) =p̄i(ti)− tici

=(1− ǫti
i )pi − tici, (3.2)

where ci is vi’s cost of making one transmission. From the first order derivative of ūi,

considering ti as the single variable, we can easily find that ūi(ti) is maximized when

ti =
ln− ci

pi ln ǫi

ln ǫi
.

Since our objective is that ūi(ti) is maximized when ti = t⋆i , we need that

t⋆i =
ln− ci

pi ln ǫi

ln ǫi
.

Solving this equation, we get the formula for pi:

pi =
ci

ǫ
t⋆i
i ln 1

ǫi

, (3.3)

which will encourage each node to make the required number of transmissions in order

to maximize its utility.

Preventing Incorrect Reports The above derivations are under the assumption

that downstream nodes correctly report the transmissions they have received. Thus

we need additional measures to prevent downstream modes from cheating in their

reports about transmissions.

1Recall that the values of these ǫi,h are measured in MORE. We assume the measured values are
correct
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There are two types of possible cheating in downstream nodes’ reports: over-

reporting (i.e., reporting transmissions that they have not actually received) and

underreporting (i.e., not reporting transmissions they have received).2

To prevent overreporting, we propose that, before any node vi sends any data

packet, vi should attach its own signature on the batch number and the coding vector

to the packet. When the downstream nodes report vi’s transmissions that they have

received, they must present vi’s signatures to the CCC as evidence.

To prevent underreporting, we propose that vi punishes any downstream node

that underreports the transmissions from itself. Specifically, for any downstream

node vj , using the link loss probability ǫi,j and the number of transmissions vi has

made, node vi can easily calculate the number of transmissions vj should hear during

a time interval.3 Hence, by comparing this calculated number, with the number

of transmissions vj has reported to the CCC, node vi can find out whether vj has

underreported transmissions from itself. If vj has, then vi punishes vj by disallowing

vj to forward any future packets sent by vi.

To implement this punishment, we propose that vi encrypts its future data packets

using a key unknown to vj , but known by all other downstream nodes. Note that vi’s

signatures on batch number and coding vector are parts of the encrypted cleartexts.

In this way, even if vj forwards these packets, it will not be able to replace vi’s

signature with its own, and thus will not get paid for forwarding these packets.4

Other downstream nodes are not affected and still can forward these packets and

get payments. (In Section 3.2.3, we describe a key setup that satisfies the above

2In fact, there is also a possibility that overreporting is mixed with underreporting, which can
be easily prevented using our approaches for preventing overreporting and underreporting.

3We assume that the number of transmissions vi makes is sufficiently large during the time
interval, so that the number of transmissions vj hears converges to its mathematical expectation.

4Node vj may be able to figure out the data in some of these packets by looking at packets
forwarded by other downstream nodes. However, in this case, forwarding the former packets is no
more than forwarding the latter packets. Overall vj still loses profits in forwarding some packets.
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requirement.) We stress that, with the encryptions and decryptions introduced by this

punishment, our total overheads remain small (see Section 3.6 for the experimental

evaluation results), because we use a symmetric key cryptosystem.

Preventing Punishment Abuse Given the punishment power as described above,

node vi may punish a downstream node that does not make incorrect reports. To

prevent such abuse, we propose that each node monitors its upstream nodes. If vj finds

that its upstream node vi punishes itself while vj itself has not made any incorrect

report, vj stops reporting any transmissions it has received from vi. Consequently, vi

is “deterred” from punishing vj unless vj has underreported its transmissions.

So far we have intuitively explained our main ideas in the design of INPAC basic

scheme. For precise and formal analysis of why these ideas can work, please see

Section 3.3.

3.2.2 INPAC Basic Scheme

Putting together the ideas we have discussed in Section 3.2.1, we obtain the INPAC

basic scheme which stimulates nodes’ cooperation in packet forwarding, as described

below.

We assume that the communications between the CCC and any other node use

a reliable protocol, such that lost packets are always retransmitted. We also assume

that the source node S submits a signed copy of the forwarder list to the CCC, so

that the CCC knows the upstream/downstream relationships among nodes.

The INPAC basic scheme consists of two parts: nodes’ operations and the CCC’s

algorithm.

Nodes’ Operations In the INPAC basic scheme, nodes have two types of operations:

regular operations on data packets and periodic operations.

Fig. 3.1 lists the regular operations for processing a data packet.
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INPAC Basic Scheme – Regular Operations

� batch no: the batch number of a packet.

� code vec: the coding vector of a packet.

� IDvi
: the identity of a node vi.

� SIGvi
: a node vi’s signature on (batch no, code vec).

Source Node: Same as the source node’s operations in MORE.
In addition, the source node S attaches an INPAC header to each
outgoing data packet. The INPAC header contains SIGS .

Forwarders: When node vi receives a data packet from an
upstream node vj for which vi is in the forwarder list, vi does the
follows:

1. If the data packet is encrypted using a key known by vi, vi

decrypts it; if the data packet is encrypted using a key unknown
to vi, vi discards it and remembers IDvj .

2. Node vi verifies SIGvj .

3. Node vi checks whether the coding vector is linearly independent
from the previous packets in the same batch sent by vj . If so,
vi generates a new record (IDvj , batch no, code vec, SIGvj ) and
keeps it.

4. Node vi checks whether the coding vector is linearly independent
from all previous packets in the same batch received by vi (i.e.,
whether it is innovative). If it is, then vi makes transmissions as
specified in MORE. But before making these transmissions, vi

replaces SIGvj with its own signature and encrypts the packet
if in step 1 the packet was decrypted.

Destination Node: Same as the destination’s operations in MORE.

Figure 3.1. INPAC Basic scheme - Regular Operations on Packets
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Fig. 3.2 lists the three types of periodic operations of each node vi. Note that

each type of periodic operations may have a different cycle according to the system

requirements.

INPAC Basic Scheme – Periodic Operations

1. Submitting Report: Node vi submits a report to the CCC,
which contains all the records vi created in the most recent cycle.

2. Monitoring Downstream Nodes:

For each downstream node vj, vi compares the number of its own
transmissions that vj has reported to the CCC in the most recent
cycle with the estimated number of transmissions that vj should
report. If vi finds that vj has underreported its own transmissions, vi

does the follows:

• Before forwarding each future packet, vi encrypts [SIGvi ,
payload], using key k−j (see Section 3.2.3 for how to compute
k−j);

• Node vi replaces its locally stored value of ǫi,j with 1, and recal-
culates t⋆i using the algorithm in MORE.4

3. Monitoring Upstream Nodes:

Node vi checks, for each upstream node vj , whether vj has ever en-

crypted packets using a key unknown to itself. If so, vi stops making

records for vj ’s transmissions in the future.

Figure 3.2. INPAC Basic Scheme - Periodic Operations

CCC’s Algorithm After a node vj submits a report to the CCC, the CCC processes

the report as follows, in order to clear transactions:

1. Verify all signatures in the report.

2. Verify that all coding vectors for the same batch and the same sender are linearly

independent, and that they are linearly independent from all coding vectors for

the same batch and the same sender in previous reports submitted by vj .
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3. For each sender identity IDvi
in the report, verify that vi is an upstream node

of vj .

4. Mark the verified records as submitted by vj and keep them.

5. For each record in the report, check whether its coding vector is linearly inde-

pendent from all previous coding vectors in the same batch for which its sender

has been paid. If so, pay its sender (say vi) the amount of pi = ci

ǫ
t⋆
i

i ln 1
ǫi

from the

account of the source node S and mark the record with “paid vi”.

3.2.3 Key Setup for Punishing Downstream Nodes

Suppose that node vi would like to punish its downstream node vj . We use the

Akl-Taylor technique [5] to establish a key setup. This key setup allows vi to compute

a key k−j, such that k−j can be derived by any node except vj . In this way, vi can

punish vj by encrypting future packets using the symmetric key k−j.

Let N = Q1Q2 be an RSA modulus, where Q1 and Q2 are two large primes.

Suppose that k0 ∈ Z∗
N is confidential to all nodes (i.e., no node knows k0). We

assume that each node vi is preloaded with a large prime Pi and ki = kPi
0 . Node vi

keeps ki secret and makes Pi public.

The key k−j for punishing vj can be computed as

k−j = k
∏

h6=i,j Ph

i .

It is easy to see that, for any i′ 6= j,

k−j = k
∏

h6=i,j Ph

i = k
∏

h6=j Ph

0 = k
∏

h6=i′,j Ph

i′ . (3.4)
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Hence, any other node vi′ (i′ 6= j) can compute k−j using Equation (3.4). However,

it is infeasible for vj to compute k−j.

3.3 Game Theoretic Analysis of INPAC Basic Scheme

In this section, we present a game theoretic model and formally analyze our INPAC

basic scheme in this model.

3.3.1 Game Theoretic Model

We model the packet forwarding procedure of a particular session as a repeated

game. The players of this game are the nodes that are required by the MORE protocol

to forward the packets in this session. We assume that there are n players in total.

The game is divided into stages. In each stage ℓ, each node vi chooses an action

ai,ℓ, which is a tuple: ai,ℓ = (ti,ℓ, PUi,ℓ, PDi,ℓ). Here, ti,ℓ is the number of transmissions

vi chooses to make for forwarding each packet in stage ℓ; PUi,ℓ (PDi,ℓ, resp.) is the set

of upstream (downstream, resp.) nodes vi chooses to punish in stage ℓ. The utility

of vi in stage ℓ is

ui,ℓ = fi,ℓ · (pi(1−

vi 6∈PUh,ℓ
∏

dist(vh,D)<dist(vi,D)

ǫ
ti,ℓ
i,h )− citi,ℓ),

where fi,ℓ is the number of new packets that are received and need to be forwarded

by vi in stage ℓ.

4Setting ǫi,j to 1 reflects the fact that vj does not report hearing packets from itself. The
recalculation of t⋆i allows vi to increase its number of transmissions when vi finds one or more
downstream nodes do not report hearing its packets. Technically, it is crucial to have this step
in our protocol so that we can establish a subgame perfect equilibrium. Of course, we note that
vi might be making more transmissions than necessary to deliver packets in this case. However,
this additional cost is not high and we get it only if some node deviates from the protocol. When
the system converges to the subgame perfect equilibrium, this cost is not incurred. Note that, the
per-packet payment pi is never recalculated.
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As in the standard theory of repeated games [83], we consider a discounting total

utility in the entire game. Let δ < 1 be a constant—we call it the discount factor.

The total utility of vi in the entire game is

ui,total =
∞

∑

ℓ=1

δℓ−1ui,ℓ.

Intuitively, this means the player vi has more interest in the current stage and the

near future than in the far future.

3.3.2 Incentive Analysis

In the game theoretic model we have presented, we can obtain the following the-

orem regarding the incentive compatibility of our INPAC basic scheme.

Theorem 8. The strategy profile in which all nodes follow the protocol faithfully is a

subgame perfect equilibrium in the game.

Proof. Denote by s⋆ the strategy profile in which all nodes follow the protocol faith-

fully. Consider an arbitrary history H of length L. Suppose that H = H1H2 . . .HL.

When the strategy profile s⋆ is used, after history H , each node vi makes t⋆i trans-

missions and punishes upstream nodes in the set PUi and downstream nodes in the

set PDi, i.e., s⋆
i (H) = (t⋆i , PU⋆

i , PD⋆
i ). Given our INPAC basic scheme, PU⋆

i and PD⋆
i

are decided as follows:

PU⋆
i = {vj |∃ℓ, 1 ≤ ℓ ≤ L ∧Hℓ = (a1, a2, . . . , aj, . . . , an)

∧aj = (tj, PUj , PDj) ∧ vi ∈ PDj};

PD⋆
i = {vj |∃ℓ, 1 ≤ ℓ ≤ L ∧Hℓ = (a1, a2, . . . , aj, . . . , an)

∧aj = (tj , PUj , PDj) ∧ vi ∈ PUj}.
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Now consider an arbitrary vi. Let s△ be an arbitrary strategy profile that differs

from s⋆ only in vi’s action immediately following history H . Suppose that s△i (H) =

(t△i , PU△
i , PD△

i ). If we can show that ui|H(s∗) ≥ ui|H(s△) always holds, by One-

Deviation Theorem [83], we get that s⋆ is a subgame perfect equilibrium.

of steps.

First, we can calculate the utilities as follows:

ui|H(s⋆) =
∑

ℓ≥L+1

δℓ−1f ⋆
i,ℓ(pi(1−

vi 6∈PU⋆
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t⋆i,ℓ
i,h )

− cit
⋆
i,ℓ), (3.5)

ui|H(s△) =
∑

ℓ≥L+1

δℓ−1f△
i,ℓ(pi(1−

vi 6∈PU
△
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h )

− cit
△
i,ℓ), (3.6)

where f ⋆
i,ℓ, t⋆i,ℓ, and PU⋆

h,ℓ are the number of packets needed to be forwarded by node

vi, number of transmissions made by vi for each packet needed to be forwarded, and

the set of upstream nodes punished by node vh, respectively, in stage ℓ when the

strategy profile s⋆ is used; correspondingly, f△
i,ℓ, t△i,ℓ, and PU△

h,ℓ are the counterparts

when the strategy profile s△ is used.

Second, for all ℓ > L, all upstream node vh of vi, clearly we have that

PD⋆
h,ℓ = PD⋆

h,L ∪
⋃

dist(vh′ ,D)<dist(vh,D)

PU⋆
h′,L,

and that

PD△
h,ℓ ⊇ PD△

h,L ∪
⋃

dist(vh′ ,D)<dist(vh,D)

PU△
h′,L.
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Since PD⋆
h,L = PD△

h,L and PU⋆
h′,L = PU△

h′,L, the above two equations imply that

PD⋆
h,ℓ ⊆ PD△

h,ℓ.

Since vi’s number of received packets is determined by its upstream nodes’ sets of

punished downstream nodes, we have that, for all ℓ > L,

f ⋆
i,ℓ ≥ f△

i,ℓ. (3.7)

Third, we observe that, for all h 6= i,

PU⋆
h,L+1

= {vj|∃ℓ, 1 ≤ ℓ ≤ L ∧Hℓ = (a1, a2, . . . , aj , . . . , an)

∧aj = (tj, PUj, PDj) ∧ vh ∈ PDj}

= PU△
h,L+1.

Hence,

pi(1−

vi 6∈PU
△
h,L+1

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,L+1

i,h )− cit
△
i,L+1

= pi(1−

vi 6∈PU⋆
h,L+1

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,L+1

i,h )− cit
△
i,L+1. (3.8)

For all ℓ > L + 1, since

PU△
h,ℓ ⊇ PU△

h,L+1 = PU⋆
h,L+1 = PU⋆

h,ℓ,
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we have that,

pi(1−

vi 6∈PU
△
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h )− cit

△
i,ℓ

≤ pi(1−

vi 6∈PU⋆
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h )− cit

△
i,ℓ. (3.9)

Now, we define a function of a single variable t△i,ℓ (for an arbitrary ℓ > L):

g(t△i,ℓ) = pi(1−

vi 6∈PU⋆
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h )− cit

△
i,ℓ. (3.10)

From (3.10), we can easily obtain that

dg(t△i,ℓ)

dt△i,ℓ

=pi

vi 6∈PU⋆
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h ln

1
∏vi 6∈PU⋆

h,ℓ

dist(vh,D)<dist(vi,D) ǫi,h

− ci.

Hence,
dg(t△

i,ℓ)

dt
△
i,ℓ

= 0 if

t△i,ℓ = log
∏

vi 6∈PU⋆
h,ℓ

dist(vh,D)<dist(vi,D)
ǫi,h

ci

pi ln
1

∏

vi 6∈PU⋆
h,ℓ

dist(vh,D)<dist(vi,D)
ǫi,h

.

Plugging the payment formula into the above, we get that
dg(t△

i,ℓ)

dt
△
i,ℓ

= 0 if t△i,ℓ = t⋆i,ℓ.

Furthermore, from (3.10), we see that
dg(t△

i,ℓ)

dt
△
i,ℓ

always decreases. So, we have that

dg(t△
i,ℓ)

dt
△
i,ℓ

> 0 if t△i,ℓ < t⋆i,ℓ, and that
dg(t△

i,ℓ)

dt
△
i,ℓ

< 0 if t△i,ℓ > t⋆i,ℓ. Therefore, for all t△i,ℓ,

g(t△i,ℓ) ≤ g(t⋆i,ℓ). (3.11)
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Combining (3.8)(3.9)(3.10)(3.11), we get that, for all ℓ > L,

pi(1−

vi 6∈PU
△
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t△i,ℓ
i,h )− cit

△
i,ℓ

≤ pi(1−

vi 6∈PU⋆
h,ℓ

∏

dist(vh,D)<dist(vi,D)

ǫ
t⋆i,ℓ
i,h )− cit

⋆
i,ℓ. (3.12)

From (3.5)(3.6)(3.7)(3.12), we get that

ui|H(s⋆) ≥ ui|H(s△). (3.13)

By equation (3.13), we know that s⋆ is a subgame perfect equilibrium.

Theorem 8 tells us that there is a subgame perfect equilibrium in which all nodes

follow the protocol. Clearly, in this subgame perfect equilibrium, each node makes

exactly the number of transmissions required by MORE.

3.4 INPAC Extended Scheme

The INPAC basic scheme, which we have presented and analyzed in the previous

sections, requires the CCC to always stay online. In this section, we present the IN-

PAC extended scheme, which does not require the CCC to stay online. This extended

scheme also has reduced computation and communication overheads compared with

the basic scheme.

3.4.1 Main Ideas of Extended Scheme

Before we present our INPAC extended scheme in details, we intuitively explain

the main ideas we use in our design of this extended scheme.

Using Offline CCC We no longer require nodes to clear transactions periodically

when they are using the wireless mesh network; in stead, we allow nodes to use the
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wireless mesh network first, and clear the transactions only when they have high

speed connections to the CCC. In this way, the mesh network operator only needs to

set up an Internet server as the CCC in order to satisfy our new requirement—this

is a much easier task for the operator than maintaining an online authority.

Specifically, we let each node vi periodically sign its records about each upstream

node vj ’s transmissions and submit the signed records to vj itself, as receipts for

transmissions from vj . These receipts may allow vj to get the corresponding payments

when the transactions are cleared. As we have mentioned above, node vj clears

transactions only when it has a high speed connection to the Internet (i.e., to the

CCC). At that time, the CCC checks each pair of (batch no, code vec) in each receipt

to see whether the coding vector is linearly independent from all coding vectors with

the same batch number for which vj has received payments. Node vj receives a

payment for this pair of (batch no, code vec) only if the above condition is satisfied.

As in the basic scheme, each node vi needs to monitor its downstream nodes for

possible underreporting of its transmissions. Node vi monitors a downstream node vj

by periodically checking the number of receipts it has received from vj and comparing

it with the number expected by itself.

Improving Efficiency It is easy to see that a large portion of the computation and

communication overheads of our INPAC scheme comes from the generation, transmis-

sion, and processing of receipts. Consequently, to improve the efficiency of INPAC,

we use a random sampling approach to significantly reduce the number of receipts

that need to generated, transmitted, and processed.

Suppose that we would like to reduce the number of receipts to 1
2m of the orig-

inal, where m is a positive integer. We use a cryptographic hash function Hash()

to help us do the sampling: For each node vi, let xi be a secret known by vi and

the CCC only. Whenever vi receives a packet from its upstream node vj , vi needs

to generate and submit a receipt for this packet only if the first m bits of Hash(xi,
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IDvj
, batch no, code vec, SIGvj

) are all zeros. Since Hash() can be viewed as a ran-

dom oracle [11], each packet satisfies this condition with probability 1
2m .

This approach is secure and incentive compatible for the following reasons: (a)

Upstream node vj cannot cheat in this procedure. In particular, vj cannot selectively

transmit the sampled packets because it does not know xi. (b) Node vi cannot cheat

to increase the number of generated receipts, because vi cannot forge vj ’s signature,

which is part of the input to the hash function. (c) Node vi cannot cheat to decrease

the number of generated receipts, because then the cheating will be detected and

punished by vj , in a manner similar to the basic scheme.

3.4.2 INPAC Extended Scheme

Using the ideas we have just discussed, we obtain our INPAC extended scheme as

follows.

Nodes’ Regular Operations on Packets

Source Node: Same as the basic scheme.

Forwarders: When node vi hears a packet from an upstream node vj for which vi

is in the forwarder list, vi does the follows:

1. A forwarder’s regular operations in the basic scheme.

2. vi checks: (a) whether the coding vector is linearly independent from the previ-

ous packets in the same batch sent by vj and heard by vi; (b) whether the first

m bits of Hash(xi, IDvj
, batch no, code vec, SIGvj

) are all 0. If so, vi makes a

record (IDvj
, batch no, code vec, SIGvj

).

Destination Node: Same as the basic scheme.

Nodes’ Periodic Operations

1. Receipt Submission: Each node vi periodically signs its records about each up-

stream node vj ’s transmissions and submits the signed records to vj itself.When
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receiving the receipts, vj verifies vi’s signatures and also verifies that all pairs

of (batch no, code vec) have indeed been transmitted by itself with vi being a

downstream node. Then, vj keeps the receipts.

2. Monitoring Downstream Nodes: Each node vi periodically counts, for each

downstream node vj , the number of packets sent by itself for which vj have

submitted receipts. Node vi compares this number with 1
2m of the total number

of packets that vj should have received from vi. If vj reports fewer packets than

expected, then vi punishes vj using the same method as in the basic scheme.

3. Monitoring Upstream Nodes: Same as the basic incentive scheme.

Transaction Clearance

When a node vi has a high speed connection to the CCC, vi submits all the receipts

it keeps. The CCC clears the transactions in a way similar to the basic scheme.

3.5 Possible Attacks and Defenses

When our INPAC (basic or extended) scheme is used, security attacks may be

launched by selfish or malicious nodes. Although the focus of this chapter is incentives

rather than security, for practical purposes, we still briefly consider two possible

attacks and discuss the defenses against them.

3.5.1 Extra Signature Attack

A selfish forwarder node vi may launch an attack on our protocol by putting some

extra signed pairs of (batch no, code vec) in the payload of a packet. For example,

suppose vi is going to send a packet that has batch number 001 and coding vector

(1, 1, 1). So, the pair (001, (1, 1, 1)) is in the MORE header of this packet, and the

signature on this pair is in the INPAC header. Node vi launches an attack by putting

signed pairs (001, (1, 2, 3)) and (002, (2, 1, 4)) in the payload of this packet, in hope
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that the latter two signed pairs will also bring some payments to itself. Note that

this attack will not work if all nodes hearing this packet follow the protocol, because

nodes following the protocol should not take these signed pairs of (batch no, code vec)

(i.e, signed (001, (1, 2, 3)) and (002, (2, 1, 4))) from the payload and make records for

them—they should make only one record for (001, (1, 1, 1)) from the MORE header

and the corresponding signature from the INPAC header. Nevertheless, if a down-

stream node vj hearing this packet does not follow the protocol, vj may make records

for these extra signed pairs and then submit the records to the CCC. In this case, vi

may get undeserved payments with the help of vj .

We argue that the above attack is actually a colluding attack, because in this case

vi and vj must have a prior agreement on the format of packet payload. One possible

defense is that every node randomly samples a portion of packets it hears, to detect

signed pairs of (batch no, code vec) in the payload. If the attack is detected, it is

reported to the network operator, who excludes the attacker nodes from the system

and pursues liability against the owners of these nodes.

A better solution to this problem can be provided by a collusion-resistant incentive

scheme. However, since collusion resistance is technically highly challenging, we leave

this topic to future study.

3.5.2 Corrupted Data Attack

A forwarder node vi may also launch an attack on our protocol by tampering

with the payloads of data packets. When vi receives a packet that it should forward,

vi can modify or remove part or all of the bits in the payload of this packet. This

attack allows vi to gets payments for forwarding packets while the destination does

not receive the correct data in these packets.

We propose a simple defense against this attack: On one hand, when a node for-

wards a packet, it signs (batch no, code vec, payload) rather than just (batch no, code vec).
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Since this signature will be part of the receipt, the packet receipt can serve as an ev-

idence of cheating if this node corrupts the payload. On the other hand, the source

node S and the destination D should establish a secret key known to only S and D

and protect the entire batch of data using a message authentication code (MAC). If

a corrupted data attack is launched, the destination will detect the attack using the

MAC. Then, the destination requests all forwarders to submit all their receipts to the

source so that the source can determine who has corrupted the data. (This defense

works for the basic scheme. If it is used for the extended scheme, then it finds the

attacker node with a probability, which may deter the attacker.)

It is worth noting that this corrupted data attack is actually an independent

security problem for network coding that exists even if no incentive scheme is used.

It has been studied in, e.g., [57, 117]. Hence, we can also adapt existing solutions to

our settings in order to defend against this attack.

3.6 Evaluations

We completely implement INPAC and evaluate it on the Orbit wireless testbed [92].

Specifically, we carry out three sets of experiments:

• The first set of experiments are on the utilities of cheating nodes. The results

show that a node cannot increase its own utility if it cheats in making trans-

missions, in reporting heard transmissions, or in punishing downstream nodes.

• The second set of experiments show that, starting from a network system where

selfish wireless nodes have random (not necessarily cooperative) behaviors, IN-

PAC makes the system quickly converge to a stable state. In this stable state,

every node maximizes its own utility by faithfully following the protocol.

• The third set of experiments are on the computation and communication over-

heads. Our results show that INPAC is quite efficient.
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Below we first describe the setups of all our experiments, and then present the detailed

results for each set of experiments, respectively. Note that, since the basic scheme

and the extended scheme are equivalent in terms of nodes’ utilities and the system’s

convergence (except that the speeds of utility changes and system convergence depend

on different parameters), for the first two sets of experiments, we only present our

results on the basic scheme; the results on the extended scheme are similar. For the

third set of experiments, we present our results for both the basic scheme and the

extended scheme.

3.6.1 Setups of Experiments

From the Oribit radio grid testbed, we randomly select 30 nodes in the 20 × 20

grid. Fig. 3.3 shows the locations and IDs of these nodes. Each node has a 1-

GHz VIA C3 processor with 512 MB of RAM and a 20 GB local hard disk, and is

equipped with Atheros AR5002X Mini PCI 802.11a/b/g wireless card attached to

an omni-directional antenna. Nodes are set to transmit at a power level of 20dbm

and operate in the 802.11b mode with the bit rate 11Mbps. Softwares on each node

include Linux Debian kernel v2.6.22, Mad-Wifi v0.9.3.3 [73], Click v1.6.0 [98], the

MORE package [21], the Cryptopp Library 5.5.2 [35].

Before running the experiments, we use a module in MORE to measure the loss

rate of each link, and find that the link loss rates vary between 17.07% and 100%. In

MORE, we set the batch size to 32 packets, and the size of each packet is 1500 bytes.

The minimum load threshold is set to 0.2 for MORE pruning module.

In the experiments on the basic scheme, we place the CCC on node 2 at location

(2, 2). Unless stated differently, nodes submit their reports to the CCC every 30 sec-

onds. Each node checks, every 1 minute, whether any downstream node underreports

its transmissions. In payment calculations, the cost of making each transmission is 1.
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Figure 3.3. Testbed Topology.

3.6.2 Nodes’ Utilities and Cheating Behaviors

When a node deviates from the protocol in packet forwarding, it can have three

types of basic cheating behaviors: changing the number of transmissions, underreport-

ing upstream nodes’ transmissions, and improperly punishing downstream nodes.5 In

this set of experiments, we study the nodes’ utilities for each type of basic cheating

behavior, respectively, and for a mixture of basic cheating behaviors.

We have 100 runs of each experiment described below. In each run we randomly

choose two nodes as the source and the destination, to have a session of 120 seconds,

in which the source node is always backlogged. Unless stated differently, in each run,

we randomly select an involved node and compare the utilities it receives when it

cheats and when it follows the protocol.

5Actually a node may also cheat by overreporting upstream nodes’ transmissions, but we ignore
this possibility in our experiments because it is easily detected by the CCC through signature
verifications.
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Figure 3.4. Scatter plot of nodes’ utilities, changing ti vs. following the protocol.
Each point represents a node. Points below the 45 degree line y = x indicate that
changing ti yields lower utilities than following the protocol.

Changing Number of Transmissions We measure the per-batch utilities of nodes

when they cheat by changing their ti, the number of transmissions for forwarding each

packet. When a node cheats, its ti is randomly chosen between 0 and 2.0t⋆i , where t⋆i

is the number of transmissions it should make when it follows the protocol.

Fig. 3.4 shows the scatter plot for utility comparison in the 100 runs. Each point

represents the utilities of a randomly selected node in one run: The y-coordinate of

the point is the node’s utility when it changes its ti and the x-coordinate is the same

node’s utility when it follows the protocol. We can see that all points are below the

45 degree line y = x, which means cheating always reduces a node’s utility.

We further investigate the relationship between values of ti and the received utility.

In particular we observe the utilities of 4 selected nodes in one flow from node 4 to

node 27. Each time we let one selected node change its ti by ±0.5t⋆i or ±0.8t⋆i ,

respectively, and other nodes remain cooperative. Fig. 3.5 shows the utilities per
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Figure 3.5. Per batch utilities of four nodes when each of them uses different values
of ti. For each node, the utility is maximized when ti = t⋆i .

batch for different values of ti. Clearly, for each node, the maximum utility per batch

is achieved when ti = t⋆i , i.e., when the node follows the protocol.

Underreporting Transmissions of Upstream Nodes Now we consider the cheat-

ing behavior of underreporting transmissions of upstream nodes.

Fig. 3.4 is the scatter plot for utility comparison in 100 runs. The y-coordinate of

each point is the node’s utility when it underreports the transmissions of its upstream

nodes and the x-coordinate is the same node’s utility when it reports correctly. Again

all points are below the line y = x, meaning that underreporting always reduces a

node’s utility. To be more precise, in the 100 runs, the behavior of underreporting

reduces the utility of cheating node by 4.65% to 44.03% (with median case 31.49%)

compared with the utility when reporting correctly.

Similarly, in all the 100 runs, improperly punishing downstream nodes always leads

to utility losses, ranging from 10.87% to 129.65%. Hence, neither type of cheating

behavior can benefit the cheating node in any case.

Under-punishing or Over-punishing Downstream Nodes

Now we focus on the utility of the cheating node when it improperly punishes the

downstream nodes. In particular, we consider the two cases of unde-punishing and
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Figure 3.6. Scatter plot of nodes’ utilities, under-reporting the transmissions of
upstream nodes vs. correctly reporting. Each point represents a node. Points below
the 45 degree line y = x indicate that underreporting yields lower utilities than
correctly reporting.

over-punishing respectively. In Fig. 3.7, we measure the utility gain for the cheating

behavior of under-punishing downstream nodes, where the utility gain is defined as

utility when cheating
utility when following the protocol

−1. The results show that under-punishing the downstream

nodes can never increase the utility for the cheating node. In fact, the cheating node’s

utility decreases by 3.34% to 69.15% compared with following the protocol.

Fig. 3.8 shows the utility gain for over-punishing downstream nodes. The defi-

nition of utility gain is the same as described above. As we can see, over-punishing

downstream nodes always leads to utility losses, ranging from 10.87% to 129.65%.

Mixed Cheating Behaviors It is definitely possible that nodes use more than one

cheating behaviors mentioned above at the same time. In this experiment, we allow

the selected node to have more than one basic cheating behaviors simultaneously.

These cheating behaviors are chosen at random in each run of our experiment. In

Fig. 3.9, we illustrate the utility gains of the selected node when it has a mixture of

basic cheating behaviors. Clearly, mixing up the cheating behaviors cannot provide
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Figure 3.7. Utility gains for the cheating behavior of under-punishing downstream
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Figure 3.8. Utility gains for the cheating behavior of over-punishing upstream nodes.
All utility gains are negative.
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Figure 3.9. Utility gains for a mixture of basic cheating behaviors. All utility gains
are negative.

any benefit to the cheating node. In fact, the utility losses range from 17.46% to

135.93%.

3.6.3 System Convergence

When INPAC is used, the wireless network has a stable state, namely the equilib-

rium state, in which all nodes faithfully follow the protocol. In this set of experiments,

we study the procedure that the network system converges to the stable state.

At the beginning of each experiment, we let each node randomly select one of the

following three behaviors: following the protocol, cheating by making only 0.5 ∗ t⋆i

transmissions for forwarding each packet, and cheating by underreporting transmis-

sions from an upstream node. After the experiment begins, each node repeatedly

changes its behavior randomly. If the new behavior increases its own utility, the node

moves to the new behavior; otherwise, it returns to its old behavior. The node termi-

nates this procedure when it finds no way to further increase its own utility. When

all nodes stop changing their behaviors, the entire network system is in a stable state.

We randomly pick 4 nodes in one experiment and observe their utilities in Fig.

3.10. (Due to space limitation, we cannot show the results of other experiments,

which are similar.) As Fig. 3.10 shows, it takes about 10 minutes for the system to

converge to a stable state, in which all nodes faithfully follow the protocol. Given the
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Figure 3.10. Nodes’ utilities when the network system converges to its stable state.

setup of our experiment, the convergence is fairly fast. We can make it even faster if

the transactions are cleared more frequently.

3.6.4 Overheads

Now we measure the overheads of INPAC in two different situations: when the

system is in the stable state, and before the system converges to the stable state. Our

experiments cover both the basic scheme and the extended scheme.

Overheads in Stable State We measure the overheads of both the INPAC basic

scheme and the INPAC extended scheme, each in a session of transmitting 4800

packets, when the network system is in a stable state. We use RSA digital signature

schemes with a modulus of 1024 bits. In the extended scheme, we set m = 6. The

results of our measurements are shown in Table 3.1. We can see that the overheads of

both the basic scheme and the extended scheme are reasonably low. If we compare the

basic scheme with the extended scheme for the total overheads in the entire session,

then the extended scheme is about 38.74% more efficient than the basic scheme,

because the extended scheme has fewer operations of making reports.

Overheads in Convergence Before the system converges to a stable state, there

may be additional overheads for punishing downstream nodes, which include the time

for packet encryptions and decryptions. We use the 128-bit AES in ECB mode. On

82



Table 3.1. Overheads of INPAC.

Average time for processing a packet
in either scheme 1.45 ms

Average time for making a report
in either scheme 0.78 ms
Basic scheme’s

total overheads in entire session 4.75 s
Extended scheme’s

Total overheads in entire session 2.91 s

average, the overhead for punishing a downstream node is 0.143 ms per packet. We

note that the keys for punishments need to be set up in advance. In a network of size

30, the key setup time is 10.09 ms per node.

3.7 Summary

In this Chapter, INPAC is proposed, the first incentive scheme for packet for-

warding in wireless mesh networks using network coding. It is complementary to the

existing work on incentive compatible routing in the same type of wireless networks.

Since packet forwarding is a fundamental procedure for computer networks, INPAC

is of great importance to the application of network coding technology in environ-

ments with selfish users. Extensive evaluations for INPAC on the Orbit Lab testbed

have been performed, and the results demonstrate that INPAC is both efficient and

incentive compatible.

Since this scheme is designed to provide incentives to each individual node, one

interesting open problem is to design a collusion resistant incentive scheme. It is

expected that this open problem to be very challenging and I plan to study it in the

future work.
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CHAPTER 4

MESSAGE FORWARDING COOPERATION IN

VEHICULAR AD HOC NETWORKS[29]

4.1 Background and Motivation

Vehicular ad hoc networks support communications among smart vehicles, and

between vehicles and nearby roadside equipment. There can be numerous useful and

interesting services on the road provided by VANETs [89, 112, 111, 72, 84, 17] in the

near future. In VANETs, effective and efficient message delivery among vehicles must

be guaranteed. Under some circumstances, (e.g., night-time with low vehicular den-

sity, or disseminating commercial ads through VANETs), to overcome the difficulty

of intermittent connectivity, store-carry-and-forward message switching becomes an

important idea of routing in VANETs. A node stores and carries messages; it consid-

ers forwarding a message to another node whenever these two nodes come into the

communication range of each other. In this way, each message is forwarded from one

node to another. A number of routing protocols (e.g. [61, 58, 99, 18, 95]) have been

proposed to increase the likelihood of successfully delivering a message, which can be

applied to VANETs.

However, even if we have a good routing protocol for a VANET, it is still a crucial

question whether nodes will follow the protocol or not. The necessity of solving this

problem can been observed in the perspectives of two types of nodes. On the one

hand, an ordinary node of the VANET may belong to an individual user and thus be

selfish. It may be unwilling to forward messages of others for nothing, and moreover

carrying message takes its own storage space. On the other hand, in many routing
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protocols, nodes with special abilities, (e.g. those with more active mobility on the

road, like Taxi cars), are more likely to be picked as forwarders. For these nodes,

the situation is worse: even though they are willing to forward messages initially, the

overwhelming load of services for others will soon consume so much of their communi-

cation resource (e.g., wireless bandwidth and storage space) that they have to deviate

from the protocol to save their own resource. Therefore, it is highly important to give

nodes incentives, stimulating them to cooperate in forwarding messages.

Indeed, automotive industry controls the vehicle manufacture. However, we can

also foresee some problems of cooperation even if the manufacturers do not leave it

as an option for the users to choose being cooperative or not. Actually, after the

vehicles are sold, they are under the full control of the users. Thus, although the

manufacturer does not leave an option for the users to choose being cooperative or

selfish, the users can still get help from some expert hackers in changing the VANETs

protocols running in the vehicles, so that they can be ’free riders’ in the network

without contributing anything. Hence, we believe that mandatory cooperation in

VANETs is difficult to achieve and designing incentive-compatible packet forwarding

protocols can help providing a feasible way to enforce the mandatory cooperation in

VANETs.

There are two types of existing incentive mechanisms for stimulating cooperation

in wireless networks: reputation-based approaches (e.g., [76, 78, 88]) and credit-based

approaches (e.g., [119, 120]). Reputation-based approaches rely on observing the be-

havior of neighbor nodes and punishing the detected uncooperative nodes to stimulate

cooperation. In VANETs, however, for a distributed reputation system, the deviat-

ing behaviors of a selfish node are more difficult to be observed and determined by

other nodes, because the connections with the same nodes are occasional. A recent

work on incentive aware routing in delay tolerant networks[94] cannot be applied to

VANETs for a similar reason: The authors use tit-for-tat mechanism in which nodes
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reward or punish their neighbors based on the history they have observed; however,

in VANETs, the connection opportunity between any two nodes may only be once

and thus the neighborhood relationship cannot easily be established. Of course, if

a centralized reputation controller is established in the VANET, it could collect and

broadcast the reputation of any node to help stimulate the cooperation in the network.

In this chapter, we aim at another approach, credit-based mechanisms, to encourage

cooperation by rewarding credits to the cooperative nodes. This idea is especially

appropriate for many applications in VANETs, such as disseminating advertisement

using vehicles. In existing works for traditional multi-hop networks, the credit-based

mechanisms depend on end-to-end connections to determine how many credits each

node should receive. In VANETs, since end-to-end paths are not guaranteed at all,

existing credit-based mechanisms cannot be used either.

We use an approach based on coalitional game theory to solve the forwarding

cooperation problem in VANETs. In particular, we say a node is cooperative in

forwarding in VANETs, if it follows the routing protocol. In a coalitional game, there

are a number of players. These players correspond to the nodes in a VANET. When

the players in a subset decide to cooperate within the subset, the subset is called

a coalition. In particular, the coalition of all players is called the grand coalition.

Hence, our goal is to ensure that, whenever a message needs to be forwarded in a

VANET, all involved nodes have incentives to form a grand coalition. In coalitional

game theory, there is a strong solution concept, namely core, that can provide such

guarantees.

We propose an incentive scheme for VANETs and rigorously analyze it in the

framework of coalitional games, showing that, when it is used, following the protocol

is in the core of the coalitional game. In addition, we extend our scheme to take

the limited storage space of each node into consideration. When a node does not

have sufficient space for storage, it has to discard some of the messages. To decide
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which messages to discard, a lot of routing protocols (e.g., [18, 17, 8]) require some

auxiliary information to be transmitted in control messages, such as the probabilities

of meeting the destinations. Although in principle we can stimulate the forwarding of

these control messages using the same method that we use for data messages, it would

require lots of overheads to do so. To make our scheme more efficient, we propose

a light-weight approach which makes full use of the selfishness of the autonomous

nodes, giving them the freedom to choose which messages to discard. Our extended

scheme guarantees that it is to the best interest of each node to discard the messages

that the system prefers to drop.

There are a few existing works [66, 67] on the incentive problems of packet for-

warding in VANETs. However, they either target a specific routing goal (e.g., [66]),

or does not have a rigorous proof for nodes’ cooperation (e.g., [67]). In contrast, our

work considers the incentives for all nodes including the sources and guarantees the

cooperation of them under rigorous theoretical analysis.

The rest of the chapter is organized as follows. In Section 4.2 we introduce basic

concepts in coalitional game theory, and present a model of the forwarding cooperation

problem in VANETs. Section 4.3 describes the incentive scheme. In Section 4.4, an

extension to limited storage space is considered. Experimental evaluation results are

presented in Section 4.5. We summarize this chapter in Section 4.6.

4.2 System Model

4.2.1 Coalitional Game Formation in VANETs Message Forwarding

In this subsection, we introduce the VANET system model used in this chapter

and present a coalitional game model for message forwarding in VANETs.

We consider a VANET with a set of mobile nodes. Two nodes can exchange mes-

sages when they are within the transmission range of each other. Here we consider

a general routing protocol, denoted by ℜ. Note that ℜ could be one of the many
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existing routing protocols. In this chapter, we assume that there is only one routing

protocol in the system. It is a very interesting problem when there are different rout-

ing protocols coexisting in the network. If each node knows which routing protocol

should be chosen, our incentive scheme can be extended to cope with this situation

by adding one more piece of information into the message receipt, indicating the

routing protocol used for the message transmission. Otherwise, we will have a new

challenging problem; We leave it to future study.

In the VANET, messages can be delivered directly to the destination or forwarded

by some intermediate nodes before reaching destination. The intermediate node may

or may not replicate a copy of the message and keep it during the transmission,

according to different routing protocols. Note that in this chapter we use the term,

forwarding, in a very general sense; by forwarding a message we mean either the

transfer of the message itself or the transfer of its copies to the next hop.

A directed graph G = (V, E) is used to describe the forwarding of each message.

V is the set of nodes that are required to participate in routing this message by ℜ.

Each directed edge in E represents that the message is forwarded from the tail node

to the head node. In other words, the graph G records the traces of a message and

its copies. In some application scenarios, nodes are all equipped with GPS. Then it

is possible to modify the V to create geo-referenced coalitional games. In particular,

using geo-location information, we can only consider the nodes that meaningful with

respect to source and destination, so that the signaling and communication overhead

can be reduced. Here in our game, to keep it general, the nodes are those who are

required to forward packets by the routing protocol.

We now model the transfer of a message from its source (src.) to its destination

(dest.) as a forwarding coalitional game. The forwarding coalitional game (N, v) starts

when the message is generated by src., and ends after it and its copies disappear in

the network, either successfully received by the dest. or discarded by all intermediate
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nodes in halfway. The players are the nodes in V (i.e. N = V ), including src. and

dest.. In the process of this message being transferred from one node to another,

two nodes are in a coalition, if the message (or its copy) is transmitted between

them in the way defined in ℜ. We call the forwarding behaviors specified by ℜ, legal

forwarding, for convenience in the rest of this chapter. The coalitional relationship

is transitive, i.e. if node p and q are in a coalition, and meanwhile q and r are in a

coalition, then p and r are in the same coalition.

Recall that to form the forwarding coalitional game (N, v), N and v must be

specified. Since in VANETs the end-to-end connections are not guaranteed, the first

challenge to form the forwarding coalitional game, is to determine the nodes that

should be involved the message forwarding according to ℜ, i.e. players set N. The

difficulty lies in the fact that in VANETs routing protocols, the next forwarder can

only be determined when the carrier and the potential forwarder actually meet based

on some routing information (In this chapter, by meet we mean two nodes come in

the communication range with each other.). To clarify the N for each game, we use

a stimulating approach to encourage the nodes to report their meetings. Every time

two nodes meet, each node keeps a brief record of their meeting and the routing

information. For reporting each record, nodes (except src.) can obtain an amount

of reward, u, for assisting to determine the player set N. We note that the reason

of keeping records of neighbors is for enforcing the incentive scheme, not for routing

messages in the VANETs. Our incentive scheme can work with routing protocols that

do not need the information about neighbors. We will present the specific system

design, e.g., where and how the records will be reported and content of the record in

detail in Section 4.3.

An important component in a coalitional game is the definition of the payoff

(worth) of a coalition S, v(S). Naturally, the total payoff of a coalition should reflect

their success in forwarding the message to dest.. Let d(S) denote the number of
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message copies that are successfully delivered to dest. within coalition S. We can

formulate the worth of coalition S as follows.

v(S) = δ · d(S) + u · nrec(S), (4.1)

where δ is a system parameter representing the reward for successfully delivering one

message copy,1 and u is the unit amount of reward for reporting a record. nrec(S) is

the number of meeting records submitted by the members in S. In words, the worth

of a coalition consists of two parts, rewards for successfully transferring data to dest.,

and rewards for helping determine the player set N. Clearly, if dest. is not in S, then

d(S) = 0. Moreover, by the transitivity of the coalition, d(S) > 0 if and only if both

src. and dest. are in S.

In Figure 4.1, we illustrate the forwarding coalitional game model with two ex-

amples. Their description graphs G are in subfigures (a) and (b) respectively. The

locations of the nodes in the graph have no physical meaning. The number labeling

each node is the node ID. Recall that each edge represents a legal forwarding between

the two nodes. In subfigure (a), all players form a grand coalition N, that is, all

players involved in the transmission follow the routing protocol ℜ. In (b), the legal

forwarding between nodes 1 and 2 does not happen when the two nodes meet; neither

do those between 4 and 6, 6 and 7. As a result, in the forwarding coalitional game,

4 coalitions are formed. In the two games, all nodes report their meeting records,

for the rewards. Let δ = 10 and u = 0.5. For the grand coalition, d(N) = 1, and

nrec(N) = 15 (because each meeting is reported twice by the nodes excluding the

source), then according to Eq. (4.1) v(N) = 17.5. In Figure 4.1(b), d(S1) = 1, but

1From the source and the destination’s point of view, it suffices to have a single copy transferred
to the destination, and so it seems unnecessary to reward the transfer of each copy of the message.
Nevertheless, since each copy of message is typically transferred by different nodes, if we don’t reward
the transfer of every copy, the result could be that no copy of the message is transferred.
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(b) Four coalitions are formed
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v(S2) = v(S4) = 0.5
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Figure 4.1. Illustration of forwarding coalitional game model.
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d(S2) = d(S3) = d(S4) = 0 because the destination is not included in S2, S3, S4.

Similarly, according to Eq. (4.1) we can calculate the worth of each coalition in each

game as shown in the figure.

4.3 Incentive Scheme for VANETs Message Forwarding

After establishing the forwarding coalitional game model, in this section we design

an incentive scheme for VANETs message forwarding based on this model. First, we

present the system architecture and we introduce a payoff allocation method that we

will use in the incentive scheme. Then, we rigorously show that it can result in a

strongly stable state which is in the core. After that, we present a complete design

of our incentive scheme based on our payoff allocation method. Finally, we describe

how our scheme deals with cheating.

4.3.1 System Architecture

The overall architecture of the system consists of a number of smart vehicles that

have VANET communication devices installed and a central authority, called the

virtual credit center (VCC). As in many other incentive schemes for wireless networks

and especially VANET (e.g., [119, 120] and [66]), the VCC is used. We assume that

the VCC issues a certificate to each node and each node has an account (of virtual

currency) in the VCC. Nodes do not need to connect to the VCC all the time. Instead,

nodes save and store the information that they need to communicate with the VCC

temporarily and when they are close to some infrastructures, they connect to the

VCC and communicate with it (including receiving credits). For example, they can

connect to the VCC in the gas station.

Initially, each node in the VANET system has an equal amount of virtual currency

in its account stored by the VCC. If a node has helped in the forwarding of a message,

whenever the node have chance to connect to the VCC, it submits the evidences (i.e.,
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records of meetings and message receipts, which will be described in details later) to

the VCC and receives the credits from the VCC. The VCC gives credits to a node in

the form of virtual currency, i.e., it increases the amount of virtual currency that the

node keeps in its account kept by the VCC. Correspondingly, the source node will

be charged (the VCC decreases the amount of virtual currency in the source node’s

account). We note that in some cases, the source of a message may send it as a

reply for a request for the benefit of the destination. We consider this problem as

the incentive issues in the application layer, e.g., providing data service for others.

There are some works on the incentive issues in the application layer (e.g., stimulating

cooperation file sharing in peer-to-peer networks). We think that the incentive for

the source to send packets and the incentive for the intermediate nodes to forward

packets are two separate issues. The source is motivated by the incentive scheme in

the application layer to send messages to the destination, while the intermediate nodes

should also be incentivized in the network layer. Once the source is motivated by the

application layer mechanism, it makes sense to let the source pay the forwarders since

only when the data messages are delivered the source can receive rewards from the

destination by the incentive scheme in the application layer. In this chapter, we only

focus on the incentive issues in the network layer. When a node needs more virtual

money, it can buy some using real money. All transactions are cleared within the

VCC. The details about how the VCC will process the evidences will be presented in

Section 4.3.4.

4.3.2 Allocation of Payoff

Our goal is to design a payoff allocation method (X ∈ RN) in the forwarding

coalitional game such that for the transmissions of each message in VANETs, the

grand coalition is guaranteed. To achieve the grand coalition, the challenge is to make

sure the non-emptiness of the core in the game, and to assign a payoff allocation to
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each player in the coalition which satisfies the core requirement. Naturally, the source

node and intermediate nodes should be treated differently in the payoff allocation,

due to their different roles in the game. Therefore, we consider them separately.

4.3.2.1 Payoff Allocation to Intermediate Nodes

For each intermediate node, its share of payoff should reflect its contribution in

the game. Hence the payoff allocation function for intermediate nodes, is designed as

follows, based on two types of behaviors in the coalition, receiving and forwarding.

xi = α ·mr(i) + β ·mf(i) + u · nrec(i), ∀i 6= src. (4.2)

In Eq. (4.2) mr(i) is the number of times that intermediate node i receives one copy of

the message from some other node. mf (i) is the number of times that i successfully

forwards one copy of the message to another node following the routing protocol

ℜ. α and β are the rewards for the receiving and forwarding behaviors respectively.

u · nrec(i) is the amount of reward to node i for reporting the meeting records. Note

that dest. can be viewed as an intermediate node, which only receives copies without

further forwarding.

4.3.2.2 Payoff Allocation to The Source Node

The payoff allocation to the source node contains two parts: the gains by success-

fully delivering the message copies to dest., subtracted by rewards used to pay the

intermediate nodes. The payoff allocation function for src. is defined in Eq. (4.3).

xsrc = δ · d(N)− (α
∑

i∈N−{src}

mr(i) + β
∑

i∈N−{src}

mf(i)). (4.3)

4.3.3 Sufficient Conditions to Achieve Core

With the payoff allocation functions described above, will the forwarding coali-

tional game automatically achieve a stable grand coalition? Actually it depends on
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the parameters δ, α and β. If the values of δ, α and β are chosen inappropriately,

the core of the game may become empty. So in the sequel, we study how to choose

the parameters and ensure that the payoff allocation of our incentive scheme is in the

core, i.e., the payoff allocation satisfies individual rationality, coalitional rationality

and efficiency respectively. At the end of this section, we summarize the results and

give the sufficient conditions on δ, α and β for achieving the core.

4.3.3.1 Individual Rationality

First we examine the individual rationality of the players, i.e. no player receives

less than what it could get on its own. For the source node, if it does not send the

message to any intermediate node, then v({src.}) = 0. Therefore, it is necessary to

make sure that xsrc. ≥ 0 in grand coalition N whenever d(N) > 0 to guarantee the

individual rationality for the source node. 2.

Before introducing the parameter conditions for src.’s individual rationality, we

define two terms mr and mf . Denote mr, i.e. mr =
∑

i∈N−{src.} mr(i), the total

number of receiving behaviors of intermediate nodes in grand coalition. Similarly, we

let mf =
∑

i∈N−{src.} mf (i).

The following lemma specifies the condition to achieve individual rationality.

Lemma 9. If the equation Eq. (4.4) holds for the payoff allocation defined in (4.2)

and (4.3), then the individual rationality is guaranteed.

max(α, β) ≤
δ · d(N)

mr + mf
, whenever d(N) > 0 (4.4)

2If d(N) = 0, it means that although all involved nodes follow the routing protocol, dest. still does
not receive any copy of the message. In this case, src. will get negative payoff allocation according
to (4.3). But we argue that it is reasonable for src., if it wants to transmit the message. Moreover,
it is necessary to have this negative payoff allocation in order to prevent the cheating of src. and
dest. in a collusion (see Section 4.3.5)

95



Proof. For each intermediate node i, if it does not join the coalition, which means it

does not record or forward any copy of the message, then mr(i) = 0 and mf (i) = 0.

Hence v({i}) = 0. Since in the definition of xi (Eq. (2)) all components are non-

negative, we have that xi ≥ v({i}).

For the source node, it is easy to see that, if Eq. (4.4) holds, then

xsrc. = δ · d(N)− (α ·
∑

i∈N−{src.}

mr(i)

+β ·
∑

i∈N−{src.}

mf (i))

≥ δ · d(N)−max(α, β)(
∑

i∈N−{src.}

mr(i)

+
∑

i∈N−{src.}

mf (i))

= δ · d(N)−max(α, β) · (mr + mf )

≥ 0

Since v({src}) = 0, the individual rationality for src. is also guaranteed if max(α, β) ≤

δ·d(N)
mr+mf

, whenever d(N) > 0.

Given the result of Lemma 9, in designing our incentive scheme, we make max(α, β) =

δ·d(N)
mr+mf

− ς, where ς is a constant small number. Since we also need to guarantee that

α > 0 and β > 0, we choose ς such that ς < 1/(mr + mf).

4.3.3.2 Coalitional Rationality

Even with the individual rationality of each node, it still cannot guarantee that

no coalition of nodes can benefit from deviating the grand coalition. To see this,

we revisit the example in Figure 4.1 part (a). In this game, mr = 8, mf = 7. Let

α = 0.55, β = 0.6 to satisfy condition (4.4). Then in grand coalition the total payoff

allocations that nodes in S1 can get is
∑

i∈S1
xi = 13.25, while the worth of the

coalition S1 is v(S1) = 15.5. Intuitively, coalition S1 can collectively get better payoff
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allocations by excluding nodes 2, 6, 7 from their coalition and saving the payments

to them, which worth 2.25 in total. Consequently, nodes in S1 have the incentive

to deviate from the grand coalition, which leads some nodes in N not to follow the

routing protocol.

To overcome the difficulty in ensuring coalitional rationality, we modify the δ in

Eq. (4.1), from a constant parameter to a function of the coalition S. δ(S) is the

reward for successfully delivering one message copy in coalition S. In particular,

define δ(S) as the ratio of the cooperative behaviors (receiving or forwarding) in S

to the total number in N.

δ(S) =

∑

i∈S−{src.}(mr(i) + mf (i))

mr + mf
.

In the grand coalition N, all nodes are cooperative, so δ(N) = 1. Therefore the

condition (4.4) can be rewritten as

max(α, β) ≤
d(N)

mr + mf

(4.5)

Now we are going to prove that given the condition (5), no node can benefit by

deviating from the grand coalition and forming a coalition consisting of a subset of

nodes.

Lemma 10. In the forwarding coalitional game (N, v), where v(S) =
∑

i∈S−{src.}(mr(i)+mf (i))

mr+mf
·

d(S)+u ·nrec(S), the payoff allocations defined in (4.2) and (4.3) with condition that

max(α, β) ≤
d(N)

mr + mf

guarantee that no coalition has incentives to deviate from the grand coalition.
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Proof. For coalition S that does not include src. and dest., it has only one member

in S. Consequently the coalitional rationality is immediately guaranteed because it

is equivalent to the individual rationality in this case.

Now consider an arbitrary coalition S. We compare the total value of the coalition

S, v(S) and the value sum of those nodes in S if they are in the grand coalition,
∑

i∈S xi. If
∑

i∈S xi ≥ v(S), it means that no subset of nodes can form a coalition

obtaining higher total value than they are in the grand coalition.

∀S ⊆ N , s.t. S contains src. and dest., we have

∑

i∈S

xi − v(S)

=

∑

i∈N
(mr(i) + mf (i))

mr + mf
d(N) + nrec(S)

−
∑

i/∈S

(αmr(i) + βmf(i))

−

∑

i∈S(mr(i) + mf (i))

mr + mf

d(S)− nrec(S)

≥ d(N)−max(α, β)
∑

i/∈S

(mr(i) + mf(i))

−(1−

∑

i/∈S(mr(i) + mf (i))

mr + mf
)d(S)

≥
∑

i/∈S

(mr(i) + mf (i))(
d(N)

mr + mf

−max(α, β)).

The last step of the above derivation is due to the fact that d(N)−d(S) ≥
∑

i/∈S(mr(i)+mf (i))

mr+mf
(d(N)−

d(S)).

Since
∑

i/∈S(mr(i) + mf(i)) ≥ 0 and we have condition (4.5), we can obtain that

∑

i∈S xi − v(S) ≥ 0. Therefore, the coalitional rationality is guaranteed.

4.3.3.3 Efficiency

Finally it is easy to verify the efficiency of the payoff allocation. Actually
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∑

i∈N

xi = xsrc. +
∑

i∈N−{src.}

xi

= δ(N)d(N) + u · nrec(N) = v(N).

We now summarize our analysis results in the following theorem.

Theorem 11. In the forwarding coalitional game (N, v), where

v(S) =

∑

i∈S−{src.}(mr(i) + mf(i))

mr + mf
· d(S) + u · nrec(S),

the payoff allocation X s.t., ∀i ∈ N

xi =











α ·mr(i) + β ·mf (i) + u · nrec(i) if i 6= src.

d(N)− (αmr + βmf) otherwise,
(4.6)

with the condition that

max(α, β) =
d(N)

mr + mf
− ς, if d(N) > 0 (4.7)

is sufficient to be guaranteed in the core.

Proof. Due to Lemma 9, Lemma 10 and the efficiency analysis in Section 4.3.3.3.

Theorem 11 guarantees that by using the payoff allocation functions, no coalition

of the selfish nodes have the interest to break with the grand coalition. The system

will converge to a strongly stable state that nodes are willing to follow the routing

protocol and cooperate in forwarding messages.

4.3.4 Complete Design of Incentive Scheme

Based on the payoff allocation functions designed above, in this subsection we

specify our complete incentive scheme.
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Figure 4.2. Incentive scheme implementation architecture.

We assume that there is a public key infrastructure in the VANETs. Each node

i has a public/private key pair Kpi, Ksi and a certificate that is digitally signed by

a trusted Certificate Authority. Denote (signKp(), verifyKs()) the digital signature

scheme used in VANETs.

The complete incentive scheme consists of the programs installed at each node in

the VANETs and the algorithm running at the VCC. The programs at each node can

be further divided into three groups of functions, for the source node, the intermediate

node and the destination, respectively. The detailed architecture of this incentive

scheme is shown in Fig. 4.2.

• Source Node. Suppose that src. wants to send a message M to dest.. src.

computes a digital signature signKssrc.(md(M)) based on the message it is about to

send. src. will send the message (or copies) together with the message-specific digital

signature signKssrc.(md(M)) to the adjacent intermediate nodes, where md() is a

message digest function.

• Intermediate Nodes. When a node carrying M meets a subsequent node, the two
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nodes first verify each other’s identity using the authentication certificates. Each node

keeps a brief record of their meeting (ts, id, Rinf), where ts denotes the time when

they meet. id is the identity of the other node, and Rinf is the routing information

available (that may needs to be exchanged with the other node in many routing

protocols such as [18, 8]). Different content of Rinf is defined according to the

routing protocols used in VANETs. For example, if ℜ makes routing decisions based

on historic meeting information [36, 18, 17], Rinf can be the expected probabilities

of meeting other nodes in the system.

If the node carrying M decides to forward according to routing protocol ℜ, it

sends the message M together with signKssrc(md(M)) to the subsequent node. After

receiving M , the subsequent node saves signKssrc(md(M)) as a receipt. Nodes sub-

mits their meeting reports and message receipt to VCC whenever they can connect

to it.

• Destination Node. If dest. receives M or its copies, it waits for a certain amount

of time and calculates the total number of copies it receives d(N). When dest. can

connect to VCC, it submits its receipt, one copy of M together with d(N) to the

system.

• Computing payoff allocations. The VCC computes the payoff allocations once

in a certain time interval, long enough to collect receipts and meeting reports. When-

ever nodes can connect to VCC, they can receive their payoff allocations in form of

credits. Before VCC starts to compute the payoff allocations, it first matches all meet-

ing records into pairs by the same timestamp and corresponding node ids, and produce

pairs of meeting record vectors in from of (ts, id1, id2, Rinf1, Rinf2), (ts, id2, id1, Rinf2, Rinf1).

VCC discards the single meeting records which fail to match with any other ones.

VCC counts the number of meeting records submitted by each node, and obtains each

nrec(i) in the payoff allocation functions (4.6). Figure 4.3 specifies the protocol to

compute the payoff allocations to the nodes who were involved in the transmission of
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→ Meeting record vectors
→ Receipts.
→ Routing protocol ℜ in the VANET.
→ A FIFO queue, Q, composed of IDs of nodes.

IF not received d(N) from dest.

d(N)← 0.
For each node i, mr(i)← 0; mf (i)← 0.
Add src. to Q.
WHILE (Q is not Empty){

Take an id idcurrent out of Q.
IF not found any (ts, id1, id2, Rinf1, Rinf2)

s.t. id1 = idcurrent

BREAK.
ELSE FOR each (ts, idcurrent, id2, Rinf1, Rinf2)

IF found receipt from id2

Based on Rinf1, Rinf2 check whether the
forwarding between idcurrent and id2 follows ℜ.

IF not legal, BREAK.
ELSE

mf (idcurrent)++; mr(id2)++; Add id2 to Q.
}

mr ←
∑N

i mr(i); mf ←
∑N

i mf (i).
FOR each i 6= src.

xi ← αmr(i) + βmf (i) + u · nrec(i).
xsrc. ← d(N)− αmr − βmf .

Figure 4.3. Protocol to compute the payoff allocations in one game

message M . In order to compute the number of receiving and forwarding behaviors

for each node, the protocol adopts a breath-first-search starting from src. to trace all

cooperative behaviors, using the meeting records information and receipts.

From Fig. 4.3, we can see that the algorithm to allocate payoff is essentially a

breadth-first search of the message forwarding tree. Therefore, the time complexity

of the algorithm is O(n), where n is the number of receipts that nodes in the system

have submitted. Usually the number of n is depending on several factors, e.g., the

total number of nodes in the network, the number of messages being transmitted, the

basic routing protocol in the system, etc. 3

3Note that the algorithm of the VCC is running on backend machines, so the computing ability
of the VCC is not a major concern here.
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4.3.5 Preventing Cheating Behaviors

In Section 4.3.3 the analysis shows that the payoff allocation functions in our

incentive scheme stimulate the nodes to cooperate. However nodes may still cheat

by submitting false information that is used in computing the payoff allocations. In

this subsection, we analyze the possible false information that nodes may submit and

discuss solutions to prevent these cheating behaviors.

• False receipts. Since the payoff allocation of each node in the system essentially

depends on the number of receipts that they submit, nodes may save and submit the

receipts without forwarding the message. If the nodes behave like this, it will cause

the number of copies delivered to dest. less than what it should be. In this case,

according to the payoff allocation condition (4.7), the amount of payoff allocation

that each intermediate node gets decreases as d(N) drops. So by carefully choosing

parameters α and β, it can be guaranteed that nodes get punished by losing their

payoff shares.

• False d(N). Now we consider the case that dest. reports false d(N) in collusion

with src.. Since if d(N) is higher, src. can get more payoff shares, dest. may declare

to receive more than d(N) copies. Actually, our payoff allocation computing protocol

can prevent this cheating behavior. Because the protocol traces all effective routes

and verifies all forwarders’ receipts, any false d(N) will be detected.

• False meeting records. According to our analysis in Section 4.3.3 hiding meetings

records and not following the routing protocol will not result in higher payoff shares

for the nodes. Therefore, the remaining problem is to prevent them from forging false

meeting records which have not really happened.

There are two types of forged meeting records: 1) meeting records with false time

and meeting nodes ids, i.e. totally forged meeting records; 2) meeting records only

with false routing information. One node cannot generate a totally forged meeting

record by itself, because our protocol discards all non-paired records as mentioned
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above. If two nodes collude in generating false routing information, they can transfer

more messages that are not allowed by ℜ, and hence obtain more payoff allocations

than they should. To prevent this kind of cheating behavior, different solutions for

different routing protocols are needed. If ℜ is based on historic transfer information,

(e.g., some ℜ bounds the number of replicates of one message), our protocol can

detect the forged information since it can verify and record all legal forwardings in

the breath-first search. In some other ℜs, nodes exchange control information, for

instance the expected transfer probabilities. To enforce the nodes to honestly measure

and report routing information, similar approaches to those in [109] can be adopted.

4.4 Extended Scheme

In this section, we extend our incentive scheme to address the challenge brought

by the limited storage space of nodes. Indeed, storage space is more available for

VANETs nodes than traditional multi-hop wireless network nodes. However, it could

still be limited since there may be a lot of applications running inside the vehicles

which could also consume storage space. It is not likely that the vehicle owner would

buy a lot of extra storage space for carrying data messages for other nodes, especially

when it can decide the space capacity. Therefore, we believe that under some cir-

cumstances, storage space could still be limited for message forwarding in VANETs.

Most existing routing protocols (such as [8, 54]) have taken limited storage into con-

sideration; they disseminate some control information to make the decision on how

to better utilize the storage space. Consequently, a theoretical solution would be

extending our incentive scheme to guarantee the cooperation in truthfully reporting

and transferring control information. Nevertheless, such a theoretical solution suffers

from a very large overhead. So, in this section, we provide an alternative light-weight

incentive approach to solve this problem. Specifically, we extend the payoff allocation

functions in the incentive scheme, so that the system can intentionally choose a per-
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formance metric to optimize and distribute the payoff to each node according to how

its forwarding behavior satisfies the routing goal. As the nodes are selfish and aim

to maximize the total payoff shares of their own, we show that it is their dominant

strategies [83] to always drop the messages that the system prefers to drop.

It is assumed that in a VANET, nodes only have limited space to store at most P

messages. Hence, although forwarding more messages will bring them higher payoff

shares, nodes can only carry some of those that they receive. We classify the time to

discard a message into two categories: before meeting the subsequent node and after

forwarding to the subsequent node. Clearly, in the first case, the forwarding behavior

does not occur while in the second case it occurs. Recall that transmission of each

message from source to destination is modeled as a forwarding coalitional game. We

assume there are Q messages, with different sources or destinations, transferred in

the VANET. Therefore there are Q games that a node could possibly participate.

Denote G the game set, and |G| = Q. Each game g in G can be labeled by the

source-destination pair.

We now extend the payoff allocation functions in our incentive scheme. The payoff

allocation of node i in game g is defined as

xi(g) = αi(g) ·mr(i, g) + βi(g) ·mf (i, g) + u · nrec(i, g), (4.8)

where αi(g) (resp. βi(g)) is the amount of reward that i can obtain for receiving

(resp. forwarding) a message copy in game g. In words, we change the constant unit

reward to a reward function on the player and the game. When the game g ends,

VCC computes αi(g) and βi(g) first, before allocating the payoffs.

The design of αi(g) and βi(g) depends on which performance metric that the

system wants to optimize and the corresponding routing protocol. Here we present

an example of αi(g) and βi(g) for systems aiming to maximize the delivery ratio.

Define
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αi(g) = βi(g) = (dg(N)− dg(N− {i})) ·mf (i, g) · γ,

where dg(N) denotes the number of message copies delivered to the destination in

game g, and dg(N − {i}) is the number of delivered copies if the node i is excluded

from the game. γ is a constant parameter used to scale the total payoff. Intuitively,

if dg(N) − dg(N − {i}) = 0, it means that the node contributes nothing to the

delivery of message. dg(N − {i}) can be computed in the VCC using the meeting

records submitted by the nodes. Greater αi(g) and βi(g) imply that the receiving

and forwarding of node i result in higher delivery ratio.

With the above extension, the total payoff shares that a player can obtain in the

Q games is Xi =
∑

g∈G xi(g). In the following theorem, the dominant strategy of

each node is to contribute more in the games which can bring higher payoff shares to

it.

Theorem 12. Assume that for each game g, the payoff share for node i is defined

as Eq. (4.8), and αi(g) ∝ βi(g) ∝ mf (i, g). Then it is a dominant strategy for each

node to accept the messages with highest αi(g) during a transfer opportunity and to

remove the messages with lowest βi(g) to make room for the incoming messages.

Proof. Denote s∗ the strategy such that nodes accept the messages with highest αi(g)

during a transfer opportunity and remove the messages with lowest βi(g) to make

room for the incoming messages. There are two cases of strategy s′ s.t. s∗ 6= s′.

Case 1. Let s′ denote the strategy that in some transfer opportunity, the node decides

to accept a message in g′ instead of g s.t. αi(g
′) < αi(g). Other actions are the same

as in s. Then for player i the total payoff allocation difference of taking strategy s′

and s is

Xi(s
′
i)−Xi(s

∗)

= αi(g
′)− αi(g) + βi(g

′) ·mf (i, g
′)− βi(g) ·mf (i, g)

≤ 0.
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Case 2. Let s′′ denote the strategy that in some transmission, in order to make

room for the incoming messages, the node remove a message g′ instead of g, s.t.

βi(g
′) > βi(g). We can obtain that

Xi(s
′′
i )−Xi(s

∗) = βi(g) ·mf (i, g)− βi(g
′) ·mf (i, g

′) ≤ 0.

Therefore, strategy s∗ is a dominant strategy for each node.

We note that αi(g) and βi(g) are computed by the VCC after the game g ends,

and the knowledge of αi(g) and βi(g) is not forwarded in the VANETs to reach node

i. Then how can each node know αi(g) and βi(g) in order to maximize its own

total payoff? Actually each node can approximate the parameters using the local

information and what it receives from the VCC. There are a lot of algorithms that

nodes can apply to estimate αi(g) and βi(g) for each game. The key idea is that if

in history a node got high unit payoff from forwarding for a source-destination pair,

it is likely that this trend will last for some time as long as its mobility pattern does

not change dramatically. Here by mobility pattern we mean the path followed by

a vehicle during an extensive time frame. Based on its historic behaviors and the

corresponding payoff shares, nodes can estimate αi(g) and βi(g) in the current game.

After the nodes learn for long enough time, the system will converge to the equilibrium

in which nodes take their dominant strategies and meanwhile the system objective

can be met. For example, one VANET node passes by a department store every

morning and afternoon on the way between home and office, and this department

store regularly disseminates the announcement of sale information. Hence this node

can learn from its previous experience that helping forwarding the messages for the

department store gains more payoffs than for other unknown sources. Therefore it

can decide which message to discard if space is limited, to the best of its own interest.

We will verify this by the experiments in Section 4.5.4.
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4.5 Evaluation

In this section, we extensively evaluate our incentive scheme using GloMoSim [46].

Our objectives are two folds: a) to verify that our scheme effectively stimulates coop-

eration in VANETs, b) to evaluate the impact of our scheme in improving the system

performance in terms of delivery ratio and delay time, when selfish behaviors appear

in VANETs. The experiments are conducted on the traces from a real vehicular net-

work, DieselNet [17]. We test our incentive scheme based on two different routing

protocols, MV [18] and binary Spray-and-Wait [95]. In Section 4.5.4, we also evaluate

the performance of our incentive scheme with limited storage space of nodes.

4.5.1 Settings

• Traces from DieselNet. We evaluate our incentive scheme on testbed traces

from DieselNet [17]. It is a vehicular network testbed consisting of 40 buses, of which

only a subset is on the road each day. Each bus in DieselNet carries a computer of

40G storage space and a GPS device. They are set to transmit random data to other

nodes whenever they are within the range. The traces from Feb 6, 2007 until May 14,

2007 [8] (58 files) are used. These traces are from the buses running routes serviced by

UmassTransit. The mobility of these buses are determined by UmassTransit and the

bus routes can be found at http : //www.umass.edu/campus services/transit/. The

average number of meetings between buses per day is 147.5. Each tracefile consists of

the connection events occurring during a day. For each meeting event, the following

information is recorded as a tuple: the MAC address of the bus sending data, the

MAC address of the bus receiving data, the time of meeting, transmission size and

meeting location. The traces are generated using a default rate of 4 messages per

hour of each bus for every other bus on the road and the size of each message is 1KB.

We import the traces of 11 buses each day into GloMoSim, and vary the message
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generating rate in our experiments. The experiment results are averaged over 58

traces.

• Routing protocols. In each of the VANET network, we test our incentive scheme

with two different routing protocols, MV and binary Spray-and-Wait. The objective

of using two routing protocols in our evaluation is not to compare them, but to

show that our incentive scheme can guarantee packet forwarding cooperation for

the systems with different routing protocols. Although MV and Spray-and-Wait are

initially designed for delay-tolerant routing, they are also very useful in the multi-

hop delay-tolerant scenarios for vehicular networks, such as delivering commercial

advertisements regarding sale information at a store, with low vehicle density. We

choose these two protocols because each of them is representative in the two categories

of routing protocols. The key idea of MV is to estimate the delivery probability of

each node to the message destination using historic contact information, while Spray-

and-Wait is based on message replication but restricts the number of copies for each

message to L. In the experiments on MV, the time unit in calculating the delivery

probabilities is set to 1 minute and node do not keep copies after forwarding them.

In binary Spray-and-Wait set L = 12.

• Metrics. To show that our incentive scheme indeed provides effective stimulation

for forwarding cooperation, we measure the accumulative credit of the forwarding

nodes when they have different forwarding behaviors. Note that nodes have to spend

credits to send their own messages, so they have the incentive to earn more credits for

future use. Our incentive scheme computes payoff allocations every 30 minutes. Set

u = 0.01, β = d(N)
mr+mf

− 0.02 and α = β − 0.05. We set u, β and α as above because

we need to guarantee that α > 0, β > 0 and max(α, beta) ≤ d(N)
mr+mf

. In addition,

we let α < β due to the reason that the behavior of forwarding a message requires

not only sending it but also storing the message until meeting the subsequent node.

Hence it makes sense to reward a little more to the behavior of forwarding. We set
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the value of u relatively small because making meeting records requires less energy

consumption than receiving and forwarding data messages. To evaluate the impact

of our incentive scheme on the system performance, we measure both delivery ratio

and delay time.

Nodes use IEEE 802.11 (at 11Mbps) as the MAC layer protocol. The radios’

transmission range is set to 250 meters. The radio propagation model is two-way.

4.5.2 Accumulative Credit

The first set of experiments is to verify that with our incentive scheme, nodes

always lose credits if they do not faithfully follow the routing protocols. Specifically,

we define the selfish behavior as only forwarding the messages destined to the nodes

in its own coalition. In other words, selfish nodes do not follow routing protocol if

the incoming message is not destined within its coalition. We vary the size of the

coalition which consists of selfish nodes, and all other nodes remain cooperative. We

set up two different coalition scenarios for the selfish users. The first scenario is that

there are two coalitions in total, with one of size 6 and the other of size 5. The

second scenario is that the 11 active nodes form 3 coalitions, consisting of 4 nodes, 4

nodes, and 3 nodes respectively. We record the average accumulative credits of selfish

nodes in coalitions of different sizes and compare them with the average accumulative

credits of cooperative nodes.

Figure 4.4 and Figure 4.5 respectively show the results of MV and Spray-and-

Wait in DieselNet. We can observe that at any time, nodes get the most credits if

they cooperatively follow the routing protocol for all the messages. The smaller the

coalition is, the less credits can the selfish nodes obtain. Note that because the buses

only operate in the daytime, the credits of the nodes remain the same when there

are no messages transmissions taking place. From the figures it is clear that with

either MV or Spray-and-Wait applied in the network, selfish nodes can never receive
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Figure 4.4. (MV) Accumulative credit of node in coalition of different sizes v.s.
cooperative nodes.

more credits than cooperatively forwarding all the messages. Therefore, our incentive

scheme provides an effective stimulating mechanism for nodes to cooperate.

4.5.3 Impacts on System Performance

Our second set of experiments is to show that when the network has selfish nodes,

our incentive scheme can improve the system performance. In particular, we demon-

strate how the incentive scheme can impact the delivery ratio and delay time when

30% and 10% of the nodes in the VANET are selfish. The selfish nodes are randomly

picked and the selfish behavior is defined the same as above.

We vary the message generating rate and measure the delivery ratio and the

average max-delay time per message. Figure 4.6 and Figure 4.8 shows the results of

the experiments on MV, and Figure 4.7 and Figure 4.9 demonstrates the results on

Spray-and-Wait. As shown in Figure 4.6, our scheme increases the delivery ratio of

MV routing protocol by up to 23.9%, when there are 30% nodes form a coalition in

the network. We also find that when there are 10% nodes in the system, the delivery

ratio is higher than the case of 30% selfish nodes. Similar conclusion can be drawn

from Figure 4.7 that our incentive scheme can increase the delivery ratio of Spary-

and-Wait by up to 9.44% when there are 30% selfish nodes. Furthermore, it can be
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Figure 4.5. (Spray-and-Wait) Accumulative credit of node in coalition of different
sizes v.s. cooperative nodes.

seen from Figure 4.8 and Figure 4.9 that our incentive scheme can always shorten

the average max-delay time of messages (up to 9.5% for MV, and up to 14.5% for

Spray-and-Wait). Again more selfish nodes in the system result in longer delay time.

4.5.4 Experiments on Extended Scheme

In this subsection, we evaluate our extended scheme when the nodes only have

limited storage space. We assume that all nodes are cooperative in that they always

receive and forward the packets for others, and compare the results of two sets of

experiments. In one set, we let the nodes randomly drop messages when the storage

space is full, while in the other set, we let nodes learn from the credits received in

history, and keep the message destined to the most profitable destinations to them.

The cooperative nodes learn from the credits received in history, and keep the message

destined to the most profitable destinations to them. The noncooperative nodes just

randomly choose some of the messages in the storage space to drop.

Figure 4.10 represents the system delivery ratios when the system converges to

the stable state. We vary the storage capacity from 50 messages to 250 messages
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Figure 4.6. Delivery ratios achieved with and without our incentive scheme when
MV is used.
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Figure 4.7. Delivery ratios achieved with and without our incentive scheme when
Spray-and-Wait is used.

and compare the results from the two dropping behaviors. It is can be observed that

cooperative behavior always results in higher delivery ratio than random dropping.

The difference is more significant when the storage space is smaller. Hence, we can

conclude that the cooperative dropping behavior can increase the system delivery

ratio compared with randomly dropping.

Figure 4.11 shows the accumulative credits of the cooperative and random behav-

iors. It is clear that at any time, the cooperative behavior brings the nodes more
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Figure 4.8. Average delay of messages in the system with and without our incentive
scheme when MV is used.

credits than randomly dropping. Therefore, the extended scheme indeed encourages

the nodes to cooperatively drop messages.

4.5.5 Overhead

In this subsection, we examine the overhead introduced by our scheme. For mobile

nodes, we focus on the storage space occupied by our scheme and the overhead for

making meeting records. For the VCC, we examine the time to calculate the credit for

each node. We assume that mobile nodes can connect with the VCC once a day. We

use crypto++ 5.5.2 [35] for the cryptographic scheme implementation. The tests are

performed on a laptop Intel Core 2.67 GHz processor under Windows Vista in 32-bit

mode. Communication Overhead We use Elliptic Curve Cryptography (ECC) for

the PKI implementation. We set the key length of ECDSA to 192 bits, and the digital

signature of each message digest is 48 bytes. Assume the length of the message is x

bytes, and the total length of the data message is (48+x) bytes. In our experiments,

x = 1000, so the communication overhead for data transmission is about 4.6%.

For the authentication process when two nodes meet, we also use 48 bytes ECDSA

certificate. On average, it requires 6.38 mseconds for the verification per node.
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Figure 4.9. Average delay of messages in the system with and without our incentive
scheme when Spray-and-Wait is used.
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Figure 4.10. Delivery Ratio in experiments on extended scheme as function of
different space limits.

Storage Requirement In our scheme, the storage requirement comes from two

parts: meeting records and message receipts that nodes need to keep before connecting

to the VCC.

The average storage usage for meeting records on each node is 118.4 bytes.

We evaluate the storage requirement for message receipts with different message

rates per node, and show the results in Figure 4.12.

As we can see that the space requirements for storing message receipts are very

small per node. For MV protocol the storage overhead is within the range of (5,25)
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Figure 4.11. Accumulative credit of the nodes. Following our extended scheme vs.
random strategy to drop messages.
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Figure 4.12. Storage requirement for saving receipts on each node.
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KBytes when the number of per-hour messages changes from 5 to 30. SpraynWait

protocol requires more storage, ranging from 10 to about 45 KBytes.

Computation Overhead on VCC We measure the time to compute the alloca-

tion of credits for all nodes in the VCC as shown in Figure 4.13. When there are

more messages generated in the system, the VCC uses more time to verify each mes-

sage forwarding behavior and correspondingly allocate the credits to each cooperative

nodes. Overall, it is very fast for VCC to conduct such computation within about

one minute.
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Figure 4.13. Time to compute credits on VCC.

4.6 Summary

In this chapter, a simple and effective incentive scheme in VANETs is proposed

to stimulate the forwarding cooperation of nodes. We are the first to present an

incentive scheme for VANETs with theoretical guarantee. We formally prove, in

a coalitional game model, that with our scheme every relevant node cooperates in

forwarding messages as required by the routing protocol. An extension is made to

scenarios with constrained storage space, and a light-weight approach to stimulate

cooperation is proposed. We integrate our incentive scheme with MV and Spray-
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and-Wait respectively and evaluate the system performance on testbed traces. The

experimental results show that our incentive scheme provides effective stimulation for

nodes to cooperate and prevents the degradation of system performance in VANETs

with selfish nodes. Although our work provides theoretical guarantee on the coopera-

tion, we only test it using testbed traces. In the future, more testbed experiments in

the real world are needed to further verify our schemes and improve the design based

on real implementation problems.

In designing our schemes, we assume that there are no communication failures for

the control messages at physical level of each link. However, in reality, the commu-

nication capacity is affected by conditions related to the environment, e.g., shadow

fading. [51, 34, 33] It means that in the inter-vehicle communications of our scheme

(e.g., identity verification and making meeting records), errors may occur due to

failures of physical lever and thus consequently the link drops. The authors of [1]

proved that the error probability is log-concave for a wide class of multidimensional

modulation formats. Based on this finding, they derived nice results on upper and

lower bounds, and local bounds that are tight in a given region of interest for the

error probability. All the works above show that the performance of our incentive

scheme could be affected by the physical level communication failures. In particular,

if the communication failure occurs when the nodes have made meeting records but

the data transmission has not finished, the VCC will allocate inaccurate amount of

credits to the intermediate nodes, since the destination cannot receive the correct

data in this case.

In our future work, we hope to reduce the impact of communication failures on

our incentive schemes. We can work towards the following two directions: a) We

will try to further reduce the length of communication overhead introduced by our

schemes. In this way, the probability of link failures occurring in transmitting control

information can be reduced; b) We can leverage existing physical layer techniques
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in wireless networks to estimate the link residual time based on the surrounding

conditions. Consequently, more accurate calculations of credits can be conducted on

the VCC.
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Part III

Privacy Preserving Distributed
Data Mining
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With the development of distributed computing environment, many learning prob-

lems now have distributed input data. In such distributed scenarios, privacy concerns

often become a big issue. For example, if medical researchers want to apply machine

learning to study health care problems, they need to collect the raw data from hos-

pitals and the follow-up information from patients. Then the privacy of the patients

must be protected, according to the privacy rules in Health Insurance Portability

and Accountability Act (HIPAA), which establishes the regulations for the use and

disclosure of Protected Health Information [53].

A natural question is why the researchers would want to build a learning model

(e.g, neural networks) without first collecting all the training data on one computer.

If there is a learner trusted by all the data holders, then the trusted learner can

collect data first and build a learning model. However, in many real-world cases it

is rather difficult to find such a trusted learner, since some data holders will always

have concerns like “What will you do to my data?” and “Will you discover private

information beyond the scope of research?”. On the other hand, given the distributed

and networked computing environments nowadays, collaborations will greatly bene-

fit the scientific advances. The researchers have the interest to obtain the result of

cooperative learning even before they see the data from other parties. As a concrete

example, [30] stated that the progress in neuroscience could be boosted by making

links between data from labs around the world, but some researchers are reluctant to

release their data to be exploited by others because of privacy and security concerns.

More specifically, the neuroscientist in Dartmouth College found it difficult to en-

courage the sharing of brain-imaging data because there was possibility that the raw

data could be misused or misinterpreted [40]. Therefore, there is a strong motivation

for learners to develop cooperative learning procedures with privacy preservation.

121



CHAPTER 5

PRIVACY PRESERVING BACK-PROPAGATION

NEURAL NETWORKS[27]

5.1 Background and Motivation

In this section, we focus on one of the most popular techniques in machine learning,

multi-layer neural networks [91, 71], in which the privacy preservation problem is far

from being practically solved. In [104] a preliminary approach is proposed to enable

privacy preservation for gradient descent methods in general. However, in terms

of multi-layer neural networks, their protocol is limited as it is only for one simple

neural network configuration with one node in the output layer and no hidden layers.

Although their protocol is elegant in its generality, it may be very restricted in practice

for privacy preserving multi-layer neural networks.

We propose a light-weight two-party distributed algorithm for privacy preserv-

ing back-propagation training with vertically partitioned data1 (i.e., when each party

has a subset of features). Our contributions can be summarized as follows. (1) Our

work is the first to investigate the problem of training multi-layered neural networks

over vertically partitioned databases with privacy constraints. (2) Our algorithms are

provably private in the semi-honest model [48] and light-weight in terms of compu-

tational efficiency. (3) Our algorithms include a solution to a challenging technical

1For horizontally partitioned scenario (i.e., when each party holds a subset of data objects with
the same feature set), there is a much simpler solution that one party trains the neural network first
and passes the training result to another party so that she can further train it with her data, and so
on. So in this chapter we only focus on the vertical partition case, which is much more technically
challenging.
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problem, namely privacy preserving computation of activation function. This prob-

lem is highly challenging because most of the frequently used activation functions are

infinite and continuous while cryptographic tools are defined in finite fields. To over-

come this difficulty, we propose the first cryptographic method to securely compute

sigmoid function, in which an existing piecewise linear approximation of the sigmoid

function [82] is used. In order to make our algorithms practical, we do not adopt

the costly circuit evaluation based approaches [114]. Instead, we use a homomorphic

encryption based approach and the cryptographic scheme we choose is ElGamal [45].

(4) Both analytical and experimental results show that our algorithms are light-weight

in terms of computation and communication overheads.

The rest of the chapter is organized as follows. In Section 5.2, we introduce the

technical preliminaries including notations, definitions and problem statement. In

Section 5.3, we present the novel privacy preserving back-propagation learning algo-

rithm and two key component secure algorithms. Then we provide security analysis

of the algorithm as well as the computation and communication overhead. In Section

5.6, with comprehensive experiments on various datasets, we verify the effectiveness

and efficiency of our algorithm. After that, we summarize this chapter.

5.2 Technical Preliminaries

In this section we give a brief review of the version of the Back-Propagation Net-

work (BPN) algorithm we consider [90] and introduce the piecewise linear approxima-

tion we use for the activation function. We also give a formal statement of problem

with a rigorous definition of security. Then we briefly explain the main cryptographic

tool we use, ElGamal [45].
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5.2.1 Notations for back-propagation learning

For ease of presentation, in this chapter we consider a neural network of three

layers, where the hidden layer activation function is sigmoid and the output layer is

linear. Note that it is trivial to extend our work to more layers.

Given a neural network with a-b-c configuration, one input vector is denoted as

(x1, x2, · · · , xa). The values of hidden layer nodes are denoted as {h1, h2, · · · , hb},

and the values of output layer nodes are {o1, o2, · · · , oc}. wh
jk denotes the weight

connecting the input layer node k and the hidden layer node j. wo
ij denotes the weight

connecting j and the output layer node i, where 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c.

We use Mean Square Error (MSE) as the error function in the back-propagation

algorithm, e = 1
2

∑

i(ti − oi)
2. For the neural networks described above, the partial

derivatives are listed as (5.1) and (5.2), for future reference.

∂e

∂wo
ij

= −(ti − oi)hj (5.1)

∂e

∂wh
jk

= −hj(1− hj)xk

c
∑

i=1

[(ti − oi)w
o
ij ] (5.2)

5.2.2 The piecewise linear approximation of activation function

In this subsection, we introduce the piecewise linear approximation of activation

function. The major reason of introducing the approximation is that cryptographic

tools work in finite fields and thus can not be directly applied to the secure computa-

tion of functions like sigmoid. Approximating the activation function in a piecewise

way offers us an opportunity to apply cryptographic tools to make the computation

of sigmoid function privacy-preserving.
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Equation (5.3) is a piecewise linear approximation [82] of the sigmoid function

1
1+e−x . Our privacy preserving algorithm for back-propagation network learning is

based on this approximation.2
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1 x > 8

0.015625x + 0.875 4 < x ≤ 8

0.03125x + 0.8125 2 < x ≤ 4

0.125x + 0.625 1 < x ≤ 2

0.25x + 0.5 −1 < x ≤ 1

0.125x + 0.375 −2 < x ≤ −1

0.03125x + 0.1875 −4 < x ≤ −2

0.015625x + 0.125 −8 < x ≤ −4

0 x ≤ −8

(5.3)

5.2.3 Security definition and problem statement

• Semi-honest model. As many existing privacy preserving data mining algorithms

(e.g., [70, 113]), we adopt semi-honest model in this chapter. Semi-honest model

is a standard adversary model in cryptography [48]. In this chapter the security

of our algorithm is guaranteed in this model. When computing function f in a

distributed fashion, semi-honest model requires that each party that participates

in the computation follow the algorithm, but a party may try to learn additional

information by analyzing the messages that she receives during the execution. In

order to guarantee the security of distributed algorithm of computing f , it must be

2It is easy to extend our work to other piecewise linear approximations of activation function. Here
we choose this specific approximation as an example to demonstrate in detail how our algorithms
work.
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ensured that each party can learn nothing beyond what can be implied by her own

input and output.

Semi-honest model is a right fit for our setting, because normally participants

want to learn the neural network learning results and thus they are willing to follow

the algorithm to guarantee the results correctness. The security guaranteed in semi-

honest model can relieve the concerns about their data privacy. Of course, in reality

there may be scenarios in which there are malicious adversaries. It has been shown

(see [48]) that a distributed algorithm that is secure in the semi-honest model can

be converted to one that is secure in the malicious model, with some additional

costs in computation and communications for zero knowledge proofs. (It is a highly

challenging task to reduce these additional costs to achieve security in the malicious

model. We leave it as one of our future research topics.)

Based on semi-honest model, the problem of privacy preserving back-propagation

neural networks learning in this chapter, is stated below.

• Privacy preserving two-party distributed neural network training. Sup-

pose that a set of training samples are vertically partitioned between two parties A

and B. A holds a dataset D1 with mA attributes for each data entry. B holds a

dataset D2, with mB attributes for each data entry. We denote one data entry in D1

as xA = (x1, x2, · · · , xmA
) and in D2 xB = (xmA+1, · · · , xmA+mB

).

Privacy preserving two-party distributed neural network training is that in each

round of neural network learning, two parties jointly compute the additive values

of connection weights without compromising their privacy of input data.3 Formally,

with training samples xA and xB from party A and B respectively and a target value

3In this chapter, we provide an algorithm in which two parties learn all the weights after each
round of training. Note that this algorithm can be extended to a more secure fashion by making
each party hold only a random additive share of each weight at the end of each round and continue
to the next round with the partitioned weights [48]. But in this case much more computational
overhead will be added. So for efficiency reasons, we keep the algorithm as it is.
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t(x), our goal is to let each party get her own share of the additive value of each

weight ∆w, without revealing the original training data, xA or xB , to each other.

Note that, in this chapter, we restrict our attention to the privacy concerns brought

by insiders (i.e., participants of the distributed neural network training) only. The

security and privacy issues associated with outsider attacks (i.e., attacks by non-

participating parties and attacks in the communication channels) are orthogonal is-

sues beyond the scope of this chapter. In practice, if our algorithms are to be used,

appropriate access control and security communication techniques must also be used,

to guarantee that all sensitive information is transmitted over secure channels and

unauthorized access to the system is prevented.

5.3 Privacy preserving neural network learning

In this section, we present a privacy-preserving distributed algorithm for training

the neural networks with back-propagation algorithm. A privacy preserving testing

algorithm can be easily derived from the feed-forward part of the privacy-preserving

training algorithm.

Our algorithm is composed of many smaller private computations. We will look

into them in detail after first giving an overview.

5.3.1 Privacy preserving neural network training algorithm

Here we build the privacy preserving distributed algorithm for the neural network

training process under the assumption that we already have the algorithm to securely

compute the piecewise linear function (Algorithm 2) and the algorithm to securely

compute the product of two numbers held by two parties (Algorithm 3). We will

explain the two component algorithms in detail later.

For each training iteration, the input of the privacy-preserving back-propagation

training algorithm is 〈{xA, xB}, t(x)〉, where xA is held by party A, while xB is held
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by party B. t(x) is the target vector of the current training data and it is known to

both parties. The output of algorithm is the connection weights of output layer and

hidden layer, i.e., {wo
ij, w

h
jk|∀k ∈ {1, 2, · · · , a}, ∀j ∈ {1, 2, · · · , b}, ∀i ∈ {1, 2, · · · , c}} .

The main idea of the algorithm is to secure each step in the non-privacy-preserving

back-propagation algorithm, with two stages, feeding forward and back-propagation.

In each step, neither the input data from the other party nor the intermediate re-

sults can be revealed. In particular, we apply Algorithm 2 to securely compute the

sigmoid function, and Algorithm 3 is used to guarantee privacy preserving product

computation.

To hide the intermediate results such as the values of hidden layer nodes, the two

parties randomly share each result so that neither of the two parities can imply the

original data information from the intermediate results. Here by “randomly share”, we

mean that each party holds a random number and the sum of the two random numbers

equals to the intermediate result. Note that with intermediate results randomly

shared among two parties, the learning process can still securely carry on to produce

the correct learning result (see correctness analysis in Section 5.3.1.1).

After the entire process of private training, without revealing any raw data to each

other, the two parties jointly establish a neural network representing the properties

of the union dataset.

Our training algorithm for back-propagation neural networks can be summarized

as in Algorithm 1.

For clarity of presentation, in Algorithm 1, we separate the procedure to compute
∑

i[−(ti − oi)w
o
ij]hj(1− hj) and explain it in Algorithm 1.1.

128



Algorithm 1 Privacy preserving distributed algorithm for back-propagation training

Initialize all weights to small random numbers, and make them known to both
parties.
Repeat
for all training sample 〈{xA, xB}, t(x)〉 do

Step1: feed forward stage

(1.1) For each hidden layer node hj , party A computes
∑

k≤mA
wh

jkxk, and

party B computes
∑

mA<k≤mA+mB
wh

jkxk.

(1.2) Using Algorithm 2, party A and B jointly compute the sigmoid function
for each hidden layer node hj , obtaining the random shares hj1 and hj2

respectively s.t. hj1 + hj2 = f(
∑

k wh
jkxk).

(1.3) For each output layer node oi, Party A computes oi1 =
∑

i w
o
ijhj1 and

party B computes oi2 =
∑

i w
o
ijhj2, s.t. oi = oi1 + oi2 =

∑

i w
o
ijhj1 +

∑

i w
o
ijhj2.

Step2: back-propagation stage

(2.1) For each output layer weight wo
ij

Party A and B apply Algorithm 3 to securely compute the product hj1oi2,
obtaining random shares r11 and r12 respectively, s.t. r11 + r12 = hj1oi2.
Similarly they compute the random partitions of hj2oi1, r21 and r22, s.t.
r21 + r22 = hj2oi1.
Party A computes ∆1w

o
ij = (oi1−ti)hj1+r11 +r21 and B computes ∆2w

o
ij =

(oi2 − ti)hj2 + r12 + r22.

(2.2) For each hidden layer weight wh
jk

Using Algorithm 1.1, party A and B jointly compute
∑

i[−(ti−oi)w
o
ij]hj(1−

hj), obtaining random shares q1 and q2 respectively, s.t. q1+q2 =
∑

i[−(ti−
oi)w

o
ij]hj(1− hj).

If k ≤ mA, that is A holds the input attribute xk, applying Algorithm 3
to securely compute xkq2, A and B respectively get r61 and r62 s.t. xkq2 =
r61 + r62. Then ∆1w

h
jk = q1xk + r61 and ∆2w

h
jk = r62.

If mA < xk ≤ mA + mB, A and B apply Algorithm 3 to get r61 and r62 s.t
xkq1 = r61 + r62. In this case, ∆1w

h
jk = r61, ∆2w

h
jk = q2xk + r62.

A and B respectively compute ∆1w
h
jk, ∆2w

h
jk.

Step3:
A (B, resp.) sends ∆1w

o
ij, ∆1w

h
jk(∆2w

o
ij , ∆2w

h
jk, resp.) to B(A, resp.). A and

B compute wo
ij ← wo

ij − η(∆1w
o
ij + ∆2w

o
ij) for each hidden layer weight, and

wh
jk ← wh

jk − η(∆1w
h
jk + ∆2w

h
jk) for each output layer weight.

end for
Until (termination condition)
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Algorithm 1.1 Securely computing

∑

i[−(ti − oi)w
o
ij]hj(1− hj).

Input: hj1, oi1 (hj2, oi2 resp.) for party A (party B resp.) abtained inside Algorithm
1.
Output: random shares q1, q2 for A and B resp.

1. Using Algorithm 3, party A and B get random shares of hj1hj2, r31 and
r32 respectively, s.t. hj1hj2 = r31 + r32.
2. For clarity, we name intermediate results as hj1 − h2

j1 − 2r31 = p1,
∑

i(−ti + oi1)w
o
ij = s1, hj2 − h2

j2 − 2r32 = p2 and
∑

i oi2w
o
ij = s2.

3. Party A computes p1 and s1; B computes p2 and s2.
4. Applying Algorithm 3, party A gets r41 and r51, party B gets r42 and r52, s.t.
r41 + r42 = s1p2, r51 + r52 = s2p1.
5. Name q1 = s1p1 + r41 + r51 and q2 = s2p2 + r42 + r52. Party A computes q1 and
party B computes q2 locally.

5.3.1.1 Correctness

We show that if party A and party B follow Algorithm 1, they will jointly derive

the correct weight update result in each learning round, with each of them holding a

random share.

For any output layer weight wo
ij, in step (2.1) of Algorithm 1 we have

∆1w
o
ij + ∆2w

o
ij

= (oi1 − ti)hj1 + r11 + r21 + (oi2 − ti)hj2 + r12 + r22

= (oi1 − ti)hj1 + (oi2 − ti)hj2 + hj1oi2 + hj2oi1

= −(ti − oi1 − oi2)(hj1 + hj2)

= −(ti − oi)hj

=
∂e

∂wo
ij

= ∆wo
ij.

Therefore the additive random shares of the two parties can add up to the correct

value for hidden layer connection weights.
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Now we show that the correctness is also guaranteed for hidden layer weights.

In step (2.2) of Algorithm 1, it is easy to get that no matter which party holds

the attribute xk, we always have

∆1w
h
jk + ∆2w

h
jk

= xkq1 + xkq2

= (s1p1 + r41 + r51 + s2p2 + r42 + r52)xk

= (s1 + s2)(p1 + p2)xk

= (
∑

i

(−ti + oi1)w
o
ij +

∑

i

oi2w
o
ij)

(hj1 − h2
j1 − 2r31 + hj2 − h2

j2 − 2r32)xk

=
∑

k

[−(ti − oi)w
o
ij](hj1 + hj2)(1− hj1 − hj2)xk

=
∑

i

[−(ti − oi)w
o
ij]hj(1− hj)xk

=
∂e

∂wh
jk

= ∆wh
jk

Hence using Algorithm 1, the additive update of hidden layer weights can be correctly

computed by the two parties without compromising their data privacy.

5.3.2 Securely computing the piecewise linear sigmoid function

In this subsection we present a secure distributed algorithm for computing piece-

wise linear approximated sigmoid function y(x) (as shown in Algorithm 2).

Although each party only holds one part of the input to the sigmoid function, this

algorithm enables them to compute the approximate value of the function without

knowing the part of input from the other party. Actually, in this algorithm there is
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no way for each party to explore the input of the other, but the function value can

still be computed.

Formally, the input of the algorithm is x1 held by party A, x2 held by party B.

The output of function y, y(x1 + x2), is also randomly shared by the two parties.

Note that the parties can always exchange their random shares of result at the end

of the algorithm, so that they can learn the complete value of sigmoid function, but

since in our chapter the result of sigmoid function is only an intermediate result for

the whole learning process, here we keep it randomly shared.

For ease of presentation, we write the algorithm under the assumption that x1 and

x2 are integers. Note that we can easily rewrite the algorithm to allow real numbers

with precision of a few digits after the dot. Actually the algorithm for factorial

numbers is the same in essence, given that we can shift the float point to the right to

get integer numbers, or in other words, integers and factorials are easy to exchange

to each other in binary representation.

After the piecewise linear approximation, as the input is splitted between two

parties, both parties do not even know which linear function to use without the

knowledge of which range the input falls in. Our main idea is to let one party

compute all possible values according to her own input and among those values, the

other party picks the result they are looking for.

As shown in Algorithm 2, party A first computes the sigmoid function values for

different possible inputs of B. After subtracting a same random number R from each

of the function values, A encrypts each of them (step 1). Actually the random number

generated by A is the final output for A, the random share of the sigmoid function

value. The random share for B is one of the clear texts hidden behind ElGamal

scheme. So the remaining task of this algorithm is to let B obtain that clear text,

y(x1 + x2) − R, which corresponds to her input without revealing the input of any

party to each other. As A does not know the input of B, she sends all the encrypted
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results to B and lets B pick the one based on her own input. Here since all the results

are encrypted, B cannot get any information about A’s original data either. Because

A can get to know the value of x2 by comparing the encrypted message chosen by

B with all those generated by herself, a rerandomization is conducted by B, before

B sends back her choice to A to protect B’s data, x2. After A and B sequentially

decrypt, B gets her share of the final sigmoid function value (step 3 and step 4).

Algorithm 2 Securely computing the piecewise linear sigmoid function

Step 1: Party A generates a random number R and computes y(x1 + i) − R for
each i, s.t. −n < i ≤ n. Define mi = y(x1 + i) − R. Party A encrypts each mi

using ElGamal scheme and gets E(mi, ri), where each ri is a new random number.
Party A sends each E(mi, ri) in the increasing order of i.
Step 2: Party B picks E(mx2 , rx2). She rerandomizes it and sends E(mx2 , r

′) back
to A, where r′ = rx2 + s, and s is only known to party B.
Step 3: Party A partially decrypts E(mx2 , r

′) and sends the partially decrypted
message to B.
Step 4: Party B finally decrypts the message (by doing partial decryption on the
already partially decrypted message) to get mx2 = y(x1 + x2)−R. Note R is only
known to A and mx2 is only known to B. Furthermore, mx2 +R = y(x1+x2) = f(x).

Note that in Step 1 of Algorithm 2, party A must generate a new random number

ri for encrypting each message. Although party B can get hrx2 at the end of the

algorithm from E(mx2 , rx2) and the clear message mx2 , he has no way to get other

numbers of hri. On the other hand, party A can always conduct the partial decryption

without knowing which encrypted message B has chosen, because the decryption of

ElGamal scheme is independent from random number ri).

5.3.3 Privacy-preserving distributed algorithm for computing product

To securely compute product, some existing secure multi-party computation pro-

tocols for dot product can be utilized (e.g. [100, 47]) by taking integer numbers as a

special form of vector input. Here we provide another option for privacy preserving

product computation, stated as Algorithm 3. The advantage of Algorithm 3 is that

it can be very efficient for some applications, when the finite field of input is small.
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Before applying Algorithm 3, a pre-processing step is needed to convert the input

of each party into a small integer.

Assume party A holds integer M and party B holds integer N , both M and N

are in the same range −n < M ≤ n, −n < N ≤ n (Recall that n is a small integer).

Basically it follows a similar idea as of Algorithm 2. After running Algorithm 3, A

and B get random numbers respectively which are summed to M ·N .

Algorithm 3 Securely computing the product of two integers

Step 1: Party A generates a random number R and computes M · i−R for each i,
s.t. −n < i ≤ n. Note mi = M · i−R. A encrypts each mi using ElGamal scheme
and gets E(mi, ri), where each ri is a new random number. Then party A sends
each E(mi, ri) to party B in the increasing order of i.
Step 2: Party B picks E(mN , rN). She rerandomizes it and sends E(mN , r′) back
to A, where r′ = rN + s, and s is only known to party B.
Step 3: Party A partially decrypts E(mN , r′) and sends the partially decrypted
message to B.
Step 4: Party B finally decrypts the message (by doing partial decryption on the
already partially decrypted message) to get mN = M · N − R. Note R is only
known to A and mN is only known to B. Furthermore, mN + R = M ·N .

5.4 Security analysis

In this section, we explain why our algorithms are secure in the semi-honest model.

Recall that in semi-honest model, the parties follow the protocol and may try to

analyze what she can see during the protocol execution. To guarantee security in

the semi-honest model, we must show that parties can learn nothing beyond their

outputs from the information they get throughout the protocol process4. A standard

4The definition of security we use here is actually standard for a distributed algorithm in the
semi-honest model (see [49], in which a distributed algorithm is called a “protocol”). Note that we
do not use the definition of semantic security, because it is for an encryption scheme (see [49], in
which an encryption scheme is called a “cryptosystem”), not for a distributed algorithm. In this
chapter, we build a distributed learning algorithm and study its security. Hence, we have to use this
definition, not the definition of semantic security.
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way to show this is to construct a simulator which can simulate what the party can

see in the protocol given only the input and output of the protocol for this party.

Since the privacy preserving back-propagation training (Algorithm 1) uses Algo-

rithm 2 and Algorithm 3 as building blocks, we first analyze the security of Algorithm

2 and Algorithm 3, and then we conduct a security analysis of Algorithm 1 in the

viewpoint of overall security level.

5.4.1 Security of Algorithm 2 and Algorithm 3

Before we discuss the security of computing piecewise linear sigmoid function

(Algorithm 2), recall that the encryption scheme, ElGamal, which we are using here

is semantically secure [14] and satisfies the properties discussed in the earlier section.

Since ElGamal is semantically secure, each ciphertext can be simulated by a random

ciphertext. Hence, we can construct two simulators, for A and B in Algorithm 2,

respectively.

In step 1, the simulator for A does what A should do in the protocol. In step

2, the simulator for A generates a random ciphertext to simulate the ciphertext A

should receive. In step 3, again the simulator for A does what A should do in the

protocol. Since A does not observe anything in step 4, the simulator for A does not

need to simulate this step.

In step 1, the simulator for B generates random ciphertexts to simulate the ci-

phertexts B should receive. In step 2, the simulator for B does what B should do in

the protocol. In step 3, the simulator for B generates a random encryption of the

output of B in this algorithm to simulate the ciphertext B should receive. In step 4,

again the simulator for B does what B should do in the protocol.

The simulators for Algorithm 3 can be constructed in the same way as simulators

for Algorithm 2.
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5.4.2 Security of Algorithm 1

In Algorithm 1, the termination condition of training is known to both parties, so

the simulators can set up the training loop for both parties. In each training round,

most of the message transmissions are taking place inside the calls of Algorithm

2 and 3, except in step 3, where B and A respectively receive ∆1w
o
ij, ∆2w

o
ij and

∆1w
h
jk, ∆2w

h
jk. We will first show that ∆1w

o
ij and ∆1w

h
jk can be simulated by the

simulator for party B, and then likewise ∆2w
o
ij and ∆2w

h
jk can be simulated for party

A.

In Section 2.1, ∆2w
o
ij is defined as (oi2 − ti)hj2 + r12 + r22. The variable hj2

can be simulated because of the fact that Algorithm 2 is secure (as shown above).

The variables r12 and r22 can also be simulated based on the security of Algorithm

3. Since oi2 and ti are part of the input of party B, ∆2w
o
ij can be simulated for

B by only looking at its own input. Meanwhile, since weights are output of the

training algorithm and η is known to both parties as input, by the weight update rule,

wo
ij ← wo

ij − η(∆1w
o
ij + ∆2w

o
ij), ∆1w

o
ij can be simulated for party B. The simulation

of ∆1w
h
jk for party B is likewise. Similarly, we can construct the simulator for party

A to simulate ∆2w
o
ij and ∆2w

h
jk.

Note that, in the above, the simulators for Algorithm 1 integrates the simulators

for Algorithm 2 and 3 when the two component algorithms are called together with the

simulations of α1, α2, β1, β2 in step 3. This completes the construction of simulators

for Algorithm 1.

5.5 Analysis of algorithm complexity and accuracy loss

5.5.1 Complexity analysis

In this subsection, we analyze the computation and communication complexity

of our privacy preserving back-propagation algorithms. First we present the compu-

tation and communication cost in the two component algorithms(i.e., for computing
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piecewise linear sigmoid function and product computing) and then use the result to

further analyze the running time of Algorithm 1.

5.5.1.1 Securely computing the piecewise linear sigmoid function

In step 1 of Algorithm 2, there are 2× n encryptions by party A, where n is the

parameter in piecewise linear sigmoid function definition. In step 2, 1 rerandomization

is conducted. In step 3 and step 4, party A and party B perform one partial decryption

respectively. So the total computation cost in Algorithm 2 is T = (2n + 1)C + 2D,

where C is the cost of encryption and D is the cost of partial description.

Similarly, the total computation cost in Algorithm 3 is also (2n + 1)C + 2D.

5.5.1.2 Execution time of one round training

The running time of one round of back-propagation training consists of two parts,

time for feedforward stage and for back-propagation stage.

We first consider the execution time of non-privacy preserving back-propagation

algorithm. When executing a non-privacy-preserving fully-connected neural network

with a−b−c configuration defined earlier in this chapter, one multiplication operation

and one addition operation are needed for each connecting weight. Besides, we also

need to call activation function one time for each hidden layer node. Therefore the

running time for feeding forward is (ab + bc)S + b × G, where S is the cost for one

multiplication and one addition, G is the cost for computing activation function, and

a, b, c represent the number of units in each layer, respectively.

In step 1 of Algorithm 1, the major difference from the non-privacy-preserving

version is the execution of Algorithm2 in (1.2) instead of calling the sigmoid function.

In (1.3), one more addition and multiplication is needed for each connection since

the value of each hidden layer unit of activation is splitted by the two parties. But

since the party A and B can run the algorithm in parallel, this does not increase the
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execution time of the whole algorithm. With the time cost for Algorithm 2 is T , we

get the running time in feedforward step is (ab + bc)S + b× T .

Now we consider the back-propagation stage. In step (2.1) there are two calls of the

Algorithm 3 for each hidden-output connection. Time for one multiplication and three

additions is also needed. Because multiplication time is much more significant than

addition time, for simplicity, we also use S to denote the time for one multiplication

and three additions. In step (2.2), Algorithm 3 are called 4 times, and thus the

time for multiplications and additions is (c + 4)S. The total execution time for back-

propagation is bc(2×T +S)+ab(4×T +4×S+c×S) = (2bc+4ab)T +(bc+4ab+abc)S.

Combining the time for the two stages, we obtain the running time of one round

privacy preserving back-propagation learning, (5ab + 2bc + abc)S + (2bc + 4ab + b)T .

5.5.1.3 Communication overhead

In Algorithm 2 and 3, there are 2n + 2 messages have been passed between party

A and B. With each message being s bits long, the communication overhead is (2n +

2) × s. The total communication overhead of one round learning in Algorithm 1

is the overhead caused by calling algorithm 2 and 3, plus 2 × s in step 3, which is

(b + 2bc + 4ab)(2n + 2)s + 2s.

5.5.2 Analysis of accuracy loss

There are two places in our algorithms where we introduce approximation for the

goal of privacy. One is that the sigmoid function used in the neuron computing is

replaced by a piece-wise linear function. The other approximation is introduced by

mapping the real numbers to fixed-point representations to enable the cryptographic

operations in Algorithm 2 and Algorithm 3. This is necessary in that intermediate

results, for example the values of neurons, are represented as real numbers in normal

neural network learning, but cryptographic operations are on discrete finite fields.

We will empirically evaluate the impact of these two sources of approximation on
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the accuracy loss of our neural network learning algorithm in Section 5.6. Below

we give a brief theoretical analysis of the accuracy loss caused by the fixed-point

representations.

5.5.2.1 Error in truncation

Suppose that the system, in which neural network is implemented, uses µ bits

for representation of real numbers. Recall that before applying Algorithm 2 and

Algorithm 3, we preprocess the input numbers into finite field that is suitable for

crytographic operations. Assume that we truncate the µ-bit numbers by chopping off

the lowest ν bits and leaves the new lowest order bit unchanged. The precision error

ratio can be bounded by ǫ = 2µ−ν .

5.5.2.2 Error in Feeding-forward stage

In the feed forward stage of Algorithm 1, since only Algorithm2 is applied once,

the error ratio bound introduced by number conversion for cryptographic operations

is ǫ.

5.5.2.3 Error in Output-layer Delta

In Step (2.1) of Algorithm 1, ∆1w
o
ij = (oi1− ti)hj1 + r11 + r21, in which oi1 and hj1

are already approximated in preceding operations. Therefore, the error ratio bound

for ∆1w
o
ij is (1 + ǫ)2 − 1. We can obtain the same result for ∆2w

o
ij .

5.5.2.4 Error in Hidden-layer Delta

In Step (2.2) of Algorithm 1, Algorithm 3 is applied 4 times sequentially. The

error ratio bound for ∆1w
h
jk and ∆2w

h
jk is (1 + ǫ)4 − 1.

5.5.2.5 Error in Weight update

In Step (3) of Algorithm 1, the update of weights introduces no successive error.
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5.6 Evaluation

In this section, we perform experiments to measure the accuracy and overheads

of our algorithms. We have two sets of experiments on the accuracy. In the first set,

we compare the testing error rates in privacy-preserving and non-privacy-preserving

cases. In the second set, we distinguish two types of approximation introduced by our

algorithms: piece-wise linear approximation of sigmoid function and conversion of real

numbers to fixed-point numbers when applying cryptographic algorithms, and analyze

how they affect the accuracy of the back-propagation neural networks model. Our

experiments on overheads cover the computation and communication costs as well as

comparisons with an alternative solution using general purpose secure computation.

5.6.1 Setup

The algorithms are implemented in C++ and compiled with g++ version 3.2.3.

The experiments were executed on a Linux (Red Hat 7.1) workstation with dual

1.6 GHz Intel processors and 1 Gb of memory. The programs used GNU Multiple

Precision Arithmetic Library in implementation of ElGamal scheme. The results

shown below are the average of 100 runs.

The testing datasets are from UCI data set repository [13]. We choose a variety

of datasets, kr-vs-kp, Iris, Pima-indian-diabetes (diabetes), Sonar and Landsat with

different characteristics, in the number of features, the number of labeled classes, the

size of datasets and data distributions. Different neural network models are chosen

for varying datasets. Table 5.1 shows the architecture and training parameters used

in our neural network model. We choose the number of hidden nodes based on the

number of input and output nodes. This choice is based on the criteria of having

at least one hidden unit per output, at least one hidden unit for every ten inputs,

and five hidden units being a minimum. Weights are initialized as uniformly random

values in the range [-0.1, 0.1]. Feature values in each dataset are normalized between
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Table 5.1. Datasets and Parameters

Dataset Sample Class Architecture Epochs Learning Rate
kr-vs-kp 3196 2 36− 15− 1 20 0.1

Iris 150 3 4− 5− 3 80 0.1
diabetes 768 2 8− 12− 1 40 0.2
Sonar 104 2 60− 6− 2 150 0.1

Landsat 6435 6 36− 3− 6 12 0.1

Table 5.2. Test Error Rates Comparison

Non-privacy-preserving Privacy-preserving
Dataset Version Algorithm 1
kr-vs-kp 12.5% 15.5%

Iris 14.17% 19.34%
Pima-indian-diabetes 34.71% 38.43%

Sonar 18.26% 21.42%
Landsat 4.12% 5.48%

0 and 1. The privacy preserving back-propagation neural networks have the same

parameters as the non-privacy-preserving version. For privacy preserving version, we

use the key length of 512 bits.

5.6.2 Accuracy loss

First we measure the accuracy loss of our privacy preserving algorithms when

the neural network is trained with a fixed number of epochs (shown in Table 5.1).

The number of epochs set is based both on the number of examples and on the

parameters (i.e., topology) of the network. Specifically, we use 80 epochs for small

problems involving fewer than 250 examples; 40 epochs for the mid-sized problems

containing between 250 to 500 examples; and 20 epochs for larger problems.

Table 5.2 shows testing set error rates for both non-privacy-preserving back-

propagation neural network and privacy preserving back-propagation neural networks.

Since the numbers of training epochs are fixed, the global error minimum may not

be achieved when the training ends. That explains the relatively high error rates for

141



0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

Epochs

E
rr

or
 R

at
e(

%
)

 

 

Iris(non−p.p)
kr−vs−kp(non−p.p.)
Iris(p.p.)
kr−vs−kp(p.p.)

Figure 5.1. Error Rates on Training Epochs

both privacy-preserving training and the non-privacy-preserving case. From Table

5.2, we can see that for experiments on different datasets, the increase of test error

rates by privacy-preserving algorithm remain in small range, 1.26% for Landsat to

5.17% for Iris.

We extend the experiments by varying the number of epochs and evaluate the

accuracy of privacy preserving back-propagation neural networks on different training

epochs. For clarity of presentation, we only show the results of dataset Iris and kr-

vs-kp in Figure 1. The result of other datasets have the similar characteristics but

with different epochs scales. From Figure 1, we can see clear that the error rates

are decreasing when the number of epochs increases. Furthermore, the error rates

of privacy preserving back-propagation network decrease faster than the standard

algorithm, which means increasing the number of epochs can help to reduce the

accuracy loss.

5.6.3 Effects of two types of approximation on accuracy

In this set of experiments, we aim to analyze the causes of accuracy loss in our

privacy preserving neural network learning algorithms.
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Table 5.3. Error Rates by Different Approximations

Dataset Non-P.P. Sigmoid Apx. Algorithm 1
kr-vs-kp 11.3% 12.2% 13.98%

Iris 14.10% 14.80% 17.04%
Pima-indian-diabetes 33.11% 34.98% 37.28%

Sonar 18.01% 18.85% 21.02%
Landsat 4.10% 4.56% 5.48%

Recall that we have two types of accuracy loss, introduced by sigmoid function

approximation and mapping real numbers to fixed point representation respectively.

We distinguish and evaluate the effects of these two approximation types by perform-

ing a back-propagation learning on approximated piece-wise linear sigmoid function,

without cryptographic operations (we call it sigmoid approximation test). This will

eliminate the security of the learning, but note that the purpose of this modification

is to measure the two kinds of accuracy loss, and thus we have to separate them.

Table 5.3 displays the training error rates and testing error rates comparison

of backpropatation learning without privacy concern, versus sigmoid approximation

test and privacy preserving learning with two types of approximations. In this set

of experiments, we make the training process stop when the error is less than the

error tolerance threshold 0.1 and if the the number of epochs reaches the maximum

number of 1000 before converging, the training also stops. We call the latter case a

failure case of training.

From Table 5.3, we can observe that both of the approximation types cause a

certain amount of accuracy loss. The approximation brought by piecewise linear

sigmoid function is less significant than by real numbers conversion to fixed-point

numbers. For example, in testing of dataset Iris, sigmoid function approximation

only contributes 0.70% out of 2.96% in the total accuracy loss while, while conversion

of real numbers to fixed-point numbers causes the remaining accuracy loss, which is

2.26%.
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Table 5.4. Computation overhead and Communication overhead

Our Algorithm Modified Algorithm
Dataset Comp. Comm. Comp. Comm.

kr-vs-kp 63.49 39.20 1778.29 443.43
Iris 10.94 6.23 310.62 75.19

diabetes 24.19 14.24 628.32 169.33
Sonar 317.43 197.37 8868.04 2193.13

Landsat 8.14 4.92 211.92 56.98

5.6.4 Computation and Communication overhead

We now examine the computation and communication overhead of our algorithm

to verify that it is light-weight and practical. In particular, we measure and record

the overall time for privacy computation and the time for communication between

party A and B in the entire training process.

Since we are the first to study privacy preserving neural network learning with

vertically partitioned data, no other complete algorithm is now available for this

problem. Consequently, in order to demonstrate that our algorithm is efficient among

possible cryptographic privacy preserving solutions, we consider a modification of

Algorithm 1, in which we replace the calls to Algorithms 2 and 3 with executions

of Yao’s general-purpose two party secure computation protocol [114]. (We utilize

the Fairplay secure function evaluation system [75] in our implementation of Yao’s

protocol.) In the setting described in Section 5.6.1, we compare our original Algorithm

1 with this modified algorithm in terms of computation and communication overheads.

Table 5.4 shows the computation and communication overhead measurements (in

minutes) of our algorithm and the modified algorithm. It is clear that, in experiments

on the five different datasets, our algorithm is significantly more efficient than the

algorithm integrated with Yao’s protocol. More precisely, our algorithm is 25.97 −

28.39 times more efficient in terms of computation overhead, and 11.11− 12.06 times

more efficient in terms of communication overhead.
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Table 5.5. Computation overhead and Communication overhead Comparison with
[22] and [10]

Overhead Our Algoirthm Protocol in [22] Protocol in [10]
Computation 63.49 > 1057.10 > 111.65

Communication 39.20 > 219.24 > 71.38

Now we compare the computation and communication overhead of our work with

[22] and [10]. As we have mentioned, the objectives of [22] and [10] are different from

ours; the authors of [22] and [10] have not implemented their protocols; neither have

they performed any experiment. Consequently, in order to compare their overhead

with ours, we have to implement these protocols by ourselves and measure their

overheads.

Nevertheless, for practical purposes, we do not implement and measure the com-

plete protocols of [22] and [10]. The reason is that these protocols are so slow in

practice that even parts of them have significantly more overheads than ours. So

measuring the overheads of such parts is sufficient to demonstrate the better effi-

ciency of our algorithm. Furthermore, if we measure the overheads of the complete

protocols, [22] and [10] (especially [22]) will take more time than we can afford.

Hence, we have implemented a key compnent of both [22] and [10], namely secure

evaluation of the activation function. When we measure the overheads of [22] and

[10], we count the accumulative overhead of secure activation function evaluations

only, and ignore the overhead of all other operations. We compare the measured

partial overhead of [22] and [10] with the total overhead of our own algorithm, which

includes the computation and communication overheads of all components. Table

5.5 shows the comparison results when we train the neural network using dataset

kr-vs-kp. We put the symbol “>” before the measured partial overheads of [22] and

[10], to emphasize that these are not the total overheads. As we can see, for both

[22] and [10], the measured partial overheads are already significantly more than

the total overhead of our protocol, either in terms of computation or in terms of
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communication. Therefore, we can safely claim that our algorithm is more efficient

than the protocols in [22] and [10].

5.7 Summary

In this chapter, we present a privacy preserving algorithm for back-propagation

neural network learning. The algorithm guarantees privacy in the semi-honest model.

Although approximations are introduced in the algorithm, the experiments on real

world data show that the amount of accuracy loss is reasonable.

Using our techniques, it should not be difficult to develop the privacy preserving

algorithms for back-propagation network learning with three or more participants. In

this chapter we have considered only the back-propagation neural network. A future

research topic is to extend our work to other types of neural networks training.
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CHAPTER 6

PRIVACY PRESERVING GROWING NEURAL GAS

LEARNING[25]

6.1 Background and Motivation

Growing neural gas [44] is a well known algorithm in evolutionary computing. This

algorithm applies natural selections to neural network training and has been shown

to be very effective. It has found broad applications in fields like data clustering and

visualization.

In many practical scenarios, the training datasets used to grow neural gas are

distributed between two or more participants. For example, consider multiple medical

researchers, who collaborate on a research project that aims to build a neural network

to predict the risk of a certain disease. Suppose that they are using the growing neural

gas algorithm, and that the training data used in this project is the medical profiles

of patients collected by these researchers. Each of these researchers has her own set

of medical profiles that can be used in the research. Clearly, if the neural network can

be trained using the data from all the researchers, the research project will achieve

the greatest success. Nevertheless, none of the researchers is willing to reveal her own

data to others.

Similarly, consider two local supermarkets that try to predict the patterns of

the purchases of their customers. Suppose that they apply the growing neural gas

algorithm to transaction records, in order to build a neural network for this purpose.

Again, these supermarkets will benefit from collaborating with each other and training

the neural network using the union of their transaction records, but neither of them

is willing to reveal its own transaction records to the other supermarket.
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In general, when the training dataset is distributed between two or more parties,

the growing neural gas algorithm usually benefits from using the data from all involved

parties. However, the involved parties may not be willing to reveal their own data

to other parties, due to their own privacy concerns, or due to legislations such as

HIPAA [53].

The target of this chapter is to design algorithms that protect privacy of partici-

pants in the above scenarios. That is, we present an algorithm that allow two parties

to jointly grow neural gas using all the available training data. Our algorithms are

privacy preserving in the sense that no participant needs to reveal her own data to

the other party. Consequently, the participants can enjoy the benefits of collaboration

without worrying about privacy of their data.

In particular, we distinguish two cases: horizontally partitioned dataset and verti-

cally partitioned dataset. In the former case, each participant has a training dataset

and our objective is to grow neural gas using the union of these datasets. Formally, all

the participating parties in the growing neural gas algorithm, switches back and forth

the network (between parties having training data) after each sample, without reveal-

ing anything to other parties about their sample. The supermarket example(above)

constitutes horizontal partitioned dataset, where each grocery store has customer

data and wants to use this data for growing neural gas algorithm.

In the latter case, each participant has a set of the attributes that can be used in

the training, while the attributes of different participants belong to the same dataset.

Our objective is to grow neural gas using all these attributes. Formally, in this type

of partitioning for each sample, all the participating parties (for growing neural gas

algorithm) use our proposed algorithm (described below) to train the growing neural

gas network. Predicting credit card history of people using data from different banks

is an example of training growing neural gas network with vertically partitioned data.
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For the scenario of horizontally partitioning, since each party holds a subset of

data samples with the same attribute set, there is a very simple solution for protecting

privacy in growing neural gas algorithm. Basically one party trains the network using

its data and passes on the network structure to the other party so that it can further

train it with its own data, without revealing the data of any party. Therefore, in this

chapter, we focus on the scenario of vertically partitioning. We propose a privacy

preserving algorithm that provides privacy guarantee in growing neural gas. The

main tools we use are novel cryptographic techniques that can add strong privacy

protection to distributed algorithms. To evaluate our algorithms, we have presented

a detailed analysis of correctness and privacy. Furthermore, we conduct extensive

experiments using real world datasets. The results of our evaluations show that our

algorithm is correct, secure and efficient.

Our contributions can be summarized as follows.

• We are the first to study privacy protection in growing neural gas and propose

a privacy preserving algorithm.

• To the best of our knowledge, we are also the first to study privacy protection

in evolutionary computing.

• Our algorithm for protecting privacy in growing neural gas is quite efficient in

terms of computational and communication time.

• In terms of privacy, our algorithm leaks no knowledge about each party’s data

except the network obtained through growing neural gas.

The rest of the chapter is organized as follows. In section 6.2, we describe the

technical preliminaries including the definitions, notations, security model that we

use in this chapter. In section 6.3, we propose our privacy preserving algorithm

for growing gas neural network when the data is vertically partitioned between two
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parties. In section 6.5 we perform the experiments on the real world data. In the end

in section 6.6, we summarize this chapter.

6.2 Technical Preliminaries

In this section we present the notations, problem definition and the security model

used in this chapter.

6.2.1 Notations for Growing Neural Gas Algorithm

The growing neural gas algorithm creates a network of nodes incrementally, based

on the input vectors of dimension m from the training dataset. Each node k in the

network has a position. We use a m-dimensional vector −→w k to denote both node k’s

position and the reference vector of node k. We take the squared distance between

a node k and an input data as the so called error. In this chapter we use Euclidean

distance. Each node k has a variable, Ek to store the local accumulated error. The set

C is the set of edges that define neighbor nodes in the network. The set N contains

all the nodes present in the network. Since in the growing neural gas algorithm nodes

are added incrementally, set N is growing until certain user-defined criteria is met.

6.2.2 Definitions and Problem Statement

Vertically Partitioned Data We consider vertically partitioning of data between

two parties in the chapter. In the scenario of vertically partitioned data, each Party

has certain number of attributes for each sample in the dataset.

In particular, suppose that a training dataset D consists of n samples {DB1, DB2, · · · , DBn},

and each sample DBi (1 ≤ i ≤ n) contains m attributes. For each sample DBi, Party

A holds first mA (0 < mA < m) attributes and Party B holds the rest mB attributes

such that mA + mB = m. So suppose {x1, x2, · · · , xm} are the m attributes of

any sample −→x in the dataset. Party A holds {x1, x2, · · · , xmA
} and Party B holds

{xmA+1, xmA+2, · · · , xmA+mB
}.
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Semi-honest model As many privacy preserving data mining protocols and also in

Chapter 5, we use the semi-honest security model [49].

Privacy Preserving Growing Neural Gas over Vertically Partitioned Data

As described above, we consider the scenario that the input data is vertically parti-

tioned among two parties. Privacy preserving growing neural gas is that in the process

of incrementally creating a network of nodes, each party does not reveal its own data

to the other party. The topological information excluding the exact positions of each

node is known to both parties, such as the total number of nodes in the network

and the set of edges C. In the privacy preserving growing neural gas algorithm, each

party only holds its own share of the reference vector for each node k, −→w kA and −→w kB

for party A and party B respectively. Similarly, party A (resp. party B) has its share

of the local accumulative error for k, EkA (resp. EkB). In every iteration of the algo-

rithm, each party updates the nodes set N , the edges set C, and their own shares of

nodes’ positions and accumulative errors, without compromising their privacy of the

input data. Moreover, the combination of network information that the two parties

holds produces the same results as the network is directly generated from the join of

data sets without privacy concerns.

6.2.3 Yao’s protocol

In our privacy preserving growing neural gas algorithm, a general secure two-party

computation protocol, Yao’s protocol is utilized as an important component. Now we

briefly introduce the Yao’s protocol. For further details, please refer to [114]. There

are two parties, each of whom holds part of the input to a computation function. For

the computation function that the two parties want to conduct, a Boolean circuit

C made of wires and gates is constructed. Then the two parties interact in order

to evaluate C securely. The basic idea of Yaos protocol is to compute a circuit so

that values obtained on all wires except circuit-output wires will not be revealed. In
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order to do this, one party construct the circuit, converts it into a garbled circuit and

transfers to the other party. Then the two parties execute an oblivious transfer per

each input wire, so that the receiver gets the input-wire keys. Using these keys, the

two parties compute the circuit and obtain the output. In this chapter, we use Yao’s

protocol to solve the secure comparison problem. In the rest of the chapter, we use

Algorithm SecureCompare() to represent Yao’s secure two-party computation solution

for the secure comparison problem.

6.3 Privacy Preserving Growing Neural Gas

In this section we present our privacy preserving growing neural gas algorithm

when the input data is vertically partitioned between two parties. We first give

an overview of our privacy preserving algorithm for growing neural gas. Then we

focus on one key component of our algorithm, i.e., privacy preserving search for the

minimum(maximum) sum and describe our solution for this component.

6.3.1 Privacy Preserving Growing Neural Gas Algorithm

Algorithm 1 presents our privacy preserving growing neural gas algorithm. For

clarity, we separate the routine for inserting a new node into the network, from the

main algorithm and describe it as in Algorithm 2.

In the network initialization stage, the two parties jointly generate two randomly-

positioned nodes in the network. In particular, party A generates the first mA com-

ponents of the reference vector for each of the two nodes, while party B generates

the last mB components. They keep the node vectors that they generate private. For

each node, each party holds a local error variable. They set the local error variables

for newly-generated two nodes to 0.

For each iteration, the input to the growing neural gas algorithm with vertically-

partitioned data is (−→x A,−→x B), where −→x A is held by party A and −→x B is held by party
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Algorithm 4 Privacy preserving Growing Neural Gas algorithm with vertically dis-
tributed datasets

Initialize : Create two randomly-positioned nodes in the network N = {c, d}.
Party A holds −→w cA (resp. −→w dA), where −→w cA (resp. −→w dA) is the first mA components
of −→w c. Party B holds −→w cB (resp. −→w dB), where −→w cB (resp. −→w dB) is the last mB

components of −→w d.
Set C = φ. N and C are known to both parties.
Party A sets EcA = 0; EdA = 0. Party B sets EcB = 0; EdB = 0
for each input data < −→x A, −→x B > do

1. For each node k in the network, party A computes DkA = ‖−→w kA −
−→x A‖

2

and party B computes DkB = ‖−→w kB −
−→x B‖

2
. Party A obtains

{D1A, D2A, · · · , D|N |A} and party B gets {D1B, D2B, · · · , D|N |B}.

2. By applying twice Algorithm 3, party A and party B find the first and
the second nearest nodes for −→x are s and t, out of all the nodes in
the network, i.e., s = argmink∈N(‖−→w kA −

−→x A‖
2

+ ‖−→w kB −
−→x B‖

2
). t =

argmink∈N−s(‖
−→w kA −

−→x A‖
2
+ ‖−→w kB −

−→x B‖
2
).

3. At both parties, an edge between s and t, (s, t) is created if not existed.
C = C ∪ {(s, t)}. Both parties set the age of this edge to 0: ages,t = 0.

4. Party A updates the local error variable for node s: EsA = EsA +
‖−→w kA −

−→x A‖
2
.

5. Party B updates the local error variable for node s: EsB = EsB +
‖−→w kB −

−→x B‖
2
.

6. Party A updates −→w sA: −→w sA = −→w sA +es(
−→x A−

−→w sA). Party A also updates
−→w iA for each neighbor node i of s: −→w iA = −→w iA + ei(

−→x A −
−→w iA), where

es, ei ∈ [0, 1].

7. Party B updates −→w sB: −→w sB = −→w sB +es(
−→x B−

−→w sB). Party B also updates
−→w iB for each neighbor node i of s: −→w iB = −→w iB + ei(

−→x B −
−→w iB).

8. Increase ages of all the edges connecting s: age(s,i) = age(s,i)+1. where
node i is the neighbor of s.

9. Remove edges with an age larger than amax. Also remove the nodes if this
results in nodes having no edges.

10. If the current iteration is an integer multiple of λ, use Algorithm 2 to insert
a new node into the network.

11. For each node k, both parties decrease the local error values EkA = EkA −
βEkA; EkB = EkB − βEkB.

end for
Stop when stopping criteria is met.
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B. In each iteration, as in the non-privacy-preserving growing neural gas algorithm,

certain changes are made to the network topology, such as changing nodes’ reference

vectors (i.e., moving their positions), generating new nodes and creating/deleting

edges. The major difference here is that each variable in the non-privacy preserving

algorithm is split into two parts, with each party holding one part. The main idea of

our algorithm lies in that each party uses its own data attributes to update the partial

network information that it maintains, as much as it could except some operations

relying on the information from both parties. For such operations, we provide a secure

solution which involves some data communications between the two parties but still

keeps each party’s own data private. In particular, one important key component in

our algorithm is to find the winning node with the minimum distance to the input

vector in the network. Since the winning node is computed based on the distances

defined using the attributes, it requires the information from both parties. In Section

6.3.2, we will present the solution for this problem. In Algorithm 1 and Algorithm 2,

we just use this solution as a building block.

In Algorithm 1, in all steps of each iteration except step 3), both parties compute

locally to update the network information without communicating with each other.

In step 3), the two parties are applying Algorithm 3 to securely find the first and

second winning nodes in the network without revealing its own data.

In Algorithm 2, in step 1) and step 2), party A and party B use Algorithm 3 to

find the node with the maximum accumulated local error and to find its neighboring

node with maximum local error. In other steps, each party locally computes the

partial reference vector and local error that it holds for the newly-inserted node, and

locally updates the local error for the two nodes found in step 1) and step 2).
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Algorithm 5 Privacy preserving Growing Neural Gas algorithm - Adding a new node
in the network

INPUT: Set N and C are known by both parties. For each node in the network
k ∈ N , party A holds −→w kA and EkA; party B holds −→w kB and EkB, s.t. Ek =
EkA + EkB.

1. Party A and party B use Algorithm 3 to find the node p with the maximum
accumulated error, i.e., p = argmaxk∈NEk.

2. Using Algorithm 3 again, parties A and B find out the neighbor node of p
with the maximum accumulated error. We call this neighbor node q.

3. Insert a new node r in the network at mid way between p and q. Party A
computes −→w rA = (−→w pA+−→w qA)/2. Party B computes −→w rB = (−→w pB +−→w qB)/2.
Add this new node into set N s.t. N = N ∪ {r}.

4. Insert edges between p and r and between r and q. Remove the original edge
between s3 and s4. Update set C = C ∪{(p, r), (r, q)} and C = C − {p, q}.

5. Party A (resp. party B) decreases the shares of local error values for p and q:
EpA = EpA−αEpA (resp. EpB = EpB−αEpB), and EqA = EqA−αEqA (resp.
EqB = EqB − αEqB).

6. Party A (resp. party B) sets the local error value for r: ErA = (EpA +EqA)/2.
(resp. ErB = (EpB + EqB)/2).
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6.3.2 Privacy Preserving Search for the Minimum(Maximum) Sum

In this subsection, we introduce our solution for privacy preserving search for

the minimum or maximum sum. We assume that each party holds a sequence of

numbers. We are interested in the sum of each pair of same-positioned numbers in

the two sequences. The goal is to find which sum is the maximum or minimum without

revealing any party’s data to each other. Our solution is described in Algorithm 3. In

Algorithm 3, we use the idea of the first round of bubble sort to find the maximum or

minimum sum. In the comparison between any two sums, e.g., d(i+1)A + d(i+1)B and

djA + djB, party A holds d(i+1)A, djA and party B holds d(i+1)B, djB. In order to hide

the data from each other, we let each party add a random number to the sum. In

this way, the comparison result is the same and privacy for each party is preserved.

Algorithm 6 Privacy Preserving Search for the Minimum(Maximum) Sum

1: INPUT: Party A holds {d1A, d2A, · · · , dnA}. Party B holds {d1B, d2B, · · · , dnB}.
2: OUTPUT: argimin(diA + diB)

(argimax(diA + diB) if searching for maximum sum.)

3: Both parties set j = 1.
4: for (i = 1; i < n; i + +) do
5: Party A generates a new random number RA, and sends djA + RA to party B.
6: Party B generates a new random number RB, and sends d(i+1)B + RB to party

A.
7: Party A calculates d(i+1)A + RA + d(i+1)B + RB.
8: Party B calculates djA + RA + djB + RB.
9: Party A and Party B securely compare d(i+1)A + RA + d(i+1)B + RB and djA +

RA + djB + RB using SecureCompare() algorithm.
10: Both parties Store the index of the smaller (larger if searching for maximum

sum) number in j.
11: end for
12: Return j.
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6.4 Correctness and Security Analysis

So far, we have completely described our privacy preserving growing neural gas

algorithm. In this section, we conduct detailed analysis on the correctness and security

of our algorithm.

6.4.1 Correctness Analysis

After applying our privacy preserving growing neural gas algorithm, party A and

party B can combine their partial network information to get the final complete

network. Now we show that this combined result is correct, i.e., equal to the network

obtained when training the network with data stored at one site.

To conduct the analysis, we focus on the possible update to the network infor-

mation when each sample is input into the network. More precisely, we show that

in each iteration of training, the changes of the network information are the same,

when using our algorithm and when applying growing neural gas algorithm at one

site without privacy concerns. By showing correctness of each iteration, we can easily

arrive at the conclusion that the result that our entire privacy preserving growing

neural gas algorithm obtains is correct.

We notice that the possible changes of the network information in each iteration of

training include the change of network topologies, ∆N , ∆C, the nodes’ vectors ∆−→w k,

nodes’ local error variables ∆Ek and nodes’ ages. The following analytical result

shows that in each iteration of training, our privacy preserving algorithm yields the

correct ∆N , ∆C, ∆−→w k, ∆Ek and nodes’ ages.

Theorem 13. In an iteration of growing neural gas, our Algorithm 1 (with the

input −→x A for party A and −→x B for party B) produces the changes to the network

which is same as the results of running growing neural gas algorithm with input

−→x = (−→x A,−→x B).
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Proof. We first show the correctness of Algorithm 3. Then we show that in each

iteration, ∆N and ∆C are the same as in the algorithm without privacy concerns.

Finally we will show that ∆−→w k, ∆Ek and nodes’ ages are also correct.

In Algorithm 3, in each iteration of the loop (Line 4 to 11), party A correctly

compare two numbers d(i+1)A + RA + d(i+1)B + RB and djA + RA + djB + RB, since

the correctness of SecureCompare() algorithm is guaranteed. It is easy to see that

the comparison result is equal to the comparison result between d(i+1)A + d(i+1)B and

djA + djB. Therefore, based on the correctness of comparison between any two sums,

the correctness of Algorithm 3 is proved.

Now we show that in each iteration, our algorithm produces correct ∆N and ∆C.

We note that the steps that updates the N and C are steps 2) 3) and 9) in Algorithm

1 and steps 1)-4) of Algorithm 2. Based on correctness of Algorithm 3 that we have

proved, it is not difficult to see that the above steps are correct.

For ∆−→w k, we can see that ∀k ∈ N , ∆−→w k = (∆−→w kA, ∆−→w kB). Since we have

proved that in each iteration, the correct winner and second winner will be chosen,

the updates of −→w k in steps 6) 7) of Algorithm 1 and step 3) of Algorithm 3 are correct.

For ∆Ek, since we are using Euclidean distance, we have

‖−→w k − x‖
2

= ‖−→w kA −
−→x A‖

2
+ ‖−→w kB −

−→x B‖
2
.

Hence ∆Ek = ∆EkA + ∆EkB. The correctness of nodes’ ages is also clear.

This completes the proof of Theorem 1.

6.4.2 Security Analysis

In this subsection, we explain why our algorithm is secure in the semi-honest

model. Recall that in the semi-honest model, we say an algorithm is secure if each

party can learn nothing beyond its output from the information obtained throughput
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the algorithm. A standard way to conduct security analysis is to construct a simulator

for each party that can simulate what it can see in the algorithm given only the input

and output for this party in the algorithm.

We notice that in Algorithm 1 and Algorithm 2, except step 2) in Algorithm 1 and

steps 1) and 2) in Algorithm 2, both parties do not receive any information from each

other. In other words, except when running Algorithm 3, there is no way for both

parties to learn any new information from what they obtain. Therefore, we mainly

focus on constructing simulators for Algorithm 3 in our security analysis. After we

show the security of Algorithm 3, we can conclude that our privacy preserving growing

neural gas algorithm is secure in the semi-honest model.

For Algorithm 3, we construct two simulators, one for each party. The simulators

work as follows. For line 3-5, the simulators do what each party should do in the

algorithm. In line 5, the simulator for party B generates a random number to simulate

djA +RA. In line 6, the simulator for party A generates a random number to simulate

d(i+1)B +RB. In line 7 (resp. line 8), the simulator for party A (party B) does what it

should do in the algorithm. Since we know that algorithm SecureCompare is secure in

the semi-honest model, we can construct two simulators for party A and party B to

simulate SecureCompare. In line 9, the simulators for our algorithm just follow what

the simulators for SecureCompare do. In line 10, the simulators do what each party

should do in the algorithm.

6.5 Experiments

In this section we perform experiments to evaluate the efficiency of our privacy

preserving growing neural gas algorithm. The experiments are carried out using the

datasets from the UCI dataset repository [13].
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Table 6.1. Datasets and Parameters

Dataset Samples Attributes λ max.network.size
Iris 150 4 100 10

Lung cancer 32 56 30 10
Zoo 101 17 20 20

Vowel Recognition 528 10 55 30
Ecoli 336 8 50 25

6.5.1 Set Up

We have used C++ programming language to perform our experiments with g++

version 2.8, experiments being carried out on Redhat Linux with memory of 256MB.

We utilize the Fairplay secure function evaluation system [75] in our implementation

of SecureCompare.

Table 1 shows the parameters used in the experiment. Specifically we have used

Iris, Lung cancer, Zoo, Vowel Recognition and Ecoli datasets for our experiments

from the UCI dataset repository. These datasets are vertically partitioned between

two parties. The value of λ, used when to add a new node in the network, is varied

between 20 and 100, depending upon the number of samples in the dataset. The

maximum network size is set based on the total clusters in the dataset. Except for

the parameters shown in Table 1, the other parameters used in the experiment are

α = 0.5 , β = 0.005, amax = 10, ǫb = 0.2 and ǫi = 0.05.

6.5.2 Experimental Results

We perform experiments to evaluate the efficiency of our algorithm which protects

the privacy of the individuals, using a cryptographic component.

Table 2 shows the total running time taken by our algorithm on the five datasets

respectively. We can see that the total running time for the privacy preserving growing

neural gas algorithm varied from about 100 seconds to more than 10 minutes. We

note that the total running time depends on the number of input samples as well as

the stopping criteria. Overall, our algorithm is very efficient.
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Table 6.2. Total Running Time

Dataset Total Running Time (sec.)
Iris 519.41

Lung cancer 103.95
Zoo 452.82

Vowel Recognition 1737.48
Ecoli 1081.30

Table 6.3. Communication Overhead & Computation Overhead

Dataset Communication Time Computation Time
Iris 105.89 413.52

Lung cancer 22.59 81.36
Zoo 92.35 360.47

Vowel Recognition 337.79 1399.69
Ecoli 247.76 833.54

Now we further measure the time used for computation and the time used for

communication between the two parties, in the total running time. Specifically, com-

munication occurs in Algorithm 3 when the parties sending random number to each

other, and also occurs when running SecureCompare.

Table 3 shows the results of communication time and computation time when

running our privacy preserving growing neural gas algorithm on the five datasets.

From the results, we can see that the algorithm takes more time in computing than

communication between the two parties.

6.6 Summary

In this chapter we proposed a privacy preserving growing neural gas algorithm

when the input data is vertically partitioned between two parties. We show that our

algorithm is correct and provides strong privacy guarantees. We also demonstrate

that our algorithm is very efficient using extensive experiments.
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CONCLUSION

In this thesis, studies have been done on the incentive issues and the privacy issues

in the distributed computing environments with untrusted parties. For incentive

problems, work has been focused on one important and popular application field,

wireless networks, while for privacy issues, this thesis focuses on designing privacy

preserving distributed data mining protocols due to their wide impact in some critical

applications such as in medical systems.

Part II is devoted to the works on incentive issues for packet forwarding in wireless

networks. In particular, Chapter 2 studies the reputation systems in finite repeated

game for traditional wireless ad hoc networks in order to provide nodes incentives to

forward packets. It is shown that it is impossible of building a SPNE solution using

traditional reputation systems. Then the TTI technique is introduced and used to

build FITS, the new reputation system. FITS provide strong incentive compatibility

for nodes to cooperate in packet forwarding. More precisely, there is a SPNE in which

nodes forwards all packets. This is proved theoretically and verified by experiments.

In Chapter 3, INPAC is proposed, the first incentive scheme for packet forwarding

in wireless mesh networks using network coding. It is complementary to the existing

work on incentive compatible routing in the same type of wireless networks. Since

packet forwarding is a fundamental procedure for computer networks, INPAC is of

great importance to the application of network coding technology in environments

with selfish users. INPAC has extensively evaluated on the Orbit Lab testbed, and

the results demonstrate that INPAC is both efficient and incentive compatible.

In Chapter 4, the first simple and effective incentive scheme in VANETs with

theoretical guarantee is proposed. It is formally proved that, in a coalitional game
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model, that with our scheme every relevant node cooperates in forwarding messages

as required by the routing protocol. The incentive scheme is integrated with MV

and Spray-and-Wait respectively and the system performance is evaluated on testbed

traces. The experimental results show that this incentive scheme provides effective

stimulation for nodes to cooperate and prevents the degradation of system perfor-

mance in VANETs with selfish nodes.

In Part III, two privacy preserving distributed data mining protocols are presented.

In Chapter 5, a privacy preserving algorithm for back-propagation neural network

learning is provided. The algorithm guarantees privacy in the semi-honest model.

Both analytical and experimental results show that this algorithms are light-weight

in terms of computation and communication overheads. In Chapter 6, a privacy

preserving growing neural gas algorithm when the input data is vertically partitioned

between two parties is proposed. It is shown that this algorithm is correct and

provides strong privacy guarantees.

This thesis opens up my research on privacy and incentive issues in the advanced

distributed computing environments. In the future, I will continue to identify and

solve new privacy, incentive and security problems in the emerging and critical appli-

cations.
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