
Minimizing Concurrent Test Time in SoC’s by Balancing
Resource Usage

Dan Zhao
CSE Department
SUNY at Buffalo

Buffalo, NY 14260-2000

danzhao@cse.buffalo.edu

Shambhu Upadhyaya
CSE Department
SUNY at Buffalo

Buffalo, NY 14260-2000

shambhu@cse.buffalo.edu

Martin Margala
ECE Department

University of Rochester
Rochester, NY 14627-0231

margala@ece.rochester.edu

ABSTRACT
We presenta novel testschedulingalgorithmfor embeddedcore-
basedSoC’s. Given a systemintegratedwith a setof coresanda
setof test resources,we selecta test for eachcore from a setof
alternative testsets,andscheduleit in a way thatevenly balances
theresourceusage,andultimatelyreducethetestapplicationtime.
Furthermore,we proposea novel approachthat groupsthe cores
andassignhigherpriority to thosewith smallernumberof alternate
testsets.In addition,wealsoextendthealgorithmto allow multiple
testsetsselectionfrom a setof alternativesto facilitatetestingfor
variousfault models.

Keywords
System-on-a-chiptestscheduling,resourcebalancing,testsetsse-
lection

1. INTRODUCTION
The systemlevel integration is evolving asa new style of sys-

tem design,whereanentiresystemis built on a singlechip using
pre-designed,pre-verified complex logic blockscalledembedded
cores,which leveragethe systemby the intellectualproperty(IP)
advantage.More specifically, thesystemdesigners(or integrators)
mayusethecoreswhichcoverawiderangeof functions(e.g.,from
CPU to SRAM to DSPto analog,etc.),andintegratetheminto a
systemon a singlechip (SoC)with their own user-defined-logics
(UDLs). TheSoCtechnologyhasshown greatadvantagein short-
eningthetime-to-market of a new systemandmeetingvariousre-
quirements(suchastheperformance,sizeandcost)of today’selec-
tronicproducts.

However, testingsuchcore-basedSoC’sposesamajorchallenge
for the systemintegrators,as they may have limited knowledge
of the coresdue to the so called IP protection,and on the other
hand,varioustestingmethods(e.g.,BIST, scan,functional,struc-
ture,etc.) for many kindsof designenvironmentsareprovidedby
differentcorevendors. In orderto selectan efficient teststrategy
for aSoC,severalperformancecriterialistedbelow needto becon-
sidered.

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
GLSVLSI’02,April 18-19,2002,New York, New York, USA.
Copyright 2002ACM 1-58113-462-2/02/0004...$5.00.

1) overall testtime. Theoverall testtime of a testingschemeis
definedastheperiodfrom thestarttime of the testactivity to the
endtime whenthe last testtaskfinishes.Note that,only whenall
testsetsin paralleltestqueuesfinish their tasks,wesayit’ s theend
time of the test. In otherwords,the longesttestqueuedominates
the overall test time. In addition, sincethe expensive testersare
sharedby many cores,theshorterthe testtime, the lower thecost
is. The test time may be reducedby usingshortertestvectorsor
betterschedulingschemes.

2) fault coverage. In orderto gaina high fault coverage,the in-
dividual embeddedcoresandUDLs shouldbe testedthoroughly,
which is alsoreferredascore-level testing. This includesconsid-
erationof variousfault models. In addition, the interconnections
betweendifferentsystemblocksalsoneedto betested.Finally the
systemlevel testingshouldbeprocessedto checkthesystemfunc-
tions.

3) area overhead. The areaoverheadis the extra silicon area
neededin orderto performtheSoCtest.Theareaoverheadshould
belimited within a certainareabudget,andkeptassmallaspossi-
ble.

4) performanceoverhead. As oneundesirableside-effect of in-
tegratingtestresourcesinto thesystem,thepower consumptionof
the SoCmay increasewhile its speedmay decrease.This perfor-
manceoverheadmay vary whenusingdifferent testingmethods,
andthusbecomesa major performancecriterion whenevaluating
variousteststrategies.

In this paper, we addressthe test schedulingproblemfor em-
beddedcore-basedSoC’s. We considera systemwhereone test
set needsto be selectedfor eachcore from a group of test sets
usingvarioustest resources,andproposea novel testscheduling
schemeto reducetheoverall testtime. Thebasicideaof thepro-
posedschedulingalgorithm is to efficiently balancethe resource
usage.

Therestof this paperis organizedasfollows. In Sec.2, we dis-
cussthe conflictsandconstraintsfor the schedulingproblemand
the existing schedulingschemes.Sec.3 describesa generalSoC
model,in whicheachcoremayhave multiple testsetsusingdiffer-
ent resources.In Sec.4, we proposea novel schedulingalgorithm
basedon theeffective balancingof resourceusage.Sec.5 extends
thealgorithmby selectingmultiple testsetsfor eachcore.Finally,
Sec.6 concludesthepaperandpresentsthefutureworks.

2. RELATED WORK
The objective of test schedulingis to decidethe start and end

timesfor thetestof eachcorein orderto meetall of theconstraints
and avoid any conflicts of test application. The basic idea is to
schedulethe testsin parallelso that thosenonconflictingtestscan

be executedconcurrently, and thus the total testingtime may be
reduced.�

Thereareseveralconstraintsthatmustbeconsideredin schedul-
ing of tests.First, in a core-basedSoC,not all testscanbeapplied
at thesametimedueto theresourceconflicts.For example,several
coresmaysharethesametestgeneratoror responseevaluator, and
thuscannotbetestedin parallel. In addition,thepower consump-
tion mustbetaken into accountin orderto guaranteeproperoper-
ating conditions. For instance,in a self-testedsystem,testingthe
coresin parallelmayresultin highpower consumptionandexceed
themaximumpower limit, whichwill resultin systemdamagedue
to overheating,while thecoresmaynot activatesimultaneouslyin
normalfunctionalmode.Finally, certainfault coverageshouldbe
achievedwhentestinga SoC.Thereareusuallya numberof core-
testingmethodsavailableandeachof themdetectsdifferent fault
(e.g.,BIST for detectingperformance-relateddefectsandnonmod-
elledfaults,while externaltestfor detectingmodelledfaults).One
methodor acombinationof severalmethodsmaybeneededto test
a corein orderto gaintherequiredfault coverage.

Variousapproacheshavebeenproposedfor testscheduling.Cha-
krabartyhasshown in [1] that theproblemof testschedulingfor
SoC’s is equivalent to the openshopscheduling,and therebyis
NP-completewhen the numberof resourcesis larger than 2. A
“shortest-task-first” algorithm hasbeenproposedfor scheduling
large systems.However, it assumesthat the coreshave to useall
of thepre-determinedtestsetsandthecorrespondingresources.In
otherwords,theschedulingalgorithmonly arrangesthesequence
of the testsets,which is differentfrom (or actuallya specialcase
of) our proposedalgorithm(to be discussedlater in sec.4). Our
algorithmselectsthe testsetsfrom the candidatesanddetermines
thetestschedule.

In [2], Larssonet. al. proposeda testparallelization(scan-chain
subdivision) combiningschedulingschemeto minimize test time
underpower limitation. However, their techniqueis basedon a
greedyalgorithmwhich is not efficient for largeSoC’s with alter-
native testsetsfor eachcore.

The readersmay alsorefer to [3, 4, 5, 6] for otherscheduling
algorithms.

3. SYSTEM MODELING
In thissection,wedescribeageneralSoCmodel,whichincludes

not only digital cores(denotedasD cores),but analogcores(de-
notedas A cores),mixed-signalcores(denotedas M cores)and
UDLs as well (seeFigure 1). Eachcore may have multiple test
setsusingdifferentresources,andthusprovidesflexibility for test
scheduling.

In SoCtest,eachcoreis surroundedby wrappers,whichareused
to isolatethecoresandtransportdataunderdifferentmodes(e.g.,
normal/coretest/interconnecttestmode). The TestAccessMech-
anism(TAM) servesas“test datahighway”, which transportstest
dataand control signalsand executessystemchip test in a pre-
determinedschedule. In addition, large UDLs can be treatedas
D coresor A coresaccordingto their functionality. If A coresand
D coresdonotshareresources,they canbegroupedinto two sepa-
ratesetsandtestedin parallelusingthesameschedulingtechnique,
asshown in Figure2. In this paper, we do not take into considera-
tion differentcoretypesandfocuson D coresonly.

Without loss of generality, we assumethat a SoC includesn
cores,andtherearem resourcesavailablefor testing.A coremay
needoneor several teststo meettherequiredfault coverage.Each
testsetincludesasetof testvectorsandneedsoneresource,which
canbe usedby onecoreat onetime. Therearedifferenttestsets
to achieve the samefault coveragebut with different test time by

UDL

D_wrapper

D2

B1
B2

B3

B1

B2

A1

A_wrapper

D_wrapper

D3

A_wrapper

B1

B2

A_wrapper

M

B1

B2

D_wrapper

D1

A2

r1

r2

r3

r4

r5

r6

r7

r8

r1 - r8 are different testing resources
D1 - D3 are digital cores
A1 - A2 are analog cores
M is a mixed-signal core
B is denoted as different functional blocks in a corei

Figure1: A GeneralSoCModel.

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

r6 r7 r8

A1 A2 MD3 UDLD2D1

r1 r2 r3 r4 r5

Figure2: Graph Representationof ResourceSharing.

usingdifferentresources.In otherwords,a corevendormayhave
provided a set of alternative tests,and one test from eachgroup
needsto be performedto achieve the requiredfault coverage. A
collision occurswhen the testssharingthe sameresourceor the
testsfor the samecoreareperformedin parallel. In addition,the
total power consumptionmustnot exceedthemaximumpower al-
lowanceat any time1.

Given the testtime andthe requiredfault coverage,thegoal of
theschedulingtechniqueis to efficiently determinethestarttimeof
thetestsetsto minimizethetotal testapplicationtime.

More formally, we definethe SoCmodelasTM =
�
C, RSC,T,

FC � , in which C 	�
 c1 � c2 ��
�
�
 cn � is a finite set of cores,RSC 	

 r1 � r2 ��
�
�
 rm � is a finite setof resources,FC is the fault coverage
requiredto testeachcore,andT=

�
T11, T12, ..., T1m, ..., Tn1, Tn2, ...,

Tnm� is a finite setof tests,which areshown in a n � m matrix in
Figure3. In thematrix,eachtestset,definedasTi j 	�
 ti j � (where
ti j is the test time), consistsof a setof test vectors. Test setTi j
representsa testset for testingcoreci by usingresourcer j . The
entrieswith zeroindicatethatsuchtestsetsarenotavailable.

4. A NOVEL TEST SCHEDULING ALGO-
RITHM: RESOURCE BALANCING

As the testschedulingproblemis NP-complete,many heuristic
algorithmshave beenproposed.However, aswe have discussedin
Sec.2, mostof themassumethatall of thegiven testsetshave to
be usedin testing. In this work, we proposean efficient heuristic

1Althoughwewill notconsiderthepowerconsumptionlimit in our
schedulingalgorithm,wewould like to addressthisproblemin our
futurework.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

r2r1 r3 rm

c1

c2

c3

c4

cn

T11 0

0

0

0

0

T31

0

T12

T22 T2m

T43 0

Tn1 Tn2 Tn3 Tnm

0

0

0

for testing core c by using resource r .
Each vector T in the matrix represents a test set

T

i j

ij

ij

Figure3: Matrix Representationof TestSets.

list of parallel queue

.

usage of r1

usage of r2

usage of r3

usage of rm

.

.

.

.

.

T11

t11

T12

t12

Tnm

tnm

test set T for core cij i

Figure4: Parallel Usageof TestResources.

schedulingalgorithmfor thecasewhereoneof a groupof testsets
maybeselectedfor eachcoreto performtesting,andtake into con-
siderationthetestconflictsandthefault coveragerequirements.A
generalizationof this problemis givenin Sec.5.

Weconsiderasystemdiscussedin Sec.3 anddefinemqueuesin
parallelcorrespondingto m resourcesthatmaybeusedat thesame
timeindependently(seeFigure4). Thelengthof thequeuedenotes
thetotal testingtime of all testsetsusingtheresource.We assume
thattherearePi (1 � Pi � m) testsets,whichusedifferentresources,
availablefor testingcoreci , andonecoreneedsonly oneof these
testsetsto achieve therequiredfault coverage(However, this limit
will be nullified later for the multiple testsetscase.). In order to
schedulethe test setsfor sucha system,we proposea resource-
balancingheuristicalgorithm.

Thebasicideaof this algorithmis to usetheresourcesasevenly
aspossible,becausethetotaltestingtimeisdominatedby thelongest
usagetime amongall resourcesusedin a test. Whenscheduling
core ci , we temporarily insert all of its test setsinto the corre-
spondingqueues. Then we choosethe one resulting in shortest
queuelength,anddeleteothertestsetsof ci from theotherqueues.
For example,we executethealgorithm(referto thepseudocodein
Figure5) for a core-basedsystemwith 6 coresand4 resourcesas
shown in Table1,whichshowsthetesttimefor eachtestsetusinga
resourcefor eachcore.We first sequentiallyselecttheshortesttest
amongtheiralternativesfor coresc0, c1, c2 andinserttheminto r3,
r2, r0 respectively. Note that,a shortertestsetwill not alwaysbe
selectedasit mayusetheresourcecorrespondingto alongerqueue.
For example,whenweschedulec3, wemaynotselecttheone(T33)
with shortesttesttime (9) sinceit resultsin a longerqueuelength
(for r3). Instead,weselectT32 andinsertit into queuer2. Similarly

ji/* for all test sets t of c */i

/* Balancing resource usage queues without grouping*/
begin

CORE :

r[P]

i

t[P]

for i := 1 to n do

for i := 1 to m do

short_length = CORE[i].t[j] + rqs[CORE[i].r[j]]_length;
short_length_id =j;

end

begin

end
/* update the queue length */rqs[j]_length = short_length;

Insert test(short_length_id) into rqs[CORE[i].r[short_length_id]];

/* get the shortest queue length */

for j := 2 to CORE[i].P do
if (CORE[i].t[j] + rqs[CORE[i].r[j]]_length < short_length) then

short_length_id = 1;
short_length=CORE[i].t[1]+rqs[CORE[i].r[1]]_length;

/* n is the number of cores */

/* m is the number of resources */

Read the data into the structure CORE, including the following members,
/* core id */

P /* the number of test sets */
/* the test time of each test set */
/* the corresponding test resource */

/* initialize the resource usage queues, rqs[i] is the queue of r */i

rqs[i] = ;

Figure5: The SchedulingAlgo. Without Grouping.

Table 1: The Matrix of TestSetsfor An ExampleSystem
Ti j r0 r1 r2 r3 P
c0 12 7 0 6 3
c1 0 4 1 0 2
c2 3 0 8 12 3
c3 0 0 13 9 2
c4 5 7 6 2 4
c5 5 0 1 0 2
c6 4 6 0 0 2

we selectT41 for c4, T50 for c5, andfinally T60 for c6. The final
scheduleis shown in Figure6(1), which resultsin a total testtime
of 14. It canbeshown that,theworst-casetime complexity of this
algorithmis O(T), whereT is thenumberof thetestsets.Moreover,
we canseeoneof theadvantagesof resourcebalancingapproach,
i.e., there’s no idle time betweensuccessive tests(namely, explicit
deadtime) in any of thequeues.

PROPOSITION 1. There is no “explicit deadtime” in this re-
sourcebalancingapproach.

PROOF. Accordingto thedefinition[1], explicit deadtimearises
dueto resourceconflicts.Therearetwo typesof resourceconflicts
definedin our system. 1) Several testscompeteto usethe same
resource.This kind of conflict is totally overcomeby resourcebal-
ancingapproach,sincethetestscompetinga resourcesequentially
enterthe resourcequeue.2) Different testsfor the samecoreare
executedat thesametime. Althoughfor eachcorea setof testsare
provided,only oneof themwill beexecutedto testthecore.Sothis
typeof conflict is eliminated.

As there’s no explicit deadtime in resourcebalancing,our pur-
poseis to efficiently andeffectively reducethe implicit deadtime
at theendof theresourcequeues(Obviously, no implicit deadtime
appearsat thebeginningin this approach.).Wefind out thatdiffer-
entorderingof ready-to-schedulecores(i.e., thecoresbeforeenter-
ing theresourcequeues),resultsin differentscheduleof tests,and
accordinglythetesttime. More specifically, theready-to-schedule
coresaregroupedbasedon thevalueof Pi suchthatin a groupGp,
all coreshave P alternatetestsets,andthecoresin thegroupwith

r0C2C5C6

r1C4

r2C1C3

r3C0

312 8 0

7 0

1 014

6 0

(2) With grouping

0

0

0

0

r0

r1

r2

r3

12

C3

C4 C5C1

C0

C6C2

47

7

8

9

(1) Without grouping

Figure6: The ResourceBalancingApproach.

lower P valuewill be scheduledearlier, becausethesetestshave
to beput into certainqueues(i.e., thecorrespondingcoreshave to
betestedby usingcertainresources.).Next, wemaychooseproper
testsetsfrom thegroupwith largerPvalueto balancethelengthsof
thequeues.Thepseudocodeof thisalgorithmis shown in Figure7.

/* Balancing resource usage queues with grouping */
begin

CORE :

t[P]
P

for i := 1 to n do
CORE[i] --> G[CORE[i].P]; /* group the cores */

for each group

short_length=CORE[i].t[1]+rqs[CORE[i].r[1]]_length;
short_length_id = 1;
for j := 2 to CORE[i].P do

if (CORE[i].t[j] + rqs[CORE[i].r[j]]_length < short_length) then
begin

short_length = CORE[i].t[j] + rqs[CORE[i].r[j]]_length;
short_length_id =j;

end
Insert test(short_length_id) into rqs[CORE[i].r[short_length_id]];

rqs[j]_length = short_length;
end

Read the data into the structure CORE, including the following members,

for each core i in the group

i /* core id */
/* the number of test sets */
/* the test time of each test set */

r[P] /* the corresponding test resource */

for i := 1 to m do /* m is the number of resources */

/* n is the number of cores */
rqs[i] = ;

/* initialize the resource usage queues, rqs[i] is the queue of r */i

Figure7: The SchedulingAlgo. With Grouping.

Figure6(2) illustratestheexecutionof thealgorithmwith group-
ing (refer to Figure7) for the examplesystem. By grouping,c1,
c3, c5 andc6 arein thesamegroupandareinsertedinto queuer2,
r3, r2 andr0 respectively. Thenwe schedulec0 andc2. Notethat,
we will selectthe testwith testtime of 7 for corec0 andinsert it
into r1, althoughthereare other test setswith shortertest times.
Similarly we insert the testsetwith time of 3 for c2 into r0, and
finally insertthetestsetwith timeof 6 for c4 into r2. Thetotal test
time is 9. Comparedto thecase(Figure6(1)) wherewe don’t use
groping,thetotal testtime is reducedby 5. As we cansee,group-
ing the coresbeforeschedulingcansignificantly reducethe total
testingtime andachieve betterbalancingof resourceusage,while
theworstcasetime complexity remainsthesame.Comparingthe
schedulewith andwithout grouping(seeFigures6, 8 and9), we
getthefollowing conclusion.

Result1. Groupingalwayshelpsbalancetheresourceusagequeue
lengths.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

Number of cores

G
 (

%
)

Figure8: G ChangingWith the Number of Cores.

Weevaluatetheproposedschedulingalgorithmsvia simulations.
In our simulationmodel,we userandomlygeneratedtestsets.We
definethe balanceratio asG, which canbe expressedby the fol-
lowing equation,

G 	 Lwg � Lwog

Lwg

whereLwg is the total testtime of a schedulewith groupingwhile
Lwog is thetotal testtime of a schedulewithoutgrouping.

In simulationscenario1, we studythe effect of the numberof
coreson the test time, and comparethe performanceof the ap-
proachwith groupingwith thatwithout grouping.We assumethat
thereare5 resourcesin thesystemandeachcoremaybeprovided
with 1 to 3 testsetsusingcorrespondingresourcesto meetthefault
coveragerequirement.The resultsareshown in Figure8. As we
can see,G is always larger than zero. In other words, grouping
always helpsreducethe total test time. In addition, G increases
sharplywhenthe numberof coresincreases.It reachesa peakof
10
 52%whenthenumberof coresis 25. Thenit dropsslowly when
thenumberof coresincreasesfurther. This is reasonablebecause,
when thereare small numberof cores,the total numberof tests
is also small and we couldn’t balancethe resourcequeuesmore
evenly due to lessflexibility . As the numberof coresincreases,
theflexibility increases,andaccordingly, G increases.Ontheother
hand,whentherearea largenumberof tests,thebenefitof group-
ing will bedominatedby therandomness,which in turn resultsin
thedroppingof thecurve.

In scenario2, we setthenumberof coresto 25 (wherethepeak
is settledin simulation1),andchangethetotalnumberof resources
in thesystemfrom 3 to 6. Figure9 showshow G changeswhenthe
maximumnumberof resourcesprovidedfor eachcorechanges.As
wecansee,with thesametotalnumberof resources,G increasesal-
mostlinearlywith themaximumnumberof resourcesfor eachcore,
while with thesamemaximumnumberof resourcesfor eachcore,
G increaseswhenthe total numberof resourcesincreases.This is
againdueto thechangein flexibility of choosingtestresourcesas
describedin scenario1.

The worst casescheduleoccurswhenthe last test to be sched-
uledcomesfrom a groupof long tests(i.e., tnj � L � n � 1� , where
L � n � 1� is definedasthetotal testtimeaftern � 1 coreshave been
scheduled,shown in Figure 10). In this case,tnj dominatesthe
total test time. We canreducethe test time in the worst caseby
rescheduling,in which tnj is scheduledfirst.

2 2.5 3 3.5 4 4.5 5 5.5 6
5

6

7

8

9

10

11

12

13

Maximum number of resources for each core

G
 (

%
)

R=6
R=5
R=4
R=3

Figure9: G ChangingWith the Max. Number of Resourcesfor
Each Core.

r0

r1

r2

r3

L(n-1)

L(n)

Tn1

Tn0

Tn2

Tn3

Tnj is the last test set to be scheduled

Figure10: The Worst CaseScheduling.

5. MULTIPLE TEST SETS SELECTION &
SCHEDULING

In thelastsection,we assumedthatonecoreneedsonly onetest
set. More generally, a core may needmultiple (say L) test sets
to achieve a certainfault coverage.For example,in a embedded-
core-basedSoC,several test methodsare usedto test embedded
memory. As we all know, in addition to stuck-at,bridging, and
openfaults,memoryfaultsincludebit-pattern,transition,andcell-
couplingfaults. Parametric,timing faults,andsometimes,transis-
tor stuck-on/off faults,addressdecoderfaults,andsense-ampfaults
arealsoconsidered.[7] haslistedvarioustestmethodsfor embed-
dedmemory, i.e., Direct access,Local boundryscanor wrapper,
BIST, ASIC functionaltest,Throughon-chipmicroprocessor, etc..
Differenttestmethodmay requiredifferenttestresource,usedif-
ferenttesttime, andprovide differentfault coverage.In this case,
we cansimply make L virtual coresandconvert the1-L mapping
to a 1-1 mapping.Theonly differencebetweenthis andthesingle
testselectionwediscussedearlieris that,whenchoosingtheshort-
estqueue,onehasto checkif the selectedtestset conflictswith
otherswhich arefor the samecoreandoverlapthe runningtime.
Figure12 illustratesthemultiple testsetsschedulingfor a system
shown in Figure11,whichcanbeperformedin two steps.

First, we createL virtual coresfor eachcorecorrespondingto
L fault models. For eachfault model, a group of test setswith
varioustesttime is provided for the requiredfault coverage.This
means,eachvirtual corehasa groupof testsetsavailableandwe
selectoneof themto performtesting. Thuswe mapthe multiple
testsselectionmodel to the single test selectioncase. We select
the testsin a way thatwe balancethequeuesin orderto avoid the

f00

c0
f01

f10
t10 = 3
t11 = 8
t12 = 12

r0

r3
t13 = 13

t00 = 12
t01 = 7
t02 = 6

r0
r1
r3

t03 = 4 r1
t04 = 1 r2

r2

r2
r3f11

f12

t18 = 11

r0
r1
r2
r3

c1

t20 = 5
t21 = 1

r0
r2c2 f20

c3
f30

t30 = 4
t31 = 6

r0
r1

t32 = 18
t33 = 11
t34 = 9

r1
r3
r2f31

Core ID Fault model Test set selection group Corresponding resource

t16 = 3
t17 = 6

t15 = 5
t14 = 8

Figure11: A Fault Model BasedSystem.

situationthat all the testsetswill only usesomeof the resources
andthusresultin long lengthin thesequeues.In thesecondstep,
we needto reschedulethe testsfor the samecore which overlap
therunningtime. Theshortest-task-firstprocedurewill beadopted
herefor rescheduling.Theworstcasecomplexity is O(r3), wherer
is thenumberof thevirtual cores.

047

0

0

710

2 1 011

8

Core 0_0Core 1_2

Core 1_1

Core 1_0 Core 3_0

Core 3_1

Core 0_1

Core 2

r0

r1

r2

r3

(b) rescheduling to avoid conflicting

047

0

0

10

2 1 0

r0

r1

r2

r3

3

13 4

Core 2

Core 0

715

Core 1

Core 1

Core 3

Core 0

Core 3

Core 1

(a) test set selection for each fault model of cores

Figure12: Multiple TestSetsScheduling.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presentedanefficient testschedulingal-

gorithm for embeddedcore-basedSoC’s. With the flexibility of
selectinga testsetfrom a setof alternatives,we have proposedto
schedulethe testsfor a given systemin a way that balancesthe
resourceusagequeueasevenlyaspossible,thusreducingtheover-
all testtime. Furthermore,we have presenteda groupingscheme

to optimizethescheduleandevaluatedtheapproachesvia simula-
tion. Our simulationsshowed that thereis no explicit deadtime
in our approachandwe canfurther reducethe implicit deadtime
by propergrouping.We have alsoextendedthealgorithmto allow
multiple testsetsselectionfrom a setof fault modelbasedalterna-
tives.

Our initial resultsleadto furtherstudyin thefollowing research
directions.

� We will developefficient testschedulingalgorithmto reflect
the variousconstraints,not only resourcesharingand fault
coverage,but alsopower dissipation.

� Experimentswith benchmarkswill beperformedfor perfor-
manceverificationof theproposedschedulingalgorithms.

� We will extend our work to mixed-signalSoC’s. We will
discussthe modellingof mixed-signalSOCfor developing
testabilityanalysis,schedulinganddiagnosisandpresentef-
ficient testschedulingalgorithmsto minimizethetestcost.

7. REFERENCES
[1] K. Chakrabarty, “Testschedulingfor core-basedsystems

usingmixed-integerlinearprogramming,” IEEETrans.on
Computer-AidedDesignof IntegratedCircuitsandSystems,
vol. 19,pp.1163–1174,October2000.

[2] E. LarssonandZ. Peng,“System-on-chiptestparallelization
underpower constraints,” in Proc.of IEEE EuropeanTest
Workshop, May 2001.

[3] M. Sugihara,H. Data,andH. Yasuura,“Analysisand
minimizationof testtime in a combinedBIST andexternal
testapproach,” in Design,AutomationandTestin Europe
Conference2000, pp.134– 140,March2000.

[4] R. Chou,K. Saluja,andV. Agrawal, “Schedulingtestsfor
VLSI systemsunderpower constraints,” IEEE Trans.on VLSI
Systems, vol. 5, pp.175–185,June1997.

[5] V. Muresan,X. Wang,V. Muresan,andM. Vladutiu, “A
comparisonof classicalschedulingapproachesin
power-constrainedblock-testscheduling,” in Proceedings
IEEEInternationalTestConference2000, pp.882–891,
October2000.

[6] Y. Zorian,“A distributedBIST controlschemefor complex
VLSI devices,” in ProceedingsIEEEVLSITestSymposium
(VTS), pp.4–9,April 1993.

[7] R. Rajsuman,“Designandtestof largeembeddedmemories:
An overview,” IEEE DesignandTestof Computers, vol. 18,
pp.16–27,May-June2001.

