Minimizing Concurrent Test Time in SoC’s by Balancing
Resource Usage

Dan Zhao
CSE Department
SUNY at Buffalo
Buffalo, NY 14260-2000

Shambhu Upadhyaya
CSE Department
SUNY at Buffalo

Buffalo, NY 14260-2000

Martin Margala
ECE Department
University of Rochester
Rochester, NY 14627-0231

danzhao@cse.buffalo.edu shambhu@cse.buffalo.edu margala@ece.rochester.edu

ABSTRACT

We presenta novel testschedulingalgorithmfor embeddedore-
basedSoCs. Given a systemintegratedwith a setof coresanda
setof testresourceswe selecta testfor eachcore from a setof
alternatve testsets,andscheduldt in a way thatevenly balances
theresourcaisageandultimately reducethetestapplicationtime.
Furthermorewe proposea novel approachthat groupsthe cores
andassigrhigherpriority to thosewith smallerumberof alternate
testsets.In addition,we alsoextendthealgorithmto allow multiple
testsetsselectionfrom a setof alternatvesto facilitatetestingfor
variousfault models.

Keywords

System-on-a-chipestschedulingresourcebalancing testsetsse-
lection

1. INTRODUCTION

The systemlevel integrationis evolving asa new style of sys-
tem design,wherean entire systemis built on a single chip using
pre-designedpre-\erified comple logic blocks called embedded
cores,which leveragethe systemby the intellectualproperty(IP)
adwantage More specifically the systemdesignergor integrators)
may usethecoreswhich coverawide rangeof functions(e.g.,from
CPUto SRAM to DSPto analog,etc.), andintegratetheminto a
systemon a single chip (SoC)with their own userdefined-logics
(UDLs). The SoCtechnologyhasshavn greatadvantagein short-
eningthetime-to-marlet of a newv systemandmeetingvariousre-
quirementgsuchasthe performancesizeandcost)of todays elec-
tronic products.

However, testingsuchcore-base®oC's posesamajorchallenge
for the systemintegrators,as they may have limited knowledge
of the coresdueto the so called IP protection,and on the other
hand,varioustestingmethodg(e.g.,BIST, scan,functional, struc-
ture, etc.) for mary kinds of designervironmentsareprovided by
differentcorevendors. In orderto selectan efficient teststratey
for aSoC,severalperformanceriterialistedbelov needto becon-
sidered.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistritute to lists, requiresprior specific
permissiorand/orafee.

GLSVLSI'02 April 18-19,2002,New York, New York, USA.

Copyright 2002ACM 1-58113-462-2/02/0004.$5.00.

1) overall testtime. The overall testtime of atestingschemes
definedasthe period from the starttime of the testactvity to the
endtime whenthe lasttesttaskfinishes. Note that, only whenall
testsetsin paralleltestqueuedinish theirtaskswe sayit’ stheend
time of thetest. In otherwords,the longesttestqueuedominates
the overall testtime. In addition, sincethe expensve testersare
sharedby mary cores,the shorterthe testtime, the lower the cost
is. Thetesttime may be reducedby using shortertestvectorsor
betterschedulingschemes.

2) fault coverage. In orderto gaina high fault coveragethein-
dividual embeddedtoresand UDLs shouldbe testedthoroughly
which is alsoreferredascore-level testing. This includesconsid-
erationof variousfault models. In addition, the interconnections
betweendifferentsystemblocksalsoneedto betested.Finally the
systemlevel testingshouldbe processedo checkthe systemfunc-
tions.

3) area overhead The areaoverheadis the extra silicon area
neededn orderto performthe SoCtest. Theareaoverheadshould
be limited within a certainareabudget,andkeptassmallaspossi-
ble.

4) performanceoverhead As oneundesirableside-efect of in-
tegratingtestresourcesnto the systemthe power consumptiorof
the SoCmay increasewhile its speedmay decreaseThis perfor
manceoverheadmay vary when using differenttesting methods,
andthusbecomesa major performancecriterion when evaluating
variousteststrateyies.

In this paper we addresshe test schedulingproblemfor em-
beddedcore-based5oCs. We considera systemwhereonetest
set needsto be selectedfor eachcore from a group of test sets
using varioustestresourcesand proposea novel testscheduling
schemeo reducethe overall testtime. The basicideaof the pro-
posedschedulingalgorithmis to efficiently balancethe resource
usage.

Therestof this paperis organizedasfollows. In Sec.2, we dis-
cussthe conflicts and constraintsfor the schedulingproblemand
the existing schedulingschemes.Sec.3 describesa generalSoC
model,in which eachcoremayhave multiple testsetsusingdiffer-
entresourcesln Sec.4, we proposea hovel schedulingalgorithm
basedon the effective balancingof resourcausage Sec.5 extends
the algorithmby selectingmultiple testsetsfor eachcore. Finally,
Sec.6 concludeghepaperandpresentshe futureworks.

2. RELATED WORK

The objective of testschedulingis to decidethe startand end
timesfor thetestof eachcorein orderto meetall of theconstraints
and avoid ary conflicts of testapplication. The basicideais to
schedulehetestsin parallelsothatthosenonconflictingtestscan

be executedconcurrently and thus the total testingtime may be
reduced.

Thereareseveralconstraintshatmustbe consideredn schedul-
ing of tests.First, in a core-base®oC,not all testscanbe applied
atthesametime dueto theresourceconflicts. For example,several
coresmay sharethe sametestgeneratoor responsevaluator and
thuscannotbetestedin parallel. In addition,the power consump-
tion mustbetakeninto accountin orderto guarantegoroperoper
ating conditions. For instancejn a self-testedsystem testingthe
coresin parallelmayresultin high pover consumptiorandexceed
themaximumpower limit, whichwill resultin systemdamagedue
to overheatingwhile the coresmay not activate simultaneouslyn
normalfunctionalmode. Finally, certainfault coverageshouldbe
achieved whentestinga SoC.Thereareusuallya numberof core-
testingmethodsavailable and eachof them detectsdifferentfault
(e.g.,BIST for detectingperformance-relatedefectsandnonmod-
elledfaults,while externaltestfor detectingmodelledfaults). One
methodor a combinationof severalmethodsmay beneededo test
acorein orderto gaintherequiredfault coverage.

Variousapproachebave beermproposedor testscheduling Cha-
krabartyhasshavn in [1] thatthe problemof testschedulingfor
SoCs is equivalentto the openshop scheduling,and therebyis
NP-completewhen the numberof resourcess largerthan2. A
“shortest-task-fist” algorithm hasbeenproposedfor scheduling
large systems.However, it assumeshatthe coreshave to useall
of thepre-determinedestsetsandthe correspondingesourcesin
otherwords, the schedulingalgorithmonly arrangeghe sequence
of the testsets,which is differentfrom (or actuallya specialcase
of) our proposedalgorithm(to be discussedaterin sec.4). Our
algorithmselectsthe testsetsfrom the candidatesanddetermines
thetestschedule.

In [2], Larssoret. al. proposedatestparallelization(scan-chain
subdvision) combiningschedulingschemeto minimize testtime
underpower limitation. However, their techniqueis basedon a
greedyalgorithmwhich is not efficient for large SoC’s with alter
native testsetsfor eachcore.

The readersmay alsoreferto [3, 4, 5, 6] for otherscheduling
algorithms.

3. SYSTEM MODELING

In thissectionwe describeageneraSoCmodel,whichincludes
not only digital cores(denotedas D_cores),but analogcores(de-
noted as A_cores), mixed-signalcores(denotedas M_cores)and
UDLs aswell (seeFigure 1). Eachcore may have multiple test
setsusingdifferentresourcesandthusprovidesflexibility for test
scheduling.

In SoCtest,eachcoreis surroundedy wrappersyhichareused
to isolatethe coresandtransportdataunderdifferentmodes(e.g.,
normal/coretest/interconnecestmode). The TestAccessMech-
anism(TAM) senesas“test datahighway”, which transportdest
dataand control signalsand executessystemchip testin a pre-
determinedschedule. In addition, large UDLs can be treatedas
D_coresor A_coresaccordingo their functionality If A_coresand
D_coresdo notshareresourcesthey canbegroupednto two sepa-
ratesetsandtestedn parallelusingthesameschedulingechnique,
asshawn in Figure?2. In this paper we do not take into considera-
tion differentcoretypesandfocuson D_coresonly.

Without loss of generality we assumethat a SoC includesn
cores,andtherearem resourcesvailablefor testing. A coremay
needoneor severalteststo meetthe requiredfault coverage.Each
testsetincludesa setof testvectorsandneedsoneresourcewhich
canbe usedby onecoreat onetime. Therearedifferenttestsets
to achieve the samefault coveragebut with differenttesttime by

K4 ~ |D_wrapper i _
z N -
D_wrapper N Bl |\ - D_wrapper
B2)| -
B1 B3 \ D3
B2 D2
/ D1 Tml \
/ [l L -
; -
! Ls]
[R |
I I
: : A_wrapper
A2
A_wrapper
B1 | - A_wrapper
82 7 o ,/,/ o B1
AL |~ S i -7
L] M

rl - r8 are different testing resources

D1 - D3 are digital cores

Al - A2 are analog cores

M is a mixed-signal core

B; is denoted as different functional blocks in a core

Figure 1: A General SoCModel.

Figure 2: Graph Representationof Resource Sharing.

usingdifferentresourcesin otherwords,a corevendormay have
provided a setof alternatve tests,and one testfrom eachgroup
needsto be performedto achieve the requiredfault coverage. A
collision occurswhen the testssharingthe sameresourceor the
testsfor the samecore are performedin parallel. In addition,the
total powver consumptiormustnot exceedthe maximumpower al-
lowanceatary timel.

Giventhetesttime andthe requiredfault coverage the goal of
theschedulingechniquss to efficiently determinghestarttime of
thetestsetsto minimizethetotal testapplicationtime.

More formally, we definethe SoCmodelas TM ={C, RSC,T,
FC}, in which C = {cy,¢p,...ca} is afinite setof cores,RE =
{r1,r2,...rm} is afinite setof resourcesFC is the fault coverage
requiredto testeachcore,andT={T11, T12, ..., Tamy ---» Tn1s Th2s -+
Thm} is afinite setof tests,which areshavn in anx m matrixin
Figure3. In the matrix, eachtestset,definedasTij = {tjj} (where
tjj is the testtime), consistsof a setof testvectors. Testset Tjj
represents testsetfor testingcorec; by usingresourcerj. The
entrieswith zeroindicatethatsuchtestsetsarenot available.

4. A NOVEL TEST SCHEDULING ALGO-
RITHM: RESOURCE BALANCING

As the testschedulingproblemis NP-completemary heuristic
algorithmshave beenproposed However, aswe have discussedn
Sec.2, mostof themassumehatall of the giventestsetshave to
be usedin testing. In this work, we proposean efficient heuristic

1Althoughwewill notconsidetthepower consumptiorimit in our
schedulingalgorithm,we would like to addresshis problemin our
futurework.

cl |T1T12/ 0 |- - - - | O
c2 |0 |T22/0 |- - . - -|T2m
c3 |t311 0|0 |- - . - -]o0
c4 0 O |T43 " =~ - = | O
cn |Tnl|Tn2| T3] - - - - - |Tnm

Each vector § in the matrix represents a test set
for testing core ¢ by using resourge r .

Figure 3: Matrix Representationof TestSets.

list of parallel queue
usage of r1

testset T for coreic usage of r2

o uz a1 - :EE usage o 13

usage of rm

Figure 4: Parallel Usageof TestResoures.

schedulingalgorithmfor the casewhereoneof agroupof testsets
maybeselectedor eachcoreto performtesting,andtake into con-
siderationthetestconflictsandthe fault coveragerequirementsA

generalizatiorof this problemis givenin Sec.5.

We considera systemdiscussedh Sec.3 anddefinemqueuesn
parallelcorrespondingo m resourceshatmaybeusedatthesame
timeindependentlyseeFigure4). Thelengthof thequeuedenotes
thetotal testingtime of all testsetsusingtheresourceWe assume
thatthereareP, (1 < P, < m) testsetswhichusedifferentresources,
availablefor testingcorec;, andonecoreneedsonly oneof these
testsetsto achieve therequiredfault coverage(However, this limit
will be nullified later for the multiple testsetscase.).In orderto
schedulethe test setsfor sucha system,we proposea resource-
balancingheuristicalgorithm.

Thebasicideaof this algorithmis to usetheresourcessevenly
aspossiblepecaus¢hetotaltestingtimeis dominatedby thelongest
usagetime amongall resourcesisedin a test. Whenscheduling
core ¢;, we temporarilyinsertall of its test setsinto the corre-
spondingqueues. Then we choosethe one resultingin shortest
gueudength,anddeleteothertestsetsof ¢; from the otherqueues.
For example,we executethe algorithm(referto the pseudocodén
Figure5) for a core-basedystemwith 6 coresand4 resourcess
shavnin Tablel, whichshavsthetesttime for eachtestsetusinga
resourceor eachcore. We first sequentiallyselectthe shortestest
amongtheiralternatvesfor corescy, c1, ¢, andinsertthemintors,
ro, ro respectiely. Notethat, a shortertestsetwill notalwaysbe
selectedasit mayusetheresourcecorrespondingo alongerqueue.
For example whenwe schedules, we maynotselectheone(Ts3)
with shortestesttime (9) sinceit resultsin alongerqueuelength
(for r3). Insteadwe selectT3, andinsertit into queuer,. Similarly

Read the data into the structure CORE, including the following members,

CORE: i /* core id */
=] /* the number of test sets */
t[P] [* the test time of each test set */
r[P] I* the corresponding test resource */

/* Balancing resource usage queues without grouping*/
begin /* initialize the resource usage queues, rgs[i] is the queug of r */
fori:=1tomdo /* m is the number of resources */
rodi] =&)
fori:=1tondo /* n is the number of cores */
short_length=CORE]i].t[1]+rqs{CORE[i].r[1]]_length;
short_length_id = 1,
for j := 2to CORE]i].P do [* for all test sets;f ofic */
if (CORETi].t[j] + rqsCORETi].r[j]]_length < short_length) then

begin /* get the shortest queue length */
short_length = CORE[i].t[j] + rqs[CORE[i].r[j]]_length;
short_length_id =j;

end

Insert test(short_length_id) into rqs] CORE([i].r[short_length_id]];
rgs{j]_length = short_length; /* update the queue length */
end

Figure5: The SchedulingAlgo. Without Grouping.

Table 1: The Matrix of TestSetsfor An Example System

Tij fro || re r3 | P
G| 12|71 063
| 0|4 1]0]2
c| 3|08 |12]3
cz| 0|0 (13|92
2| 5762 4
Gs| 50102
G| 4[6]0]0]2

we selectTy for ca, T for cs, andfinally Tgg for cg. The final
schedulds shawvn in Figure6(1), which resultsin a total testtime
of 14. It canbeshavn that, the worst-casdime compleity of this
algorithmis O(T), whereT is thenumberof thetestsets.Moreover,
we canseeoneof the advantage®of resourcebalancingapproach,
i.e.,theres noidle time betweersuccessie tests(namely explicit
deadtime)in ary of thequeues.

PropPOSITION 1. Thee is no “explicit deadtime” in this re-
sourcebalancingappoad.

ProoF. Accordingtothedefinition[1], explicit deadimearises
dueto resourceconflicts. Therearetwo typesof resourceconflicts
definedin our system. 1) Several testscompeteto usethe same
resourceThiskind of conflictis totally overcomeby resourcebal-
ancingapproachsincethetestscompetinga resourcesequentially
enterthe resourcequeue. 2) Differenttestsfor the samecoreare
executedatthe sametime. Althoughfor eachcorea setof testsare
provided,only oneof themwill beexecutedo testthecore.Sothis
typeof conflictis eliminated. [

As theres no explicit deadtime in resourcebalancingour pur
poseis to efficiently and effectively reducethe implicit deadtime
attheendof theresourcequeuegOhviously, noimplicit deadtime
appearsatthebeginningin this approach.)We find out thatdiffer-
entorderingof ready-to-scheduleoreg(i.e., thecoresheforeenter
ing the resourcequeues)resultsin differentscheduleof tests,and
accordinglythe testtime. More specifically the ready-to-schedule
coresaregroupedoasedn thevalueof B suchthatin agroupGp,
all coreshave P alternatetestsets,andthe coresin the groupwith

- r3 ‘ c3 3

(1) Without grouping (2) With grouping

Figure 6: The Resource Balancing Approach.

lower P valuewill be schedulecearlier becauseahesetestshave
to be putinto certainqueueqi.e., the correspondingoreshave to
betestedby usingcertainresources.)Next, we may chooseproper
testsetsfrom thegroupwith largerP valueto balancehelengthsof
thequeuesThepseudocodef thisalgorithmis shavn in Figure?.

Read the data into the structure CORE, including the following members,

CORE : i /* core id */
P /* the number of test sets */
t[P] /* the test time of each test set */
r[P] /* the corresponding test resource */

/* Balancing resource usage queues with grouping */
begin /* initialize the resource usage queues, rgsfi] is the queue of r */
fori:=1tomdo /*m is the number of resources */
rodi] =< ;
fori:=1tondo /* nis the number of cores */
COREJi] --> G[CORETi].P]; /* group the cores */
for each group
for each corei in the group
short_length=CORE[i].t[1]+rqs{ CORE[i].r[1]]_length;
short_length_id = 1;
for j := 2to CORE[i].P do
if (CORE[i].t[j] + rgs[CORETi].r[j]]_length < short_length) then
begin
short_length = CORETi].t[j] + rqs[CORE[i].r[j]]_length;
short_length_id =j;
end
I nsert test(short_length_id) into rqs{ CORE[i].r[short_length_id]];
rggj]_length = short_length;
end

Figure 7: The SchedulingAlgo. With Grouping.

Figure6(2)illustratesthe executionof thealgorithmwith group-
ing (referto Figure 7) for the examplesystem. By grouping,cy,
C3, C5 andcg arein thesamegroupandareinsertedinto queuers,
r3, rp andrg respectiely. Thenwe schedulecy andc,. Notethat,
we will selectthe testwith testtime of 7 for corecy andinsertit
into ry, althoughthereare othertest setswith shortertesttimes.
Similarly we insertthe testsetwith time of 3 for ¢, into rg, and
finally insertthetestsetwith time of 6 for ¢4 into r,. Thetotal test
timeis 9. Comparedo the case(Figure6(1)) wherewe don't use
groping,thetotal testtime is reducecby 5. As we cansee,group-
ing the coresbeforeschedulingcan significantly reducethe total
testingtime andachieve betterbalancingof resourcausage while
the worst casetime compleity remainsthe same.Comparingthe
schedulewith and without grouping(seeFigures6, 8 and9), we
getthefollowing conclusion.

Resultl. Groupingalwayshelpsbalanceheresourceisagejueue
lengths.

0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Number of cores

Figure 8: G Changing With the Number of Cores.

We evaluatetheproposedchedulingalgorithmsvia simulations.
In our simulationmodel,we userandomlygeneratedestsets.We
definethe balanceratio as G, which canbe expressedy the fol-
lowing equation,

L —
G two—Lwog
ng

whereLyg is the total testtime of a schedulewith groupingwhile
Lwaog is thetotal testtime of a schedulavithoutgrouping.

In simulationscenariol, we studythe effect of the numberof
coreson the testtime, and comparethe performanceof the ap-
proachwith groupingwith thatwithout grouping. We assumethat
thereare5 resourcesn the systemandeachcoremay be provided
with 1 to 3 testsetsusingcorrespondingesourceso meetthefault
coveragerequirement.The resultsare shavn in Figure8. As we
cansee,G is always larger thanzero. In otherwords, grouping
always helpsreducethe total testtime. In addition, G increases
sharplywhenthe numberof coresincreaseslt reachesa peakof
10.52%whenthenumberof coresis 25. Thenit dropsslowly when
the numberof coresincreasedurther Thisis reasonabléecause,
whenthere are small numberof cores,the total numberof tests
is also small and we couldnt balancethe resourcequeuesmore
evenly dueto lessflexibility. As the numberof coresincreases,
theflexibility increasesandaccordingly G increasesOntheother
hand,whentherearea large numberof tests the benefitof group-
ing will be dominatedby the randomnessyhich in turn resultsin
thedroppingof thecune.

In scenaria2, we setthe numberof coresto 25 (wherethe peak
is settledin simulationl), andchangehetotal numberof resources
in thesystemfrom 3 to 6. Figure9 shavs how G changesvhenthe
maximumnumberof resourceprovidedfor eachcorechangesAs
we canseewith thesameotalnumberof resourcesG increasesil-
mostlinearlywith themaximumnumberof resource$or eachcore,
while with the samemaximumnumberof resourcegor eachcore,
G increasesvhenthetotal numberof resourcesncreasesThis is
againdueto the changein flexibility of choosingtestresourcess
describedn scenarial.

The worst casescheduleoccurswhenthe lasttestto be sched-
uledcomesfrom a groupof long tests(i.e., thj > L(n— 1), where
L(n—1) is definedasthetotal testtime aftern— 1 coreshave been
scheduledshavn in Figure 10). In this case,tnj dominatesthe
total testtime. We canreducethe testtime in the worst caseby
reschedulingin whichty; is scheduledirst.

I I I
2 25 3 35 4 45 5 5.5 6
Maximum number of resources for each core

Figure9: G ChangingWith the Max. Number of Resourcesfor
Each Core.

' L(n)

Tnj is the last test set to be scheduled

Figure 10: The Worst CaseScheduling

5. MULTIPLE TEST SETSSELECTION &
SCHEDULING

In thelastsectionwe assumedhatonecoreneedsonly onetest
set. More generally a core may needmultiple (sayL) testsets
to achieve a certainfault coverage. For example,in a embedded-
core-based50C, several test methodsare usedto testembedded
memory As we all know, in additionto stuck-at,bridging, and
openfaults,memoryfaultsincludebit-pattern transition,andcell-
couplingfaults. Parametric timing faults,and sometimestransis-
tor stuck-on/of faults,addresslecodefaults,andsense-amgaults
arealsoconsidered.[7] haslistedvarioustestmethod<or embed-
dedmemory i.e., Direct accessLocal boundryscanor wrapper
BIST, ASIC functionaltest, Throughon-chipmicroprocessoetc..
Differenttestmethodmay requiredifferenttestresource usedif-
ferenttesttime, and provide differentfault coverage.In this case,
we cansimply male L virtual coresand corvert the 1-L mapping
to a 1-1 mapping.The only differencebetweerthis andthe single
testselectionwe discussecarlieris that,whenchoosingthe short-
estqueue,one hasto checkif the selectedtestset conflicts with
otherswhich arefor the samecore and overlapthe runningtime.
Figure 12 illustratesthe multiple testsetsschedulingfor a system
shavn in Figure11, which canbeperformedn two steps.

First, we createL virtual coresfor eachcore correspondingo
L fault models. For eachfault model, a group of test setswith
varioustesttime is provided for the requiredfault coverage. This
meanseachvirtual corehasa group of testsetsavailableandwe
selectone of themto performtesting. Thuswe mapthe multiple
testsselectionmodel to the single test selectioncase. We select
thetestsin away thatwe balancethe queuesn orderto avoid the

Core ID| Fault model Test set selection group Corresponding rgsource

t00 = 12 r0

f00 t01=7 rl

co t02 =6 r3

t03 =4 rl

fo1 04=1 r2

t10=3 r0

f10 11=8 2

12 =12 r3

113 =13 2

cl f11 t14=8 3
t15=5 r0

t16=3 rl

f12 17=6 2

t18 =11 r3

t20=5 r0

c2 f20 ©21=1 2

t30=4 r0

f30 131=6 rl

“ :
t33 = r

f31 134=9 r2

Figure 11: A Fault Model BasedSystem.

situationthat all the testsetswill only usesomeof the resources
andthusresultin long lengthin thesequeues.In the secondstep,
we needto reschedulghe testsfor the samecore which overlap
therunningtime. The shortest-task-firgbrocedurewill be adopted
herefor reschedulingTheworstcasecompleity is O(r3), wherer
is thenumberof thevirtual cores.

7 4 (o}
‘Core 1_C- r0
0 7 0
}Core 1_4 Core 0_0 ‘ rl
11 210
r2
8 0 Core 0_1
‘ Core1_1 ‘ r3 Core 2
(a) test set selection for each fault model of cores
7 4 d
‘ Core 1 - r0
10 3 0
‘ Core 0 ’ Core 1 ‘ rl
13 4 210
r2
15 7 0 Core 2
Core 1 ‘ ‘ r3 Core0

(b) rescheduling to avoid conflicting

Figure 12: Multiple TestSetsScheduling

6. CONCLUSION AND FUTURE WORK

In this paper we have presentedin efficient testschedulingal-
gorithm for embeddectore-basedsoCs. With the flexibility of
selectinga testsetfrom a setof alternatves,we have proposedo
schedulethe testsfor a given systemin a way that balanceshe
resourcausageajueueasevenly aspossiblethusreducingthe over-
all testtime. Furthermorewe have presentedh groupingscheme

to optimizethe scheduleandevaluatedthe approachesia simula-
tion. Our simulationsshaved that thereis no explicit deadtime
in our approachandwe canfurther reducethe implicit deadtime
by propergrouping.We have alsoextendedthe algorithmto allow

multiple testsetsselectionfrom a setof fault modelbasedalterna-
tives.

Ourinitial resultsleadto furtherstudyin thefollowing research

directions.

(LA

[1

(2]

3

—_—

[4]

(5]

(6]

[7]

o Wewill develop efficienttestschedulingalgorithmto reflect
the variousconstraintsnot only resourcesharingand fault
coverage put alsopower dissipation.

e Experimentswith benchmarksvill be performedfor perfor
manceverificationof the proposedschedulingalgorithms.

e We will extend our work to mixed-signalSoC's. We will
discussthe modelling of mixed-signalSOC for developing
testabilityanalysis schedulinganddiagnosisandpresentef-
ficienttestschedulingalgorithmsto minimizethetestcost.

REFERENCES

K. Chakrabarty“Testschedulingor core-basedystems
usingmixed-intgerlinear programmingd, IEEE Trans.on
ComputerAidedDesignof IntegratedCircuitsand Systems
vol. 19, pp.1163-11740ctober2000.

E. LarssomandZ. Peng,"System-on-chigestparallelization
underpower constraints, in Proc. of IEEE EuropeanTest
Workshop May 2001.

M. SugiharaH. Data,andH. Yasuura;Analysisand
minimizationof testtime in acombinedBIST andexternal
testapproacH, in Design,Automationand Testin Europe
Confeence200Q pp.134—140,March2000.

R. Chou,K. Saluja,andV. Agrawal, “Schedulingtestsfor
VLSI systemsunderpower constraint$, IEEE Trans.on VLSI
Systemsvol. 5, pp. 175-185,Junel997.

V. Muresan X. Wang,V. MuresanandM. Vladutiu, “A
comparisorof classicakchedulingapproachem
power-constrainedlock-testscheduling, in Proceedings
IEEE InternationalTestConfeence200Q pp.882-891,
October2000.

Y. Zorian,“A distributedBIST controlschemdor comple
VLSI devices] in Proceeding$EEE VLSITestSymposium
(VTS) pp.4-9,April 1993.

R. Rajsuman;Designandtestof largeembeddednemories:
An overview,” IEEE Designand Testof Computes, vol. 18,
pp.16—-27,May-June2001.

