CSE 4/563 Knowledge Representation Professor Shapiro Homework 1
 Maximum Points: 41
 Due: 2:00 PM, Thursday, September 17, 2009

Name(s) \langle user name(s) \rangle :

September 10, 2009

Print this document, print your name(s) and user name(s) on the line above, and write the answers as indicated. Write neatly! Illegible answers will be considered incorrect.

This homework is due at the beginning of lecture on the date given above.

1. (6) Indicate, by putting an " X " in the proper blank, whether the following expressions are syntactically correct according to the syntax of Propositional Logic given in lecture.
(a) (1) Is \qquad Is Not \qquad $(P \Rightarrow \neg Q) \vee(\neg Q \Rightarrow P)$
(b) (1) Is \qquad Is Not \qquad $P \wedge Q \wedge R \Rightarrow Q$
(c) (1) Is \qquad Is Not \qquad $((P \wedge Q) \wedge R) \Leftrightarrow[P \wedge(Q \wedge R])$
(d) (1) Is \qquad Is Not \qquad TomIsHome $\wedge \vee$ BettyIsHome
(e) (1) Is \qquad Is Not \qquad Tom drives Betty \Rightarrow Tom is the driver
(f) (1) Is \qquad Is Not \qquad BirdsFly $\neg \Rightarrow$ PenguinsFly
2. (15) Using the following atomic propositions, with the given intensional semantics

- [Buffalo is city] = Buffalo is a city
- $[$ Buffalo is large $]=$ Buffalo is large
- [Buffalo in NY] = Buffalo is in New York State
- [Buffalo on border $]=$ Buffalo is on the border of the US
formalize the following sentences as well-formed propositions of Propositional Logic.
(a) (3) If Buffalo is on the border of the US, then Buffalo is in New York State.
(b) (3) If Buffalo is a city, Buffalo is not large.
(c) (3) Buffalo is a large city in New York State.
(d) (3) Buffalo is on the border of the US, but is not in New York State.
(e) (3) Buffalo is large if and only if it is a city or on the border of the US.

3. (10)
(a) Show the truth table for the following wfps by circling either "True" or "False" in each cell below the horizontal dividing line.
i. (3) $P \wedge \neg P \Rightarrow Q$.

P	True	True	False	False
Q	True	False	True	False
$\neg P$	True False	True False	True False	True False
$P \wedge \neg P$	True False	True False	True False	True False
$P \wedge \neg P \Rightarrow Q$	True False	True False	True False	True False

ii. (3) $(P \Rightarrow Q) \Leftrightarrow(\neg P \Rightarrow \neg Q)$

P	True	True	False	False
Q	True	False	True	False
$\neg P$	True False	True False	True False	True False
$\neg Q$	True False	True False	True False	True False
$P \Rightarrow Q$	True False	True False	True False	True False
$\neg P \Rightarrow \neg Q$	True False	True False	True False	True False
$(P \Rightarrow Q) \Leftrightarrow(\neg P \Rightarrow \neg Q)$	True False	True False	True False	True False

(b) i. (2) According to your truth table, is $P \wedge \neg P \Rightarrow Q$ valid, unsatisfiable, or contingent?
ii. (2) According to your truth table, is $(P \Rightarrow Q) \Leftrightarrow(\neg P \Rightarrow \neg Q)$ valid, unsatisfiable, or contingent?
4. (5)
(a) (3) Using the tableau model-finding procedure, draw a tree to identify the models that simultaneously satisfy the wfps: $\{(A \Rightarrow B \vee C),(P \Rightarrow Q \wedge R), \neg(C \vee R)\}$.
(b) (2) According to your tableau, what models satisfy the wfps $\{(A \Rightarrow B \vee C),(P \Rightarrow Q \wedge R), \neg(C \vee R)\}$? Use one column for each model or set of models. In each such column, circle either "True" or "False" if the corresponding atomic wfp is True or False in that model, or circle both "True" and "False" if the corresponding atomic wfp could be either. There may be more columns provided than models found in your tableau.

| A | True False |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| B | True False |
| C | True False |
| P | True False |
| Q | True False |
| R | True False |

5. (5)
(a) (3) Using the tableau model-finding procedure, draw a tree to identify the models that simultaneously satisfy the wfps: $\{((A \Rightarrow B) \Leftrightarrow(P \wedge Q)),(\neg P \Rightarrow A), \neg P\}$
(b) (2) According to your tableau, what models satisfy the wfps $\{((A \Rightarrow B) \Leftrightarrow(P \wedge Q)),(\neg P \Rightarrow A), \neg P\}$ Use one column for each model or set of models. In each such column, circle either "True" or "False" if the corresponding atomic wfp is True or False in that model, or circle both "True" and "False" if the corresponding atomic wfp could be either. There may be more columns provided than models found in your tableau.

| A | True False |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | True False |
| P | True False |
| Q | True False |

